1
|
Maillard A, Pipiras E, Jarnoux P, Aloui C, Coste T, Corpechot M, Bergametti F, Jobic V, Delaforge A, Tournier-Lasserve E. Identity-by-Descent Analysis Uncovering a Founder Event in a Novel Hereditary Small Vessel Cerebral Disease. Stroke 2025; 56:1285-1289. [PMID: 40123492 DOI: 10.1161/strokeaha.124.049839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND A novel genetic cerebral small vessel disease, linked to the insertion of a mobile genetic element in the COL4A1 gene has recently been identified. Notably, 8 out of the 10 families carrying this mutation were known to come from Brittany, a specific region in France, suggesting the possibility of a common ancestor and a founder effect. METHODS Probands from each of the 10 families were analyzed with high-density single nucleotide polymorphism arrays. Bioinformatics tools were used to identify identical-by-descent chromosomal segments shared among probands. RESULTS Two of the 10 families were shown to be closely related. Furthermore, all probands shared a common identical-by-descent haplotype around the COL4A1 locus on 13q34, establishing the inheritance of the mutation from a single common ancestor. The most recent common ancestor of the 10 families is estimated to be born around 1735 (95% CI, 1600-1820) and is most probably of European descent. CONCLUSIONS This study demonstrates that this newly identified cerebral small vessel disease is the result of a founder effect, with strong clinical and epidemiological implications. This mutation is likely to be found mainly in regions with recent migratory ties to Brittany, such as the British Isles and North America, highlighting the need for further studies to assess the AluYa5 insertion in these areas. To our knowledge, this is the first reported instance of a founder effect contributing to a cerebral small vessel disease.
Collapse
Affiliation(s)
- Arnaud Maillard
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
| | - Eva Pipiras
- Service de génétique, Hôpital Trousseau, AP-HP, Paris, France (E.P.)
| | - Philippe Jarnoux
- Centre de Recherche Bretonne et Celtique-CRBC (EA 4451), Brest, France (P.J.)
| | - Chaker Aloui
- Université Paris Cité, NeuroDiderot, Inserm UMR 1141, France (C.A., T.C., F.B., E.T.-L.)
| | - Thibault Coste
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
- Université Paris Cité, NeuroDiderot, Inserm UMR 1141, France (C.A., T.C., F.B., E.T.-L.)
| | - Michaelle Corpechot
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
| | - Francoise Bergametti
- Université Paris Cité, NeuroDiderot, Inserm UMR 1141, France (C.A., T.C., F.B., E.T.-L.)
| | - Valérie Jobic
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
| | - Audrey Delaforge
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France (A.M., T.C., M.C., V.J., A.D., E.T.-L.)
- Université Paris Cité, NeuroDiderot, Inserm UMR 1141, France (C.A., T.C., F.B., E.T.-L.)
| |
Collapse
|
2
|
Tábuas-Pereira M, Brás J, Taipa R, Del Tredici K, Paquette K, Chaudhry S, DenHaan K, Durães J, Lima M, Bernardes C, Carmona S, Baldeiras I, Almeida R, Santana I, Guerreiro R. Exome sequencing of a Portuguese cohort of early-onset Alzheimer's disease implicates the X-linked lysosomal gene GLA. Sci Rep 2025; 15:11653. [PMID: 40185916 PMCID: PMC11971426 DOI: 10.1038/s41598-025-95183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD) and other dementias. Accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Additionally, common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 have been associated with AD pathogenesis. We aimed to search for rare genetic variants in genes associated with monogenic small vessel disease in a cohort of Portuguese early-onset AD patients. We performed whole-exome sequencing in 104 thoroughly studied patients with early-onset AD who lacked known pathogenic variants in the genes associated with AD or frontotemporal dementia. We searched for rare (minor allele frequency < 0.001) non-synonymous variants in genes associated with small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2, CSTA, GLA, and TREX1. We identified 12 rare variants in 18 patients (17.3% of the cohort). Three male AD patients carried a pathogenic GLA variant (p.Arg118Cys). One of these patients had a definite neuropathological study, confirming the diagnosis of AD and showing concomitant Fabry pathology in CA1-CA4 and the subiculum. We also found several rare variants in other genes associated with cSVD (NOTCH3, COL4A2 and HTRA1), corroborating previous studies and providing further support for the possibility that cSVD genes may play a role in AD pathogenesis. The presence of the same GLA variant in 3 early-onset AD patients, with no other genetic cause for the disease, together with the colocalization of Fabry disease pathology in areas relevant for AD pathogenesis, suggest GLA may have a role in its pathophysiology, possibly parallel to that of GBA in Parkinson's disease, meriting further studies.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal.
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ricardo Taipa
- Portuguese Brain Bank, Department of Neuropathology, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, Porto, 4099-001, Portugal
- Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, UMIB, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, University of Ulm, 89081, Ulm, Germany
| | - Kimberly Paquette
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Sophia Chaudhry
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Kaitlyn DenHaan
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - João Durães
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Susana Carmona
- Dementia Research Institute, UCL, London, United Kingdom
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Rosário Almeida
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Ando S, Saito R, Kitahara S, Uemura M, Hatano Y, Watanabe M, Kato T, Ito Y, Nalini A, Ishihara T, Murayama S, Igarashi H, Kakita A, Onodera O. "Chocolate Chip Sign" on Susceptibility-Weighted Imaging: A Novel Neuroimaging Biomarker for HTRA1-Related Cerebral Small Vessel Disease. Neurol Genet 2025; 11:e200237. [PMID: 40017561 PMCID: PMC11867577 DOI: 10.1212/nxg.0000000000200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 03/01/2025]
Abstract
Background and Objectives HTRA1-related cerebral small vessel disease (HRSVD) is a rare hereditary form of cerebral small vessel disease (CSVD) caused by HTRA1 pathogenic variants. Diagnosing HRSVD without genetic testing is challenging because of the lack of distinctive imaging features and clinical symptoms, and even family history can be unclear in some cases with HRSVD. This study investigates whether susceptibility-weighted imaging (SWI) can identify useful diagnostic findings for HRSVD. Methods This retrospective study included 8 patients with HRSVD, 12 with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 14 with sporadic CSVD (sCSVD). Two neurologists blinded to clinical data counted the number of hypointense dots around the midbrain on SWI. Receiver operating characteristic curve analysis evaluated the optimal threshold of the number that can distinguish HRSVD and CADASIL or sCSVD. In addition, histopathologic analysis including measurement of leptomeningeal vessel diameter and type III collagen deposition was performed on autopsied brains from 3 cases each of HRSVD, CADASIL, and sCSVD and control participants. Results Patients with HRSVD exhibited a significantly higher number of hypointense dots around the midbrain on SWI compared with CADASIL and sCSVD groups. A threshold of 5 or more dots, termed the "Chocolate Chip Sign," well distinguished HRSVD from CADASIL and sCSVD (area under the curve: 0.817, 95% confidence interval: 0.624-1.00). Three-dimensional SWI reconstruction and 7T MRI confirmed these dots as dilated extraparenchymal vessels. Histopathologic analysis revealed pronounced dilation of leptomeningeal veins with type III collagen accumulation specifically, in HRSVD brains. Discussion The Chocolate Chip Sign on SWI represents a novel and promising neuroimaging biomarker for HRSVD. This finding holds significant potential for facilitating early diagnosis, prompting timely genetic testing, and appropriate family screening for this rare genetic disorder.
Collapse
Affiliation(s)
- Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Rie Saito
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Sho Kitahara
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Yuya Hatano
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Japan
| | - Yosuke Ito
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Japan
- Department of Functional Neurosurgery, Nishiniigata Chuo Hospital, Niigata, Japan
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Tomohiko Ishihara
- Advanced Treatment of Neurological Diseases Branch, Endowed Research Branch, Brain Research Institute, Niigata University, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Japan; and
- Brain Bank for Aging Research (Neuropathology), Tokyo Metropolitan Institute of Geriatrics and Gerontology, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Japan
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Japan
| |
Collapse
|
4
|
Eichenbaum DA, Holekamp N, Khanani AM, Pieramici D, Hershberger V, Sheth V, Brunstein F, Ma L, Zou Y, Indjeian VB, Dere R, Maia M, Hsu JC, Gao SS, Yaspan B, Willis JR, Wiley H, Lai P, Chen H. Phase 2 Study of the Anti-High Temperature Requirement A1 (HtrA1) Fab Galegenimab (FHTR2163) in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Am J Ophthalmol 2025; 275:14-26. [PMID: 40089174 DOI: 10.1016/j.ajo.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE To investigate the safety, tolerability, and efficacy of intravitreal injection of galegenimab, an anti-HtrA1 FAb, in patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). DESIGN Phase 2, single-masked, randomized clinical trial. METHODS Eligible GA patients with BCVA letter scores of ≥ 24 letters and baseline GA lesion size 2.54∼25.4 mm2 in the study eye were enrolled. Patients were randomized 2:1:2 to receive 20 mg galegenimab every 4 (Q4W) or 8 weeks (Q8W), or sham Q4/8 W. The primary endpoint was mean change in GA area from baseline to Week 72 measured by fundus autofluorescence. A data monitoring committee (DMC) conducted periodic unmasked review of cumulative safety/limited efficacy data of the ongoing study. RESULTS Among 337 patients who received ≥ 1 dose and have at least one postbaseline GA area measurement, the adjusted mean change in GA area from baseline to Week 72 was 2.67, 2.50, and 2.38 mm2 for the galegenimab Q4W, galegenimab Q8W, and pooled sham arms, respectively. Differences between the treated and sham groups were not statistically significant. However, the rate of intraocular inflammation was high (7.1%, 16/224 patients) among treated patients. The DMC recommended early termination of the study based on an early benefit/risk analysis. CONCLUSION Galegenimab administration did not show a difference in mean change in GA area from baseline to Week 72 compared with sham. Inhibition of HtrA1 with a Fab did not slow down GA progression.
