1
|
Nabakhteh S, Lotfi A, Afsartaha A, Khodadadi ES, Abdolghaderi S, Mohammadpour M, Shokri Y, Kiani P, Ehtiati S, Khakshournia S, Khatami SH. Nutritional Interventions in Amyotrophic Lateral Sclerosis: From Ketogenic Diet and Neuroprotective Nutrients to the Microbiota-Gut-Brain Axis Regulation. Mol Neurobiol 2025:10.1007/s12035-025-04830-8. [PMID: 40097762 DOI: 10.1007/s12035-025-04830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with significant challenges in diagnosis and treatment. Recent research has highlighted the complex nature of ALS, encompassing behavioral impairments in addition to its neurological manifestations. While several medications have been approved to slow disease progression, ongoing research is focused on identifying new therapeutic targets. The current review focuses on emerging therapeutic strategies and personalized approaches aimed at improving patient outcomes. Recent advancements highlight the importance of targeting additional pathways such as mitochondrial dysfunction and neuroinflammation to develop more effective treatments. Personalized medicine, including genetic testing and biomarkers, is proving valuable in stratifying patients and tailoring treatment options. Complementary therapies, such as nutritional interventions like the ketogenic diet and microbiome modulation, also show promise. This review emphasizes the need for a multidisciplinary approach that integrates early diagnosis, targeted treatments, and supportive care to address the multisystemic nature of ALS and improve the quality of life for patients.
Collapse
Affiliation(s)
- Samira Nabakhteh
- Department of Biochemistry, School of Basic Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Anahita Lotfi
- Department of Food Sciences and Industry, School of Agricultural Sciences and Natural Resources, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Arman Afsartaha
- Department of Nutrition, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Sadat Khodadadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, 35122, Italy
| | - Siavash Abdolghaderi
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadpour
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cuffaro F, Lamminpää I, Niccolai E, Amedei A. Nutritional and Microbiota-Based Approaches in Amyotrophic Lateral Sclerosis: From Prevention to Treatment. Nutrients 2024; 17:102. [PMID: 39796536 PMCID: PMC11722677 DOI: 10.3390/nu17010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration. Therapeutic and preventive strategies focused on nutrition offer promising opportunities to address these interconnected pathophysiological mechanisms. Diets enriched with antioxidants, omega-3 fatty acids, and anti-inflammatory compounds-such as the Mediterranean diet-have shown potential in reducing oxidative stress and systemic inflammation. Additionally, microbiota-targeted approaches, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation, are emerging as innovative tools to restore microbial balance, strengthen gut integrity, and optimize GBA function. This review highlights the critical need for personalized strategies integrating immunonutrition and microbiota modulation to slow ALS progression, improve quality of life, and develop preventive measures for neurodegenerative and neuroinflammatory diseases. Future research should prioritize comprehensive dietary and microbiota-based interventions to uncover their therapeutic potential and establish evidence-based guidelines for managing ALS and related disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
| | - Elena Niccolai
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Firenze, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
3
|
Zhu J, Xu P, Yan W, Hu Y, Guo H, Chen F, Bigambo FM, Wang X. The influence of multivitamins on neurological and growth disorders: a cross-sectional study. Front Nutr 2024; 11:1465875. [PMID: 39385784 PMCID: PMC11463060 DOI: 10.3389/fnut.2024.1465875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Background While vitamin deficiencies can pose serious health consequences for the body, excessive intake of vitamins can also lead to health risks. However, there is limited data about the impact of multivitamins on neurological and growth disorders. This study aimed to investigate the relationship between multivitamins and neurological and growth disorders. Methods A cross-sectional study was conducted with 16,921 subjects who visited the Children's Hospital of Nanjing Medical University from 2019 to 2021. The subjects were categorized into two groups based on their health status including 9,368 cases (4,484 with neurological disorders and 4,884 with growth disorders) and 7,553 healthy controls. Statistical tests including the T-test, Wilcoxon Rank Sum test, and Chi-Square test were employed to compare the groups, and logistic regression and Weighted Quantile Sum (WQS) regression were used to identify associations. Results In the adjusted logistic regression, serum 25 hydroxyvitamin D [25(OH)D], vitamin B2, and vitamin B9 were associated with decreasing risks of neurological disorders, whereas vitamin A, vitamin B1, and vitamin B12 were associated with increasing risks of neurological disorders. Nevertheless, vitamin A and vitamin B2 were associated with increasing risks of growth disorders. In the WQS model, nine multivitamins were positively associated with risks of neurological disorders, and Vitamins D and C were weighted the most. In addition, the inverse association but not statistically significant was observed between multivitamins and growth disorders, particularly growth retardation revealed a negative association, and some individual growth disorders revealed positive associations including obesity and malnutrition. Conclusion In general, the study observed that multivitamins may be associated with neurological and growth disorders either positive or negative depending on the type of disorder.