Collapse
Affiliation(s)
- David A Eichenbaum
- From the Retina Vitreous Associates of Florida (D.A.E.), St. Petersburg, Florida, USA.
| | | | - Arshad M Khanani
- Sierra Eye Associates (A.M.K.), Reno, Nevada, USA; Reno School of Medicine (A.M.K.), University of Nevada, Reno, Nevada, USA
| | - Dante Pieramici
- California Retina Consultants (D.P.), Santa Barbara, California, USA
| | | | - Veeral Sheth
- University Retina and Macula Associates (V.S.), Oak Forest, Illinois, USA
| | - Flavia Brunstein
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Ling Ma
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Yixuan Zou
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Vahan B Indjeian
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Randall Dere
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Mauricio Maia
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Joy C Hsu
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Simon S Gao
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Brian Yaspan
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Jeffrey R Willis
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Henry Wiley
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Phillip Lai
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| | - Hao Chen
- Genentech, Inc. (F.B., L.M., Y.Z., Y.B.I., R.D., M.M., J.C.H., S.S.G., B.Y., J.R.W., H.W., P.L., H.C.), South San Francisco, California, USA
| |
Collapse
|
5
|
Tanaka T, Rosano C, Huang X, Tian Q, Landman BA, Moore AZ, Miljkovic I, Perry A, Khan S, Kalhan R, Carr JJ, Terry JG, Yaffe K, Walker K, Candia J, Ferrucci L. Plasma proteomic analysis of intermuscular fat links muscle integrity with processing speed in older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.24.25320976. [PMID: 39974123 PMCID: PMC11838923 DOI: 10.1101/2025.01.24.25320976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION More intermuscular fat (IMF) has been associated with lower cognitive performance and faster age-associated decline in cognitive function however, the mechanisms driving this relationship have not been fully elucidated. We utilized proteomic analyses to identify the molecular mediators of the association between IMF and cognition to gain further insight into the mechanisms underlying this association. METHODS In this cross-sectional study, the plasma proteomic profile of IMF was assessed in the Baltimore Longitudinal Study on Aging (BLSA; n=941, age=66.7±15.2) and validated in the Coronary Artery Risk Development in Young Adults Study (CARDIA; n=2451, age=50.2±3.6). The 7628 plasma proteins were assessed using an aptamer-based assay and tested for association with IMF from the thigh (BLSA) and abdomen (CARDIA). Processing speed assessed by Digit Symbol Substitution Test (DSST). Associations between the main exposures, outcome and mediators were evaluated using linear regression, and mediating effects were assessed by causal mediation analysis adjusting for age, sex, muscle area or muscle volume, self-reported race, and years of education. RESULTS Higher IMF was associated with lower DSST performance both in the BLSA and CARDIA studies. There were 722 plasma proteins associated with IMF in both the discovery and replication cohorts (FDR-adjusted p≤0.05). Of the 722 IMF-associated proteins, 26 (24 unique proteins) mediated the relationship between IMF and processing speed with mediation effects ranging from 2.8 to 20.9% (p≤0.05). Overrepresentation analysis of the IMF-associated proteins showed enrichment of proteins in synaptic function and organization, and growth factor binding (FDR-adjusted p≤0.05). DISCUSSION There is a robust proteomic signature explaining, at least in part, the link of IMF with DSST. This signature reflected neurological function and growth factor regulation, which are both implicated in lower processing speed. Reducing IMF through behavioral or pharmacological intervention may improve cognition through reduction in growth factor activity and improvements in synaptic activity.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, NIH, NIA, 251 Bayview Boulevard, Baltimore MD, 21224, USA
| | - Caterina Rosano
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Xiaoning Huang
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair, Chicago, IL, 60611
| | - Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, NIH, NIA, 251 Bayview Boulevard, Baltimore MD, 21224, USA
| | - Bennett A. Landman
- Department of Computer Science, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Ann Z Moore
- Longitudinal Studies Section, Translational Gerontology Branch, NIH, NIA, 251 Bayview Boulevard, Baltimore MD, 21224, USA
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Andrew Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Sadiya Khan
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair, Chicago, IL, 60611
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street Chicago, IL, 60611, USA
| | - John Jeffrey Carr
- Department of Electrical and Computer Engineering, Vanderbilt University School of Medicine, Nashville, 2301 Vanderbilt Place, TN, 37235, USA
| | - James G. Terry
- Department of Electrical and Computer Engineering, Vanderbilt University School of Medicine, Nashville, 2301 Vanderbilt Place, TN, 37235, USA
| | - Kristine Yaffe
- UCSF Weill Institute for Neurosciences, University of California–San Francisco, San Francisco, 1651 4th St, CA, 94158, USA
| | - Keenan Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, 251 Bayview Boulevard, MD 21224, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, NIH, NIA, 251 Bayview Boulevard, Baltimore MD, 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, NIH, NIA, 251 Bayview Boulevard, Baltimore MD, 21224, USA
| |
Collapse
|
6
|
Kobayashi Y, Kondo Y, Tazawa KI, Yamamoto K, Yoshinaga T, Nakamura K, Sekijima Y. HTRA1-related cerebral small-vessel disease causes cerebral microbleeds on the brainstem surface. J Neurol Sci 2024; 466:123229. [PMID: 39270409 DOI: 10.1016/j.jns.2024.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) has recently been known as HTRA1-related cerebral small-vessel disease (CSVD), it is caused by variants in HTRA1. Recently, it has been reported to develop in heterozygotes with some variants of the gene. Multiple prospective studies have reported that the frequency of heterozygous HTRA1 variants developing CSVD is 2 - 6.5 % in CARASIL. Heterozygous variant cases lack unique clinical features, have an older age of onset, and are difficult to detect. Characteristic findings are required to identify such cases. METHOD Magnetic resonance imaging (MRI) images of cases that experienced cerebral infarction and carried heterozygous variants in HTRA1 were reviewed. RESULTS Four cases of heterozygous HTRA1-related CSVD in two families (Family 1: c.754G > A, p.A252T; three males. Family 2: c.497G > T, p.R166L, one female). In all cases, white matter lesions with lacunar infarcts were observed in the periventricular and basal ganglia, external capsule, and brainstem. Moreover, T2 star weighted image (T2*WI) low presented dot-like lesions were present along the surface of the brainstem, which have only been reported in one homozygous case. Susceptibility-weighted imaging (SWI) was performed in two cases, and the dot-like lesions on T2*WI resembled a pearly tiara along the surface of the brainstem. CONCLUSION Brainstem surface on T2*WI low showed dot-like lesions, which are not generally observed in patients with stroke and can be characteristic of HTRA1-CSVD associated with heterozygous variant. The pathology requires further investigation for diagnosis.
Collapse
Affiliation(s)
- Yuya Kobayashi
- Department of Neurology, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano 381-8551, Japan; Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano 396-8555, Japan.
| | - Yasufumi Kondo
- Department of Neurology, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano 381-8551, Japan
| | - Ko-Ichi Tazawa
- Department of Neurology, Nagano Red Cross Hospital, 5-22-1, Wakasato, Nagano 380-8582, Japan
| | - Kanji Yamamoto
- Department of Neurology, Ina Central Hospital, 1313-1, Ina, Nagano 396-8555, Japan
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Katsuya Nakamura
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
7
|
Song SN, Li HJ, Liang JL, Ren QQ, Li CX, Xu SY. Lentivirus-Mediated Missense Mutation in HtrA1 Leads to Activation of the TGF-β/Smads Pathway and Increased Apoptosis of Mouse Brain Microvascular Endothelial Cells via the Oxidative Stress Pathway. J Integr Neurosci 2024; 23:201. [PMID: 39613464 DOI: 10.31083/j.jin2311201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the possible molecular mechanisms underlying cerebral small vessel disease caused by a missense mutation in the high-temperature serine peptidase A1 gene, HtrA1 (NM_002775.4, Exon4, c.905G>A, p.Arg302Gln). Stable strain models were constructed using wild-type and mutant HtrA1 overexpression lentiviral vectors to infect mouse brain microvascular endothelial cells (bEnd.3 cells). METHODS HtrA1 mRNA and protein expression were analyzed by Western blot and quantitative real-time polymerase chain reaction. Western blot technique was also used to evaluate the expression of transforming growth factor (TGF)-β/Smads-related signaling pathway proteins and the oxidative stress pathway protein nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The level of reactive oxygen species (ROS) was evaluated using dichloro-dihydro-fluorescein diacetate (DCFH-DA) fluorescent probes. RESULTS HtrA1 mRNA and protein expression levels were found to be decreased in mutant cells, whereas the levels of ROS, the TGF-β/Smads proteins, and the caspase3 and cleaved-caspase3 apoptotic proteins were increased. CONCLUSIONS Lentivirus-mediated missense mutation in HtrA1 leads to activation of the TGF-β/Smads pathway and to increased apoptosis of mouse brain microvascular endothelial cells via the oxidative stress pathway. Further in vivo studies are required to explore the connections between different signaling pathways in animals, and to identify potential molecular targets for clinical therapy.
Collapse
Affiliation(s)
- Shi-Na Song
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
- Department of Geriatrics, General Hospital of TISCO, 030001 Taiyuan, Shanxi, China
| | - Hui-Juan Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410000 Changsha, Hunan, China
| | - Jian-Lin Liang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Qian-Qian Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Lee PC, Jung IH, Thussu S, Patel V, Wagoner R, Burks KH, Amrute J, Elenbaas JS, Kang CJ, Young EP, Scherer PE, Stitziel NO. Instrumental variable and colocalization analyses identify endotrophin and HTRA1 as potential therapeutic targets for coronary artery disease. iScience 2024; 27:110104. [PMID: 38989470 PMCID: PMC11233907 DOI: 10.1016/j.isci.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Coronary artery disease (CAD) remains a leading cause of disease burden globally, and there is a persistent need for new therapeutic targets. Instrumental variable (IV) and genetic colocalization analyses can help identify novel therapeutic targets for human disease by nominating causal genes in genome-wide association study (GWAS) loci. We conducted cis-IV analyses for 20,125 genes and 1,746 plasma proteins with CAD using molecular trait quantitative trait loci variant (QTLs) data from three different studies. 19 proteins and 119 genes were significantly associated with CAD risk by IV analyses and demonstrated evidence of genetic colocalization. Notably, our analyses validated well-established targets such as PCSK9 and ANGPTL4 while also identifying HTRA1 and endotrophin (a cleavage product of COL6A3) as proteins whose levels are causally associated with CAD risk. Further experimental studies are needed to confirm the causal role of the genes and proteins identified through our multiomic cis-IV analyses on human disease.
Collapse
Affiliation(s)
- Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shreeya Thussu
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ved Patel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ryan Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kendall H. Burks
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Junedh Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jared S. Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Erica P. Young
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
9
|
Debette S, Ihara M. Redefining common and rare HTRA1 variants as risk factors for polyvascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:619-621. [PMID: 39196235 DOI: 10.1038/s44161-024-00492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Stéphanie Debette
- Bordeaux Population Health Research Center, University of Bordeaux, INSERM, UMR 1219, Bordeaux, France.
- Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France.
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
10
|
Malik R, Beaufort N, Li J, Tanaka K, Georgakis MK, He Y, Koido M, Terao C, Japan B, Anderson CD, Kamatani Y, Zand R, Dichgans M. Genetically proxied HTRA1 protease activity and circulating levels independently predict risk of ischemic stroke and coronary artery disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:701-713. [PMID: 39196222 DOI: 10.1038/s44161-024-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 08/29/2024]
Abstract
Genetic variants in HTRA1 are associated with stroke risk. However, the mechanisms mediating this remain largely unknown, as does the full spectrum of phenotypes associated with genetic variation in HTRA1. Here we show that rare HTRA1 variants are linked to ischemic stroke in the UK Biobank and BioBank Japan. Integrating data from biochemical experiments, we next show that variants causing loss of protease function associated with ischemic stroke, coronary artery disease and skeletal traits in the UK Biobank and MyCode cohorts. Moreover, a common variant modulating circulating HTRA1 mRNA and protein levels enhances the risk of ischemic stroke and coronary artery disease while lowering the risk of migraine and macular dystrophy in genome-wide association study, UK Biobank, MyCode and BioBank Japan data. We found no interaction between proxied HTRA1 activity and levels. Our findings demonstrate the role of HTRA1 for cardiovascular diseases and identify two mechanisms as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - Koki Tanaka
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yunye He
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - BioBank Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Ramin Zand
- Department of Neurology, Pennsylvania State University, Hershey, PA, USA
- Department of Neurology, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
11
|
Song S, Li X, Xue X, Dong W, Li C. Progress in the Study of the Role and Mechanism of HTRA1 in Diseases Related to Vascular Abnormalities. Int J Gen Med 2024; 17:1479-1491. [PMID: 38650587 PMCID: PMC11034561 DOI: 10.2147/ijgm.s456912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High temperature requirement A1 (HTRA1) is a member of the serine protease family, comprising four structural domains: IGFBP domain, Kazal domain, protease domain and PDZ domain. HTRA1 encodes a serine protease, a secreted protein that is widely expressed in the vasculature. HTRA1 regulates a wide range of physiological processes through its proteolytic activity, and is also involved in a variety of vascular abnormalities-related diseases. This article reviews the role of HTRA1 in the development of vascular abnormalities-related hereditary cerebral small vessel disease (CSVD), age-related macular degeneration (AMD), tumors and other diseases. Through relevant research advances to understand the role of HTRA1 in regulating signaling pathways or refolding, translocation, degradation of extracellular matrix (ECM) proteins, thus directly or indirectly regulating angiogenesis, vascular remodeling, and playing an important role in vascular homeostasis, further understanding the mechanism of HTRA1's role in vascular abnormality-related diseases is important for HTRA1 to be used as a therapeutic target in related diseases.
Collapse
Affiliation(s)
- Shina Song
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Xiaofeng Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenping Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Changxin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
12
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
13
|
Guey S, Chabriat H. Monogenic causes of cerebral small vessel disease and stroke. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:273-287. [PMID: 39322384 DOI: 10.1016/b978-0-323-99209-1.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cerebral small vessel disease (cSVDs) account for 25% of stroke and are a frequent cause of cognitive or motor disability in adults. In a small number of patients, cSVDs result from monogenic diseases, the most frequent being cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). An early disease onset, a suggestive family history, and a low vascular risk profile contrasting with a high load of cSVD imaging markers represent red flags that must trigger molecular screening. To date, a dozen of genes is involved in Mendelian cSVDs, most of them are responsible for autosomal dominant conditions of variable penetrance. Some of these mendelian cSVDs (CADASIL, HTRA1-related cSVD, pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), cathepsin-A related arteriopathy with strokes and leukoencephalopathy (CARASAL), and cSVD related to LAMB1 mutations) are causing ischemic stroke. Others (COL4A1/COL4A2-related angiopathy and hereditary cerebral amyloid angiopathy) preferentially lead to intracerebral hemorrhages. The clinical features of different Mendelian cSVDs can overlap. Therefore, the current approach is based on simultaneous screening of all genes involved in these conditions through a panel-targeted sequencing gene or exome sequencing. Nevertheless, a pathogenic variant is identified in less than 15% of patients with a suspected genetic cerebrovascular disease, suggesting that many additional genes remain to be identified.
Collapse
Affiliation(s)
- Stéphanie Guey
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France.
| | - Hugues Chabriat
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France
| |
Collapse
|
14
|
Sato Y, Asahi T, Kataoka K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol 2023; 21:245. [PMID: 37940920 PMCID: PMC10634128 DOI: 10.1186/s12915-023-01711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cerebral organoids are three-dimensional in vitro cultured brains that mimic the function and structure of the human brain. One of the major challenges for cerebral organoids is the lack of functional vasculature. Without perfusable vessels, oxygen and nutrient supplies may be insufficient for long-term culture, hindering the investigation of the neurovascular interactions. Recently, several strategies for the vascularization of human cerebral organoids have been reported. However, the generalizable trends and variability among different strategies are unclear due to the lack of a comprehensive characterization and comparison of these vascularization strategies. In this study, we aimed to explore the effect of different vascularization strategies on the nervous system and vasculature in human cerebral organoids. RESULTS We integrated single-cell RNA sequencing data of multiple vascularized and vascular organoids and fetal brains from publicly available datasets and assessed the protocol-dependent and culture-day-dependent effects on the cell composition and transcriptomic profiles in neuronal and vascular cells. We revealed the similarities and uniqueness of multiple vascularization strategies and demonstrated the transcriptomic effects of vascular induction on neuronal and mesodermal-like cell populations. Moreover, our data suggested that the interaction between neurons and mesodermal-like cell populations is important for the cerebrovascular-specific profile of endothelial-like cells. CONCLUSIONS This study highlights the current challenges to vascularization strategies in human cerebral organoids and offers a benchmark for the future fabrication of vascularized organoids.
Collapse
Affiliation(s)
- Yuya Sato
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
15
|
Dichgans M, Malik R, Beaufort N, Tanaka K, Georgakis M, He Y, Koido M, Terao C, Anderson C, Kamatani Y. Genetically proxied HTRA1 protease activity and circulating levels independently predict risk of ischemic stroke and coronary artery disease. RESEARCH SQUARE 2023:rs.3.rs-3523612. [PMID: 37986915 PMCID: PMC10659557 DOI: 10.21203/rs.3.rs-3523612/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
HTRA1 has emerged as a major risk gene for stroke and cerebral small vessel disease with both rare and common variants contributing to disease risk. However, the precise mechanisms mediating this risk remain largely unknown as does the full spectrum of phenotypes associated with genetic variation in HTRA1 in the general population. Using a family-history informed approach, we first show that rare variants in HTRA1 are linked to ischemic stroke in 425,338 European individuals from the UK Biobank with replication in 143,149 individuals from the Biobank Japan. Integrating data from biochemical experiments on 76 mutations occurring in the UK Biobank, we next show that rare variants causing loss of protease function in vitro associate with ischemic stroke, coronary artery disease, and skeletal traits. In addition, a common causal variant (rs2672592) modulating circulating HTRA1 mRNA and protein levels enhances the risk of ischemic stroke, small vessel stroke, and coronary artery disease while lowering the risk of migraine and age-related macular dystrophy in GWAS and UK Biobank data from > 2,000,000 individuals. There was no evidence of an interaction between genetically proxied HTRA1 activity and levels. Our findings demonstrate a central role of HTRA1 for human disease including stroke and coronary artery disease and identify two independent mechanisms that might qualify as targets for future therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masaru Koido
- Institute of Medical Science, The University of Tokyo
| | | | | | | |
Collapse
|
16
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
17
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
18
|
Shirah B, Algahtani H, Algahtani R, Alfares A, Hassan A. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): A challenging diagnosis and a rare multiple sclerosis mimic. J Stroke Cerebrovasc Dis 2023; 32:107225. [PMID: 37348440 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an extremely rare hereditary cerebral small vessel disease caused by homozygous or compound heterozygous mutations in the gene coding for high-temperature requirement A serine peptidase 1 (HtrA1). Given the rare nature of the disease, delays in diagnosis and misdiagnosis are not uncommon. In this article, we reported the first case of CARASIL from Saudi Arabia with a novel homozygous variant c.1156C>T in exon 7 of the HTRA1 gene. The patient was initially misdiagnosed with primary progressive multiple sclerosis and treated with rituximab. CARASIL should be considered in the differential diagnosis of patients with suspected atypical progressive multiple sclerosis who have additional signs such as premature scalp alopecia and low back pain with diffuse white matter lesions in brain MRI. Genetic testing is important to confirm the diagnosis.