Collapse
Affiliation(s)
- Jiaxiao Zhu
- Department of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Penghong Xu
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Yan
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yahui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongli Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Sobral AF, Cunha A, Silva V, Gil-Martins E, Silva R, Barbosa DJ. Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration. Int J Mol Sci 2024; 25:9339. [PMID: 39273288 PMCID: PMC11395277 DOI: 10.3390/ijms25179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Andrea Cunha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Sarb OF, Sarb AD, Iacobescu M, Vlad IM, Milaciu MV, Ciurmarnean L, Vacaras V, Tantau AI. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int J Mol Sci 2024; 25:5676. [PMID: 38891863 PMCID: PMC11171869 DOI: 10.3390/ijms25115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.
Collapse
Affiliation(s)
- Oliviu-Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Adriana-Daniela Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Irina-Maria Vlad
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Lorena Ciurmarnean
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| |
Collapse
|
6
|
Sultana OF, Hia RA, Reddy PH. A Combinational Therapy for Preventing and Delaying the Onset of Alzheimer's Disease: A Focus on Probiotic and Vitamin Co-Supplementation. Antioxidants (Basel) 2024; 13:202. [PMID: 38397800 PMCID: PMC10886126 DOI: 10.3390/antiox13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Raksa Andalib Hia
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Barros ANDAB, Felipe MLDN, Barbosa IR, Leite-Lais L, Pedrosa LFC. Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2023; 13:696. [PMID: 37367854 DOI: 10.3390/metabo13060696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Vitamins and essential metals have been studied as potential risk and prognostic factors in amyotrophic lateral sclerosis (ALS). This study aimed to evaluate the prevalence of inadequate micronutrient intake in ALS patients, comparing subgroups according to the disease severity. Data were obtained from the medical records of 69 individuals. Assessment of disease severity was determined by the revised ALS Functional Scale (ALSFRS-R), using the median as the cutoff. The prevalence of inadequate micronutrient intake was estimated using the Estimated Average Requirements (EAR) cut-point method. The prevalence of inadequate vitamin D, E, riboflavin, pyridoxine, folate, cobalamin, calcium, zinc, and magnesium intake was considered severe. Patients with lower ALSFRS-R scores had lower intakes of vitamin E (p < 0.001), niacin (p = 0.033), pantothenic acid (p = 0.037), pyridoxin (p = 0.008), folate (p = 0.009) and selenium (p = 0.001). Therefore, ALS patients should be monitored regarding dietary intake of micronutrients essential in neurological processes.
Collapse
Affiliation(s)
- Acsa Nara de Araújo Brito Barros
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Maria Luisa do Nascimento Felipe
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Isabelle Ribeiro Barbosa
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Lucia Fátima Campos Pedrosa
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| |
Collapse
|
8
|
Morini E, Portaro S, Leonetti D, De Cola MC, De Luca R, Bonanno M, Quartarone A, Calabrò RS. Bone Health Status in Individuals with Amyotrophic Lateral Sclerosis: A Cross-Sectional Study on the Role of the Trabecular Bone Score and Its Implications in Neurorehabilitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2923. [PMID: 36833619 PMCID: PMC9956887 DOI: 10.3390/ijerph20042923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Background and Objectives: Osteoporosis is a metabolic skeletal disease resulting in low bone mass with increased bone fragility and susceptibility to fractures. May lead to rapid loss of bone mineral density (BMD) due to physical inactivity and reduced muscle contractions. Generally, the diagnosis of osteoporosis is made using dual X-ray absorptiometry (DXA), by measuring BMD and the trabecular bone score (TBS), which can be useful for detecting bone fragility and susceptibility to fractures. Therefore, the aim of this study was to investigate, using BMD and TBS, the bone health status in a sample of amyotrophic lateral sclerosis (ALS) inpatients attending neurorehabilitation. Materials and Methods: Thirty-nine patients were included in the study and underwent electrocardiogram and blood tests, including calcium and parathyroid hormone, as well as vitamin D dosage, and DXA. Results: We found that the TBS of patients with osteoporosis was lower than that of those ALS patients with osteopenia or normal bone status, both in the lumbar spine and femoral neck, although no statistical significance was reached. In addition, Spearman's correlation coefficient indicated a moderate correlation between TBS and lumbar spine BMD (r = -0.34) and a mild correlation between TBS and femoral neck BMD (r = -0.28). Conclusions: This study confirmed the hypothesis that ALS patients may exhibit deteriorated bone health with lower bone density and focused on the possible role of the TBS in the multidisciplinary approach to ALS.