Collapse
Affiliation(s)
- Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia.
| | | | - Raghad Algahtani
- Department of Medicine, Aseer Central Hospital, Abha, Saudi Arabia
| | - Ahmed Alfares
- Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| | - Ahmed Hassan
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Osteraas ND, Dafer RM. Advances in Management of the Stroke Etiology One-Percenters. Curr Neurol Neurosci Rep 2023; 23:301-325. [PMID: 37247169 PMCID: PMC10225785 DOI: 10.1007/s11910-023-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE OF REVIEW Uncommon causes of stroke merit specific attention; when clinicians have less common etiologies of stoke in mind, the diagnosis may come more easily. This is key, as optimal management will in many cases differs significantly from "standard" care. RECENT FINDINGS Randomized controlled trials (RCT) on the best medical therapy in the treatment of cervical artery dissection (CeAD) have demonstrated low rates of ischemia with both antiplatelet and vitamin K antagonism. RCT evidence supports the use of anticoagulation with vitamin K antagonism in "high-risk" patients with antiphospholipid antibody syndrome (APLAS), and there is new evidence supporting the utilization of direct oral anticoagulation in malignancy-associated thrombosis. Migraine with aura has been more conclusively linked not only with increased risk of ischemic and hemorrhagic stroke, but also with cardiovascular mortality. Recent literature has surprisingly not provided support the utilization of L-arginine in the treatment of patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS); however, there is evidence at this time that support use of enzyme replacement in patients with Fabry disease. Additional triggers for reversible cerebral vasoconstriction syndrome (RCVS) have been identified, such as capsaicin. Imaging of cerebral blood vessel walls utilizing contrast-enhanced MRA is an emerging modality that may ultimately prove to be very useful in the evaluation of patients with uncommon causes of stroke. A plethora of associations between cerebrovascular disease and COVID-19 have been described. Where pertinent, authors provide additional tips and guidance. Less commonly encountered conditions with updates in diagnosis, and management along with clinical tips are reviewed.
Collapse
Affiliation(s)
| | - Rima M Dafer
- Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison St., Suite 1118, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Wu C, Wang M, Wang X, Li W, Li S, Chen B, Niu S, Tai H, Pan H, Zhang Z. The genetic and phenotypic spectra of adult genetic leukoencephalopathies in a cohort of 309 patients. Brain 2023; 146:2364-2376. [PMID: 36380532 PMCID: PMC10232248 DOI: 10.1093/brain/awac426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 08/12/2023] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Mengwen Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 350005 Fuzhou, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shaowu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| |
Collapse
|
21
|
Manini A, Pantoni L. Genetic Causes of Cerebral Small Vessel Diseases: A Practical Guide for Neurologists. Neurology 2023; 100:766-783. [PMID: 36535782 PMCID: PMC10115494 DOI: 10.1212/wnl.0000000000201720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebral small vessel disease (CSVD) includes various entities affecting the brain and, often, systemic small arteries, arterioles, venules, and capillaries. The underlying causes of CSVD are different, and some of them are genetic. Monogenic CSVDs are responsible for 1%-5% of all strokes and for several other disturbances. Despite many genes being involved, the phenotypes of monogenic CSVD partly overlap. Given that the genetic testing for different diseases can be challenging and time-consuming, the practicing neurologist should be adequately informed of the genetic background of CSVD and should be able to select patients to undergo genetic assessment and the genes to be analyzed. The purpose of this review was to summarize clinical, neurologic and non-neurologic, and neuroimaging features of monogenic CSVD and to provide a flowchart to be used in clinical practice to guide neurologists in this field. The proposed flowchart and the relative tables can be applied to 3 different settings, depending on the presentation: (1) ischemic stroke and/or transient ischemic attack, (2) cerebral hemorrhage, and (3) other neurologic, non-neurologic, and/or neuroimaging features of monogenic CSVD, in the absence of stroke syndromes because of infarction or hemorrhage.
Collapse
Affiliation(s)
- Arianna Manini
- From the Stroke and Dementia Lab (A.M., L.P.), Department of Biomedical and Clinical Sciences, University of Milan, Italy; Department of Neurology and Laboratory of Neuroscience (A.M.), IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Leonardo Pantoni
- From the Stroke and Dementia Lab (A.M., L.P.), Department of Biomedical and Clinical Sciences, University of Milan, Italy; Department of Neurology and Laboratory of Neuroscience (A.M.), IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
22
|
Johansen MC. The Future of Ischemic Stroke Diagnosis and a Review of Underrecognized Ischemic Stroke Etiologies. Neurotherapeutics 2023; 20:613-623. [PMID: 37157043 PMCID: PMC10275839 DOI: 10.1007/s13311-023-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Accurate ischemic stroke etiologic determination and diagnosis form the foundation of excellent cerebrovascular care as from it stems initiation of the appropriate secondary prevention strategy as well as appropriate patient education regarding specific risk factors for that subtype. Recurrent stroke rates are highest among those patients who receive an incorrect initial stroke diagnosis. Patient distrust and patient reported depression are also higher. The cause of the ischemic stroke also informs predicted patient outcomes and the anticipated recovery trajectory. Finally, determining the accurate cause of the ischemic stroke provides the patient the opportunity to enroll in appropriate research studies studying mechanism, or targeting treatment approaches for that particular disease process. Advances in ischemic stroke research, imaging techniques, biomarkers, and the ability to rapidly perform genetic sequencing over the past decade have shown that classifying patients into large etiologic buckets may not always be appropriate and may represent one reason why some patients are labeled as cryptogenic, or for whom an underlying etiology is never found. Aside from the more traditional stroke mechanisms, there is new research emerging regarding clinical findings that are not normative, but the contributions to ischemic stroke are unclear. In this article, we first review the essential steps to accurate ischemic stroke etiologic classification and then transition to a discussion of embolic stroke of undetermined source (ESUS) and other new entities that have been postulated as causal in ischemic stroke (i.e., genetics and subclinical atherosclerosis). We also discuss the limitations that are inherent in the current ischemic stroke diagnostic algorithms and finally review the most recent studies regarding more uncommon diagnoses and the future of stroke diagnostics and classification.
Collapse
|
23
|
Sharrief A. Diagnosis and Management of Cerebral Small Vessel Disease. Continuum (Minneap Minn) 2023; 29:501-518. [PMID: 37039407 DOI: 10.1212/con.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Cerebral small vessel disease (CSVD) is a common neurologic condition that contributes to considerable mortality and disability because of its impact on ischemic and hemorrhagic stroke risk and dementia. While attributes of the disease have been recognized for over two centuries, gaps in knowledge remain related to its prevention and management. The purpose of this review is to provide an overview of the current state of knowledge for CSVD. LATEST DEVELOPMENTS CSVD can be recognized by well-defined radiographic criteria, but the pathogenic mechanism behind the disease is unclear. Hypertension control remains the best-known strategy for stroke prevention in patients with CSVD, and recent guidelines provide a long-term blood pressure target of less than 130/80 mm Hg for patients with ischemic and hemorrhagic stroke, including those with stroke related to CSVD. Cerebral amyloid angiopathy is the second leading cause of intracerebral hemorrhage and may be increasingly recognized because of newer, more sensitive imaging modalities. Transient focal neurologic episodes is a relatively new term used to describe "amyloid spells." Guidance on distinguishing these events from seizures and transient ischemic attacks has been published. ESSENTIAL POINTS CSVD is prevalent and will likely be encountered by all neurologists in clinical practice. It is important for neurologists to be able to recognize CSVD, both radiographically and clinically, and to counsel patients on the prevention of disease progression. Blood pressure control is especially relevant, and strategies are needed to improve blood pressure control for primary and secondary stroke prevention in patients with CSVD.
Collapse
Affiliation(s)
- Anjail Sharrief
- Associate Professor of Neurology, Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas
| |
Collapse
|
24
|
Song D, Lee JY, Park EC, Choi NE, Nam HY, Seo J, Lee J. Structure-activity relationship analysis of activity-based probes targeting HTRA family of serine proteases. Bioorg Med Chem Lett 2023; 87:129259. [PMID: 36990246 DOI: 10.1016/j.bmcl.2023.129259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
High temperature requirement A serine proteases (HTRA) are ubiquitously expressed and participate in protein quality control and cellular stress responses. They are linked to several clinical illnesses, including bacterial infection, cancer, age-related macular degeneration, and neurodegenerative diseases. In addition, several recent studies have revealed HTRAs as important biomarkers and potential therapeutic targets, necessitating the development of an effective detection method to evaluate their functional states in various disease models. We developed a new series of HTRA-targeting activity-based probes with enhanced subtype selectivity and reactivity. In conjunction with our previously developed tetrapeptide probes, we established the structure-activity relationship of the new probes for different HTRA subtypes. Our probes are cell-permeable and have potent inhibitory effects against HTRA1 and HTRA2, making them valuable for identifying and validating HTRAs as an important biomarker.
Collapse
|
25
|
Xu SY, Li HJ, Li S, Ren QQ, Liang JL, Li CX. Heterozygous Pathogenic and Likely Pathogenic Symptomatic HTRA1 Variant Carriers in Cerebral Small Vessel Disease. Int J Gen Med 2023; 16:1149-1162. [PMID: 37016629 PMCID: PMC10066890 DOI: 10.2147/ijgm.s404813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
High temperature requirement serine peptidase A1 (HTRA1) related cerebral small vessel disease (CSVD) includes both symptomatic heterozygous HTRA1 variant carrier and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) patients. Presently, most reported symptomatic heterozygous HTRA1 variant carrier cases are sporadic family reports with a lack of specific characteristics. Additionally, the molecular mechanism of heterozygous HTRA1 gene variants is unclear. We conducted this review to collect symptomatic carriers of heterozygous HTRA1 gene variants reported as of 2022, analyzed all pathogenicity according to American College of Medical Genetics and Genomics (ACMG) variant classification, and summarized the cases with pathogenic and likely pathogenic HTRA1 variants gender characteristics, age of onset, geographical distribution, initial symptoms, clinical manifestations, imaging signs, HTRA1 gene variant information and to speculate its underlying pathogenic mechanisms. In this review, we summarized the following characteristics of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers: to date, the majority of reported symptomatic HTRA1 carriers are in European and Asian countries, particularly in China which was found to have the highest number of reported cases. The age of first onset is mostly concentrated in the fourth and fifth decades. The heterozygous HTRA1 gene variants were mostly missense variants. The two variant sites, 166-182 aa and 274-302 aa, were the most concentrated. Clinicians need to pay attention to de novo data and functional data, which may affect the pathogenicity analysis. The decrease in HtrA1 protease activity is currently the most important explanation for the genetic pathogenesis.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui-Juan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Shun Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Qian-Qian Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian-Lin Liang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Chang-Xin Li, Department of Neurology, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan, Shanxi Province, 030001, People’s Republic of China, Tel +86 15103513579, Email
| |
Collapse
|
26
|
Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol 2023; 49:e12875. [PMID: 36564356 DOI: 10.1111/nan.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making 'cerebral angiomyopathy' an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA
| | - Shino D Magaki
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald C Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA.,Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
27
|
Uemura M, Hatano Y, Nozaki H, Ando S, Kondo H, Hanazono A, Iwanaga A, Murota H, Osakada Y, Osaki M, Kanazawa M, Kanai M, Shibata Y, Saika R, Miyatake T, Aizawa H, Ikeuchi T, Tomimoto H, Mizuta I, Mizuno T, Ishihara T, Onodera O. High frequency of HTRA1 AND ABCC6 mutations in Japanese patients with adult-onset cerebral small vessel disease. J Neurol Neurosurg Psychiatry 2023; 94:74-81. [PMID: 36261288 PMCID: PMC9763231 DOI: 10.1136/jnnp-2022-329917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND This study aimed to clarify the frequency and clinical features of monogenic cerebral small vessel disease (mgCSVD) among patients with adult-onset severe CSVD in Japan. METHODS This study included patients with adult-onset severe CSVD with an age of onset ≤55 years (group 1) or >55 years and with a positive family history (group 2). After conducting conventional genetic tests for NOTCH3 and HTRA1, whole-exome sequencing was performed on undiagnosed patients. Patients were divided into two groups according to the results of the genetic tests: monogenic and undetermined. The clinical and imaging features were compared between the two groups. RESULTS Group 1 and group 2 included 75 and 31 patients, respectively. In total, 30 patients had NOTCH3 mutations, 11 patients had HTRA1 mutations, 6 patients had ABCC6 mutations, 1 patient had a TREX1 mutation, 1 patient had a COL4A1 mutation and 1 patient had a COL4A2 mutation. The total frequency of mutations in NOTCH3, HTRA1 and ABCC6 was 94.0% in patients with mgCSVD. In group 1, the frequency of a family history of first relatives, hypertension and multiple lacunar infarctions (LIs) differed significantly between the two groups (monogenic vs undetermined; family history of first relatives, 61.0% vs 25.0%, p=0.0015; hypertension, 34.1% vs 63.9%, p=0.0092; multiple LIs, 87.8% vs 63.9%, p=0.0134). CONCLUSIONS More than 90% of mgCSVDs were diagnosed by screening for NOTCH3, HTRA1 and ABCC6. The target sequences for these three genes may efficiently diagnose mgCSVD in Japanese patients.
Collapse
Affiliation(s)
- Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hajime Kondo
- Department of Neurology, Anjo Kosei Hospital, Aichi, Japan
| | - Akira Hanazono
- Division of Gastroenterology, Hepato-biliary-pancreatology and Neurology, Akita University, Akita, Japan
| | - Akira Iwanaga
- Department of Dermatology, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University, Nagasaki, Japan
| | - Yosuke Osakada
- Department of Neurology, Okayama University, Okayama, Japan
| | - Masato Osaki
- Cerebrovascular Medicine, Steel Memorial Yawata Hospital, Fukuoka, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mitsuyasu Kanai
- Department of Neurology, National Hospital Organization Takasaki General Medical Center, Gunma, Japan
| | - Yoko Shibata
- Department of Neurology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Reiko Saika
- Department of Neurology, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | | | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.,Department of Neurology, Tokyo National Hospital, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
28
|
Chen W, Wang Y, Huang S, Yang X, Shen L, Wu D. Case report: Two unique nonsense mutations in HTRA1-related cerebral small vessel disease in a Chinese population and literature review. Front Neurol 2022; 13:1069453. [PMID: 36619910 PMCID: PMC9813394 DOI: 10.3389/fneur.2022.1069453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Homozygous or compound heterozygous mutations in the high-temperature requirement A serine protease 1 gene (HTRA1) elicits cerebral autosomal recessive arteriopathy with subcortical infarcts and white matter lesions (CARASIL). The relationship between some heterozygous mutations, most of which are missense ones, and the occurrence of cerebral small vessel diseases (CSVD) has been reported. Recently, heterozygous HTRA1 nonsense mutations have been recognized to be pathogenic. Case presentation We described two Chinese patients diagnosed with HTRA1-CSVD accompanied by heterozygous nonsense mutations. Their first clinical manifestations were symptoms due to ischemic stroke, and brain Magnetic Resonance Imaging (MRI) showed diffuse white matter lesions (WMLs) and microbleeds in both of them. Genetic sequencing revealed two novel heterozygous nonsense mutations: c.1096G>T (p.E366X) and c.151G>T (p.E51X). Conclusion This case report expands the clinical, radiographic, and genetic spectrum of HTRA1-CSVD. Attention should be paid to young patients with ischemic stroke as the first clinical manifestation. Genetic screening for such sporadic CSVD is recommended, even if the symptoms are atypical.
Collapse
|
29
|
Kondo Y, Yoshinaga T, Nakamura K, Yamaguchi T, Ishikawa M, Kosho T, Sekijima Y. Severe Cerebral Small Vessel Disease Caused by the Uniallelic p.A252T Variant of HTRA1. Neurol Genet 2022; 9:e200047. [PMID: 36530220 PMCID: PMC9756387 DOI: 10.1212/nxg.0000000000200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the clinical effect of a heterozygous missense variant of HTRA1 on cerebral small vessel disease (CSVD) in a large Japanese family with a p.A252T variant. METHODS We performed clinical, laboratory, radiologic, and genetic evaluations of members of a previously reported family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). RESULTS Two family members were previously reported patients with CARASIL. Among 6 uniallelic p.A252T carriers, 2 had neurologic symptoms with brain MRI abnormalities, 2 showed CSVD on the MRI only, and the other 2 were unaffected. Clinical phenotypes of 2 heterozygous patients were comparable with those of patients with CARASIL, whereas the other 3 heterozygous patients had developed milder and later-onset CSVD. One heterozygous carrier was asymptomatic. DISCUSSION Previous studies have suggested that uniallelic p.A252T causes disease. However, our study revealed that patients with uniallelic p.A252T can have severe and young-onset CSVD. The clinical manifestations of uniallelic variant carriers were highly variable, even within the same family. Male and atherosclerotic risk factors were considered to be additional factors in the severity of neurologic symptoms in uniallelic p.A252T carriers, suggesting that strict control of vascular risk factors can prevent vascular events in uniallelic HTRA1 carriers.