Collapse
Affiliation(s)
- Elisabetta Morini
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Simona Portaro
- Physical and Rehabilitation Medicine Unit, Policlinico Universitario, 98125 Messina, Italy
| | - Danilo Leonetti
- Department of Biomedical, Dental and Morphological and Functional Images, Section of Orthopaedic and Traumatology, University of Messina, 98122 Messina, Italy
| | - Maria Cristina De Cola
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
9
|
Chen D, Wan L, Chen Z, Yuan X, Liu M, Tang Z, Fu Y, Zhu S, Zhang X, Qiu R, Tang B, Jiang H. Serum vitamin levels in multiple system atrophy: A case-control study. Front Aging Neurosci 2023; 14:1105019. [PMID: 36688152 PMCID: PMC9849558 DOI: 10.3389/fnagi.2022.1105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
Aim There is increasing evidence suggesting that vitamins may play important roles in the pathogenesis of multiple system atrophy (MSA). The purpose of this study was to detect the changes of serum vitamin levels and investigate their correlation with disease severity in MSA patients. Methods In this cross-sectional study, 244 MSA patients, 200 Parkinson's disease (PD) patients and 244 age-gender matched healthy controls were recruited. Serum vitamin levels were measured, including vitamin A, B1, B2, B9 (folate), B12, C, D, and E. Relevant clinical scales were used to assess the disease severity of MSA patients. Results Compared with the healthy controls, decreased serum folate levels and increased serum vitamin A and C levels were detected in MSA patients. Similar differences were also observed in the gender-based subgroup analysis. There were no differences detected between MSA and PD patients. In MSA patients, significant correlation was found between vitamin A, folate, or vitamin C and relevant clinical scales or laboratory findings. In addition, ROC analysis showed potential diagnostic value of the combination of vitamin A, folate, and vitamin C in distinguishing MSA patients from healthy controls. Conclusion There were significant changes in the blood vitamin spectrums of MSA patients, suggesting that dysregulation of vitamins homeostasis might play an important role in the pathogenesis of MSA.
Collapse
Affiliation(s)
- Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,School of Basic Medical Science, Central South University, Changsha, China,National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China,*Correspondence: Hong Jiang, ✉
| |
Collapse
|
10
|
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022; 23:12603. [PMID: 36293457 PMCID: PMC9604531 DOI: 10.3390/ijms232012603] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifically with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
11
|
Dietary-Derived Essential Nutrients and Amyotrophic Lateral Sclerosis: A Two-Sample Mendelian Randomization Study. Nutrients 2022; 14:nu14050920. [PMID: 35267896 PMCID: PMC8912818 DOI: 10.3390/nu14050920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have suggested a close but inconsistent relationship between essential nutrients and the risk of amyotrophic lateral sclerosis (ALS), and whether this association is causal remains unknown. We aimed to investigate the potential causal relation between essential nutrients (essential amino acids, essential fatty acids, essential minerals, and essential vitamins) and the risk of ALS using Mendelian randomization (MR) analysis. Large-scale European-based genome-wide association studies' (GWASs) summary data related to ALS (assembling 27,205 ALS patients and 110,881 controls) and essential nutrient concentrations were separately obtained. MR analysis was performed using the inverse variance-weighted (IVW) method, and sensitivity analysis was conducted by the weighted median method, simple median method, MR-Egger method and MR-PRESSO method. We found a causal association between genetically predicted linoleic acid (LA) and the risk of ALS (OR: 1.066; 95% CI: 1.011-1.125; p = 0.019). An inverse association with ALS risk was noted for vitamin D (OR: 0.899; 95% CI: 0.819-0.987; p = 0.025) and for vitamin E (OR: 0.461; 95% CI: 0.340-0.626; p = 6.25 × 10-7). The sensitivity analyses illustrated similar trends. No causal effect was observed between essential amino acids and minerals on ALS. Our study profiled the effects of diet-derived circulating nutrients on the risk of ALS and demonstrated that vitamin D and vitamin E are protective against the risk of ALS, and LA is a suggested risk factor for ALS.
Collapse
|
12
|
Mu C, Zhao Y, Han C, Tian D, Guo N, Zhang C, Zhu R, Zhang X, Zhang J, Liu X. Genetically Predicted Circulating Concentrations of Micronutrients and Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Front Genet 2022; 12:811699. [PMID: 35111203 PMCID: PMC8801789 DOI: 10.3389/fgene.2021.811699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disease with increasing incidence and high mortality, resulting in a considerable socio-economic burden. Till now, plenty of studies have explored the potential relationship between circulating levels of various micronutrients and ALS risk. However, the observations remain equivocal and controversial. Thus, we conducted a two-sample Mendelian randomization (MR) study to investigate the causality between circulating concentrations of 9 micronutrients, including retinol, folate acid, vitamin B12, B6 and C, calcium, copper, zinc as well as magnesium, and ALS susceptibility. In our analysis, several single nucleotide polymorphisms were collected as instrumental variables from large-scale genome-wide association studies of these 9 micronutrients. Then, inverse variance weighted (IVW) approach as well as alternative MR-Egger regression, weighted median and MR-pleiotropy residual sum and outlier (MR-PRESSO) analyses were performed to evaluate causal estimates. The results from IVW analysis showed that there was no causal relationship of 9 micronutrients with ALS risk. Meanwhile, the three complementary approaches obtained similar results. Thus, our findings indicated that supplementation of these 9 micronutrients may not play a clinically effective role in preventing the occurrence of ALS.