Collapse
Affiliation(s)
- Yasufumi Kondo
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Katsuya Nakamura
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Tomomi Yamaguchi
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Masumi Ishikawa
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Tomoki Kosho
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology) (Y.K., Tsuneaki Yoshinaga, K.N., Y.S.), Shinshu University School of Medicine; Center for Medical Genetics (K.N., Tomomi Yamaguchi, M.I., T.K.), Shinshu University Hospital; Department of Medical Genetics (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine; and Division of Clinical Sequencing (Tomomi Yamaguchi, T.K.), Shinshu University School of Medicine
| |
Collapse
|
30
|
Yao T, Zhu J, Wu X, Li X, Fu Y, Wang Y, Wang Z, Xu F, Lai H, He A, Teng L, Wang C, Song H. Heterozygous HTRA1Mutations Cause Cerebral Small Vessel Diseases. Neurol Genet 2022; 8:e200044. [DOI: 10.1212/nxg.0000000000200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
Background and ObjectivesCerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a rare hereditary cerebrovascular disease caused by homozygous or compound heterozygous variations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene. However, several studies in recent years have found that some heterozygousHTRA1mutations also cause cerebral small vessel disease (CSVD). The current study aims to report the novel genotypes, phenotypes, and histopathologic results of 3 pedigrees of CSVD with heterozygousHTRA1mutation.MethodsThree pedigrees of familiar CSVD, including 11 symptomatic patients and 3 asymptomatic carriers, were enrolled. Whole-exome sequencing was conducted in the probands for identifying rare variants, which were then evaluated for pathogenicity according to the American College of Medical Genetics and Genomics guidelines. Sanger sequencing was performed for validation of mutations in the probands and other family members. The protease activity was assayed for the novel mutations. All the participants received detailed clinical and imaging examinations and the corresponding results were concluded. Hematoma evacuation was performed for an intracerebral hemorrhage patient with the p.Q318H mutation, and the postoperative pathology including hematoma and cerebral small vessels were examined.ResultsThree novel heterozygousHTRA1mutations (p.Q318H, p.V279M, and p.R274W) were detected in the 3 pedigrees. The protease activity was largely lost for all the mutations, confirming that they were loss-of-function mutations. The patients in each pedigree presented with typical clinical and imaging features of CVSD, and some of them displayed several new phenotypes including color blindness, hydrocephalus, and multiple arachnoid cysts. In addition, family 1 is the largest pedigree with heterozygousHTRA1mutation so far and includes homozygous twins, displaying some variation in clinical phenotypes. More importantly, pathologic study of a patient with p.Q318H mutation showed hyalinization, luminal stenosis, loss of smooth muscle cells, splitting of the internal elastic lamina, and intramural hemorrhage/dissection-like structures.DiscussionThese findings broaden the mutational and clinical spectrum of heterozygousHTRA1-related CSVD. Pathologic features were similar with the previous heterozygous and homozygous cases. Moreover, clinical heterogeneity was revealed within the largest single family, and the mechanisms of the phenotypic heterogenetic remain unclear. Overall, heterozygous HTRA1-related CSVD should not be simply taken as a mild type of CARASIL as previously considered.
Collapse
|
31
|
When Recurrent Strokes, Back Pain, and Alopecia Constitute a Hereditary Cause of Small-Vessel Disease, CARASIL in an Arabic Woman. Neurologist 2022:00127893-990000000-00046. [DOI: 10.1097/nrl.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Patients with heterozygous HTRA1-related cerebral small vessel disease misdiagnosed with other diseases: Two case reports. Clin Neurol Neurosurg 2022; 223:107502. [DOI: 10.1016/j.clineuro.2022.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
|
33
|
Zhang C, Zheng H, Li X, Li S, Li W, Wang Z, Niu S, Wang X, Zhang Z. Novel mutations in HTRA1-related cerebral small vessel disease and comparison with CADASIL. Ann Clin Transl Neurol 2022; 9:1586-1595. [PMID: 36047879 PMCID: PMC9539375 DOI: 10.1002/acn3.51654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Objective There is evidence showing both heterozygous HTRA1 and homozygous HTRA1 mutations as causal for familial cerebral small vessel disease (CSVD). The clinical and neuroimaging signs of heterozygous HTRA1‐related CSVD can mimic cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to characterize the genotypic and phenotypic features of HTRA1‐related CSVD, and we compared the features of heterozygous HTRA1‐related CSVD and CADASIL. Methods We carried out genetic sequencing in a series of unrelated patients with suspected familial CSVD from China. Clinical and imaging characteristics of heterozygous HTRA1‐related CSVD and CADASIL were compared. Results We identified nine heterozygous HTRA1 mutations and one homozygous HTRA1 mutation, seven of which are novel. Compared with CADASIL, patients with heterozygous HTRA1‐related CSVD had a higher proportion of spine disorders and a lower proportion of white matter hyperintensities involving the anterior temporal lobe (p < 0.001). Interpretation This study shows that most HTRA1‐related CSVD patients in China carry heterozygous HTRA1 mutations. The specific extra‐neurological features and neuroimaging features reveal informative differences between heterozygous HTRA1‐related CSVD and CADASIL. We expand the mutational spectrum of HTRA1.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shaowu Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Li
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Songtao Niu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingao Wang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Zhou H, Jiao B, Ouyang Z, Wu Q, Shen L, Fang L. Report of two pedigrees with heterozygous HTRA1 variants-related cerebral small vessel disease and literature review. Mol Genet Genomic Med 2022; 10:e2032. [PMID: 35946346 PMCID: PMC9544214 DOI: 10.1002/mgg3.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biallelic HTRA1 pathogenic variants are associated with autosomal recessive cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recent studies have indicated that heterozygous HTRA1 variants are related to autosomal dominant hereditary cerebral small vessel disease (CSVD). However, few studies have assessed heterozygous HTRA1 carriers or the genotype-phenotype correlation. METHODS The clinical data of two unrelated Chinese Han families with CSVD were collected. Panel sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, three-dimensional protein models were constructed, and pathogenicity was analyzed. Published HTRA1-related phenotypes included in PubMed up to September 2021 were extensively reviewed, and the patients' genetic and clinical characteristics were summarized. RESULTS We report a novel heterozygous variant c.920T>C p.L307P in the HTRA1, whose main clinical and neuroimaging phenotypes are stroke and gait disturbance. We report another patient with the previously reported pathogenic variant HTRA1 c.589C>T p.R197X characterized by early cognitive decline. A literature review indicated that compared with CARASIL, HTRA1-related autosomal dominant hereditary CSVD has a later onset age, milder clinical symptoms, fewer extraneurological symptoms, and slower progression, indicating a milder CARASIL phenotype. In addition, HTRA1 heterozygous variants were related to a higher proportion of vascular risk factors (p < .001) and male sex (p = .022). CONCLUSION These findings broaden the known mutational spectrum and possible clinical phenotype of HTRA1. Considering the semidominant characteristics of HTRA1-related phenotypes, we recommend that all members of HTRA1 variant families undergo genetic screening and clinical follow-up if carrying pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
35
|
Chuanfen L, Xiaoling W, Wen J, Bingzhen C, Min W. HtrA1L364P leads to cognitive dysfunction and vascular destruction through TGF-β/Smad signaling pathway in CARASIL model mice. Brain Behav 2022; 12:e2691. [PMID: 35841197 PMCID: PMC9392535 DOI: 10.1002/brb3.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
AIMS Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a life-threatening, inherited, nonhypertensive arteriole disease of the brain. Therapeutic strategy for CARASIL is limited because its pathogenesis is not clear. We previously reported the first family with CARASIL in China, which involves a high-temperature requirement serine protease gene mutation (HtrA1L364P ). Based on this previous study, we constructed a CARASIL mouse model (Mut-hHtrA1L364P mouse, hereinafter referred to as Mut). This paper aimed to systematically study the behavior, pathology, and molecular biology of Mut mice and explore the pathogenesis and possible therapeutic strategies of CARASIL. METHODS Food maze and water maze experiments were used in the behavioral studies. Pathological studies were carried out by arteriole labeling staining and electron microscopy. The mRNA and protein expression levels of the key factors of TGF-β/Smad signaling pathway (TGF-β, Smad2, Smad3, and Smad4) in the brain of the model mice were detected by immunohistochemistry, real-time quantitative polymerase chain reaction (RT-PCR), and Western blot assay. RESULTS The food maze and water maze experiment data showed significant differences between the Mut and wild-type (WT) mice in the first time to find food, the time to contact the escape table for the first time, and the number of times to travel in the escape table quadrant (p < 0.001). The results of vascular labeling staining showed that some small arteries in the brain of Mut mice lost normal structure. The results of electron microscopy showed that the cell morphologies in the cortex and hippocampus of Mut mice were abnormal; the number of synapses was reduced; the walls of capillaries, venules, and arterioles thickened; lumen stenosis and other abnormal phenomenon occurred; and lipofuscin deposition and autophagosomes were found in the hippocampus. Immunohistochemistry, RT-PCR, and Western Blot results showed that the mRNA and protein expression levels of TGF-β, Smad2, and Smad3 in the brain of Mut mice increased to different degrees. CONCLUSIONS The most significant innovation of this study is the first study on the pathogenesis of CARASIL disease using model animals. The Mut mice can well simulate the pathogenesis of CARASIL in behavioral and pathological aspects. The TGF-β/Smad signaling pathway, which is involved in the pathogenesis of CARASIL, is abnormally upregulated in the brain of Mut mice.
Collapse
Affiliation(s)
- Li Chuanfen
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| | - Wang Xiaoling
- Neurology DepartmentPLA 960th HospitalJinanShandongChina
| | - Jing Wen
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| | - Cao Bingzhen
- Neurology DepartmentPLA 960th HospitalJinanShandongChina
| | - Wang Min
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| |
Collapse
|
36
|
Hidalgo Mayoral I, Martínez-Salio A, Llamas-Velasco S, Gómez-Majón I, Arteche-López A, Quesada-Espinosa JF, Palma Milla C, Lezana Rosales JM, Pérez de la Fuente R, Juárez Rufián A, Sierra Tomillo O, Sánchez Calvín MT, Gómez Rodríguez MJ, Ramos Gómez P, Villarejo-Galende A, Díaz-Guzmán J, Ortega-Casarrubios MÁ, Calleja-Castaño P, Moreno-García M. Hereditary cerebral small vessel disease: Assessment of a HTRA1 variant using protein stability predictors and 3D modelling. Eur J Med Genet 2022; 65:104539. [PMID: 35705147 DOI: 10.1016/j.ejmg.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an autosomal recessive vascular disorder caused by biallellic variants in HTRA1. Recently, it has been reported that several heterozygous mutations in HTRA1 are responsible for a milder late-onset cerebral small vessel disease (CSVD) with an autosomal dominant pattern of inheritance. The majority of them are missense that affects the Htr1A protease activity due to a dominant-negative effect caused by defective trimerization or monomer activation. The molecular mechanism related to the structural destabilization of the protein supports the practical utility of integrating computational stability predictors to prioritize candidate variants in this gene. In this work, we report a family with several members diagnosed with subcortical ischemic events and progressive cognitive impairment caused by the novel c.820C > G, p.(Arg274Gly) heterozygous variant in HTRA1 segregating in an autosomal dominant manner and propose its molecular mechanism by a three-dimensional model of the protein's structure.
Collapse
Affiliation(s)
| | | | - Sara Llamas-Velasco
- Neurology Service, Hospital Universitario 12 de Octubre, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Irene Gómez-Majón
- Genetics Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Carmen Palma Milla
- Genetics Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | | | | - Alberto Villarejo-Galende
- Neurology Service, Hospital Universitario 12 de Octubre, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), Department of Medicine, Universidad Complutense, 28041, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Mönkäre S, Kuuluvainen L, Schleutker J, Bras J, Roine S, Pöyhönen M, Guerreiro R, Myllykangas L. Genetic analysis reveals novel variants for vascular cognitive impairment. Acta Neurol Scand 2022; 146:42-50. [PMID: 35307828 PMCID: PMC9314039 DOI: 10.1111/ane.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The genetic background of vascular cognitive impairment (VCI) is poorly understood compared to other dementia disorders. The aim of the study was to investigate the genetic background of VCI in a well-characterized Finnish cohort. MATERIALS & METHODS Whole-exome sequencing (WES) was applied in 45 Finnish VCI patients. Copy-number variant (CNV) analysis using a SNP array was performed in 80 VCI patients. This study also examined the prevalence of variants at the miR-29 binding site of COL4A1 in 73 Finnish VCI patients. RESULTS In 40% (18/45) of the cases, WES detected possibly causative variants in genes associated with cerebral small vessel disease (CSVD) or other neurological or stroke-related disorders. These variants included HTRA1:c.847G>A p.(Gly283Arg), TREX1:c.1079A>G, p.(Tyr360Cys), COLGALT1:c.1411C>T, p.(Arg471Trp), PRNP: c.713C>T, p.(Pro238Leu), and MTHFR:c.1061G>C, p.(Gly354Ala). Additionally, screening of variants in the 3'UTR of COL4A1 gene in a sub-cohort of 73 VCI patients identified a novel variant c.*36T>A. CNV analysis showed that pathogenic CNVs are uncommon in VCI. CONCLUSIONS These data support pathogenic roles of variants in HTRA1, TREX1 and in the 3'UTR of COL4A1 in CSVD and VCI, and suggest that vascular pathogenic mechanisms are linked to neurodegeneration, expanding the understanding of the genetic background of VCI.
Collapse
Affiliation(s)
- Saana Mönkäre
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
| | - Liina Kuuluvainen
- Diagnostic CenterDepartment of Clinical GeneticsHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Johanna Schleutker
- Laboratory DivisionDepartment of Medical Genetics, GenomicsTurku University HospitalTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Jose Bras
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Susanna Roine
- NeurocenterDepartment of Cerebrovascular DiseasesTurku University HospitalTurkuFinland
| | - Minna Pöyhönen
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Rita Guerreiro
- Center for Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Liisa Myllykangas
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
38
|
Stroke and Etiopathogenesis: What Is Known? Genes (Basel) 2022; 13:genes13060978. [PMID: 35741740 PMCID: PMC9222702 DOI: 10.3390/genes13060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: A substantial portion of stroke risk remains unexplained, and a contribution from genetic factors is supported by recent findings. In most cases, genetic risk factors contribute to stroke risk as part of a multifactorial predisposition. A major challenge in identifying the genetic determinants of stroke is fully understanding the complexity of the phenotype. Aims: Our narrative review is needed to improve our understanding of the biological pathways underlying the disease and, through this understanding, to accelerate the identification of new drug targets. Methods: We report, the research in the literature until February 2022 in this narrative review. The keywords are stroke, causes, etiopathogenesis, genetic, epigenetic, ischemic stroke. Results: While better risk prediction also remains a long-term goal, its implementation is still complex given the small effect-size of genetic risk variants. Some authors encourage the use of stroke genetic panels for stroke risk assessment and further stroke research. In addition, new biomarkers for the genetic causes of stroke and new targets for gene therapy are on the horizon. Conclusion: We summarize the latest evidence and perspectives of ischemic stroke genetics that may be of interest to the physician and useful for day-to-day clinical work in terms of both prevention and treatment of ischemic stroke.
Collapse
|
39
|
Wen L, Yuan J, Li S, Zhao J, Li C, Li J, Han Y, Wang C, Li G. Case Report: Diffuse Cerebral Microbleeds in Cerebral Autosomal Recessive Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Front Neurol 2022; 13:818332. [PMID: 35222251 PMCID: PMC8869253 DOI: 10.3389/fneur.2022.818332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary cerebral small vascular disease caused by a homozygous mutation in the high-temperature requirement A serine peptidase 1 (HTRA1) gene. Cerebral microbleeds (CMBs) are increasingly being recognized as neuroimaging findings occurring with cerebrovascular disease and have different etiologies. Mild to moderate CMBs are not unusual in CARASIL, and they are observed to affect cortical and subcortical structures; in contrast, diffuse CMBs, especially in the cerebellum, are rare. In this case, we report a novel mutation of HTRA1 in a 43-year-old woman whose imaging indicated multiple CMBs in all lobes, brain stem, and cerebellum. The amount and location of CMBs vary in CARASIL cases, and the potential cause is not fully understood. This study revealed that specific imaging findings of this patient may be related to a new genetic mutation.
Collapse
Affiliation(s)
- Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieyi Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Congjun Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiafei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Han
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaohua Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Chaohua Wang
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Guangjian Li
| |
Collapse
|
40
|
Cao H, Liu J, Tian W, Ji X, Wang Q, Luan S, Dong X, Dong H. A novel heterozygous HTRA1 mutation in an Asian family with CADASIL-like disease. J Clin Lab Anal 2022; 36:e24174. [PMID: 34951056 PMCID: PMC8841136 DOI: 10.1002/jcla.24174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HTRA1 gene mutations are related to the pathogenesis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). However, heterozygous HTRA1 mutations at specific sites can also lead to rare autosomal dominant cerebral artery disease (CADASIL-like disease). To date, 28 heterozygous mutations in the HTRA1 gene have been reported to be related to CADASIL-like diseases. Only one case of this disease was caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. METHODS In this case, we report on an Asian family with CADASIL-like disease caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. The clinical and imaging characteristics of the proband were summarized, and gene mutations were verified by whole-exome sequencing (WES) and direct Sanger sequencing. RESULTS The result of the gene sequencing showed a heterozygous missense mutation at the c.497G>T locus of the HTRA1 gene in the proband of one sick family member, resulting in a change in amino acid (p.arg166leu). CONCLUSION This is the first reported pathogenic mutation at the c.497G>T locus of the HTRA1 gene in an Asian population. It provides an important theoretical basis for the specific gene-based diagnosis and treatment of CADASIL-like diseases.
Collapse
Affiliation(s)
- Hua Cao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiahui Liu
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wen Tian
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiaofei Ji
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Qi Wang
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Siyu Luan
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiang Dong
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huijie Dong
- Department of CardiologySecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
41
|
Grigaitė J, Šiaurytė K, Audronytė E, Preikšaitienė E, Burnytė B, Pranckevičienė E, Ekkert A, Utkus A, Jatužis D. Novel In-Frame Deletion in HTRA1 Gene, Responsible for Stroke at a Young Age and Dementia-A Case Study. Genes (Basel) 2021; 12:1955. [PMID: 34946904 PMCID: PMC8701891 DOI: 10.3390/genes12121955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Biallelic mutations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene are known to cause an extremely rare cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), which belongs to the group of hereditary cerebral small vessel diseases and is mainly observed in the Japanese population. Even though this pathology is inherited in an autosomal recessive manner, recent studies have described symptomatic carriers with heterozygous HTRA1 mutations who have milder symptoms than patients with biallelic HTRA1 mutations. We present the case of a Lithuanian male patient who had a stroke at the age of 36, experienced several transient ischemic attacks, and developed an early onset, progressing dementia. These clinical symptoms were associated with extensive leukoencephalopathy, lacunar infarcts, and microbleeds based on brain magnetic resonance imaging (MRI). A novel heterozygous in-frame HTRA1 gene deletion (NM_002775.5:c.533_535del; NP_002766.1:p.(Lys178del)) was identified by next generation sequencing. The variant was consistent with the patient's phenotype, which could not be explained by alternative causes, appeared highly deleterious after in silico analysis, and was not reported in the medical literature or population databases to date.