Collapse
Affiliation(s)
- Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoqian Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xu Liu,
| |
Collapse
|
13
|
D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021; 10:foods10123128. [PMID: 34945679 PMCID: PMC8702143 DOI: 10.3390/foods10123128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and β-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.
Collapse
Affiliation(s)
- Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Martina Caramenti
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Isabella Castiglioni
- Department of Physics “G. Occhialini”, University of Milan-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy;
| | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
- Correspondence:
| |
Collapse
|
14
|
Goncharova PS, Davydova TK, Popova TE, Novitsky MA, Petrova MM, Gavrilyuk OA, Al-Zamil M, Zhukova NG, Nasyrova RF, Shnayder NA. Nutrient Effects on Motor Neurons and the Risk of Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:3804. [PMID: 34836059 PMCID: PMC8622539 DOI: 10.3390/nu13113804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. METHODS We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010-2020. DISCUSSION We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. CONCLUSION The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.
Collapse
Affiliation(s)
- Polina S. Goncharova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Tatiana K. Davydova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Tatiana E. Popova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Maxim A. Novitsky
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Marina M. Petrova
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Oksana A. Gavrilyuk
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia G. Zhukova
- Department of Neurology and Neurosurgery, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Natalia A. Shnayder
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| |
Collapse
|
15
|
Bedlack R, Barkhaus P, Carter G, Crayle J, Mcdermott C, Pattee G, Polak M, Salmon K, Wicks P. ALSUntangled #62: vitamin C. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:476-479. [PMID: 34187257 DOI: 10.1080/21678421.2021.1946088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin C is one of the most common supplements taken by people with ALS. As an antioxidant, it has a plausible mechanism for slowing disease progression and there are some flawed pre-clinical studies and case reports suggesting benefit. However, a small human trial showed no benefit. Given this negative trial, we do not currently advise vitamin C as an ALS treatment.
Collapse
Affiliation(s)
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Greg Carter
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jesse Crayle
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Christopher Mcdermott
- Department of Neuroscience, The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Gary Pattee
- Department of Neurology, Neurology Associates, Lincoln, NE, USA
| | - Meraida Polak
- Department of Neurology, Emory Healthcare, Atlanta, GA, USA
| | - Kristiana Salmon
- Department of Neurology, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Paul Wicks
- UIndependent Consultant, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
16
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
17
|
Park S, Kim D, Song J, Joo JWJ. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. Int J Mol Sci 2021; 22:ijms22063216. [PMID: 33809961 PMCID: PMC8004271 DOI: 10.3390/ijms22063216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease. Although genome-wide association studies (GWAS) have successfully identified many variants significantly associated with ALS, it is still difficult to characterize the underlying biological mechanisms inducing ALS. In this study, we performed a transcriptome-wide association study (TWAS) to identify disease-specific genes in ALS. Using the largest ALS GWAS summary statistic (n = 80,610), we identified seven novel genes using 19 tissue reference panels. We conducted a conditional analysis to verify the genes’ independence and to confirm that they are driven by genetically regulated expressions. Furthermore, we performed a TWAS-based enrichment analysis to highlight the association of important biological pathways, one in each of the four tissue reference panels. Finally, utilizing a connectivity map, a database of human cell expression profiles cultured with bioactive small molecules, we discovered functional associations between genes and drugs to identify 15 bioactive small molecules as potential drug candidates for ALS. We believe that, by integrating the largest ALS GWAS summary statistic with gene expression to identify new risk loci and causal genes, our study provides strong candidates for molecular basis experiments in ALS.
Collapse
Affiliation(s)
- Sungmin Park
- Department of Computer Engineering, Dongguk University, Seoul 04620, Korea;
| | - Daeun Kim
- Department of Life Science, Dongguk University, Seoul 04620, Korea; (D.K.); (J.S.)
| | - Jaeseung Song
- Department of Life Science, Dongguk University, Seoul 04620, Korea; (D.K.); (J.S.)
| | - Jong Wha J. Joo
- Department of Computer Engineering, Dongguk University, Seoul 04620, Korea;
- Correspondence:
| |
Collapse
|
18
|
Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:1128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| | - Zorica Cvetkovic
- Department of Hematology, Clinical Hospital Center Zemun, 11000 Belgrade, Serbia;
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.A.); (D.R.-M.)
| |
Collapse
|