Collapse
Affiliation(s)
- Julija Grigaitė
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Kamilė Šiaurytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Eglė Audronytė
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Eglė Preikšaitienė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Birutė Burnytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Erinija Pranckevičienė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
- Department of Systems Analysis, Faculty of Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (K.Š.); (E.P.); (B.B.); (E.P.); (A.U.)
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania; (J.G.); (E.A.); (A.E.)
| |
Collapse
|
42
|
Chojdak-Łukasiewicz J, Dziadkowiak E, Budrewicz S. Monogenic Causes of Strokes. Genes (Basel) 2021; 12:1855. [PMID: 34946804 PMCID: PMC8700771 DOI: 10.3390/genes12121855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Strokes are the main cause of death and long-term disability worldwide. A stroke is a heterogeneous multi-factorial condition, caused by a combination of environmental and genetic factors. Monogenic disorders account for about 1% to 5% of all stroke cases. The most common single-gene diseases connected with strokes are cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) Fabry disease, mitochondrial myopathy, encephalopathy, lactacidosis, and stroke (MELAS) and a lot of single-gene diseases associated particularly with cerebral small-vessel disease, such as COL4A1 syndrome, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), and Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). In this article the clinical phenotype for the most important single-gene disorders associated with strokes are presented. The monogenic causes of a stroke are rare, but early diagnosis is important in order to provide appropriate therapy when available.
Collapse
|
43
|
Shang T, Pinho M, Ray D, Khera A. Two Unique Mutations in HTRA1-Related Cerebral Small Vessel Disease in North America and Africa and Literature Review. J Stroke Cerebrovasc Dis 2021; 30:106029. [PMID: 34461444 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To describe and compare two cases of North American and African patients who were diagnosed with HTRA1-related cerebral small vessel disease (CSVD) with homozygous and heterozygous mutations, respectively, in the linker domain of the HTRA1 gene. MATERIALS AND METHODS Case reports and literature review. RESULTS A 49-year-old man from Mexico presented with recurrent lacunar strokes and memory loss. A 46-year-old woman from Eritrea presented with progressive memory loss. Neither patient had alopecia. MRI of the brain and spine in both patients showed leukoencephalopathy, microbleeds and spondylosis. Microbleeds along the subpial surfaces of the brainstem were only seen in the Mexican man. Genetic sequencing of HTRA1 gene revealed a novel homozygous mutation of p.A173S in the Mexican man supporting cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). A heterozygous mutation of p.V175M was detected in the African woman, which has not been reported in patients of African ethnicity. In reviewing literature, CARASIL patients with mutation in the linker domain are older at neurological symptom onset and more frequently presented with stroke compared to patients with non-linker domain mutations. In patients of HTRA1-CSVD from heterozygous mutations, male is more common. CONCLUSIONS HTRA1-related CSVD may be seen in patients of non-Asian ethnicity without alopecia. These case reports extend the clinical and radiographic spectrum of HTRA1-related CSVD.
Collapse
Affiliation(s)
- Ty Shang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hives BLVD, Dallas, TX 75390, US.
| | - Marco Pinho
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hives BLVD, Dallas, TX 75390, US
| | - Debarti Ray
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hives BLVD, Dallas, TX 75390, US
| | - Alka Khera
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hives BLVD, Dallas, TX 75390, US
| |
Collapse
|
44
|
Coste T, Hervé D, Neau JP, Jouvent E, Ba F, Bergametti F, Lamy M, Cogez J, Derache N, Schneckenburger R, Grelet M, Gollion C, Lanotte L, Lauer V, Layet V, Urbanczyk C, Didic M, Raynouard I, Delaval L, Dassa J, Florea A, Badiu C, Nguyen K, Tournier-Lasserve E. Heterozygous HTRA1 nonsense or frameshift mutations are pathogenic. Brain 2021; 144:2616-2624. [PMID: 34270682 DOI: 10.1093/brain/awab271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Heterozygous missense HTRA1 mutations have been associated with an autosomal dominant cerebral small vessel disease (CSVD) whereas the pathogenicity of heterozygous HTRA1 stop codon variants is unclear. We performed a targeted high throughput sequencing of all known CSVD genes, including HTRA1, in 3853 unrelated consecutive CSVD patients referred for molecular diagnosis. The frequency of heterozygous HTRA1 mutations leading to a premature stop codon in this patient cohort was compared with their frequency in large control databases. An analysis of HTRA1 mRNA was performed in several stop codon carrier patients. Clinical and neuroimaging features were characterized in all probands. Twenty unrelated patients carrying a heterozygous HTRA1 variant leading to a premature stop codon were identified. A highly significant difference was observed when comparing our patient cohort with control databases: gnomAD v3.1.1 [P = 3.12 × 10-17, odds ratio (OR) = 21.9], TOPMed freeze 5 (P = 7.6 × 10-18, OR = 27.1) and 1000 Genomes (P = 1.5 × 10-5). Messenger RNA analysis performed in eight patients showed a degradation of the mutated allele strongly suggesting a haploinsufficiency. Clinical and neuroimaging features are similar to those previously reported in heterozygous missense mutation carriers, except for penetrance, which seems lower. Altogether, our findings strongly suggest that heterozygous HTRA1 stop codons are pathogenic through a haploinsufficiency mechanism. Future work will help to estimate their penetrance, an important information for genetic counselling.
Collapse
Affiliation(s)
- Thibault Coste
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
| | - Dominique Hervé
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
- AP-HP, CERVCO, Service de Neurologie, Hôpital Lariboisière, France
| | - Jean Philippe Neau
- Centre Hospitalier Universitaire de Poitiers, Service de Neurologie, Poitiers, France
| | - Eric Jouvent
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
- AP-HP, CERVCO, Service de Neurologie, Hôpital Lariboisière, France
| | - Fatoumata Ba
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
| | | | - Matthias Lamy
- Centre Hospitalier Universitaire de Poitiers, Service de Neurologie, Poitiers, France
| | - Julien Cogez
- Centre Hospitalier Universitaire de Caen, Service de Neurologie, Caen, France
| | - Nathalie Derache
- Centre Hospitalier Universitaire de Caen, Service de Neurologie, Caen, France
| | | | - Maude Grelet
- Centre Hospitalier Intercommunal de Toulon- La Seyne sur mer, Service de Génétique Médicale, Toulon, France
| | - Cédric Gollion
- Centre Hospitalier Universitaire de Toulouse, Service de Neurologie, Toulouse, France
| | - Livia Lanotte
- Hôpital De Hautepierre, Service de Neurologie, Strasbourg, France
| | - Valérie Lauer
- Hôpital De Hautepierre, Unité Neuro-Vasculaire, Strasbourg, France
| | - Valérie Layet
- Groupe Hospitalier Du havre, Service de Génétique Médicale, Le Havre, France
| | - Cédric Urbanczyk
- Centre Hospitalier Départemental La Roche-Sur-Yon, Service de Neurologie, La Roche-Sur-Yon, France
| | - Mira Didic
- APHM, Hôpital Timone Adultes, Service de Neurologie et Neuropsychologie, Marseille, France
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Igor Raynouard
- Fondation Adolphe de Rothschild, Service de Neurologie, Paris, France
| | - Laure Delaval
- AP-HP, Hôpital Bichat, Service de Médecine Interne, France
| | - Jérémie Dassa
- Centre Hospitalier Emile Roux, Service de Neurologie, Le Puy-en-Velay, France
| | - Alexandru Florea
- Centre Hospitalier Marie Madeleine, Service de Neurologie, Forbach, France
| | - Carmen Badiu
- Centre Hospitalier Metz-Thionville, Service de Neurologie, Metz, France
| | - Karine Nguyen
- APHM, Hôpital Timone Adultes, Département de Génétique, Marseille, France
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
| |
Collapse
|
45
|
Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CLM, Dichgans M. Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain 2021; 144:2670-2682. [PMID: 34626176 PMCID: PMC8557338 DOI: 10.1093/brain/awab253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.691+2T>C, β = -0.74, standard error (SE) = 0.13, P = 9.7 × 10-9]. Applying whole-exome gene-based burden tests, we found damaging missense and loss-of-function variants in HTRA1 (frequency of 1 in 275 in the UK Biobank population) to associate with an increased WMH volume (P = 5.5 × 10-6, false discovery rate = 0.04). HTRA1 encodes a secreted serine protease implicated in familial forms of small vessel disease. Domain-specific burden tests revealed that the association with WMH volume was restricted to rare variants in the protease domain (amino acids 204-364; β = 0.79, SE = 0.14, P = 9.4 × 10-8). The frequency of such variants in the UK Biobank population was 1 in 450. The WMH volume was brought forward by ∼11 years in carriers of a rare protease domain variant. A comparison with the effect size of established risk factors for WMH burden revealed that the presence of a rare variant in the HTRA1 protease domain corresponded to a larger effect than meeting the criteria for hypertension (β = 0.26, SE = 0.02, P = 2.9 × 10-59) or being in the upper 99.8% percentile of the distribution of a polygenic risk score based on common genetic variants (β = 0.44, SE = 0.14, P = 0.002). In biochemical experiments, most (6/9) of the identified protease domain variants resulted in markedly reduced protease activity. We further found EGFL8, which showed suggestive evidence for association with WMH volume (P = 1.5 × 10-4, false discovery rate = 0.22) in gene burden tests, to be a direct substrate of HTRA1 and to be preferentially expressed in cerebral arterioles and arteries. In a phenome-wide association study mapping ICD-10 diagnoses to 741 standardized Phecodes, rare variants in the HTRA1 protease domain were associated with multiple neurological and non-neurological conditions including migraine with aura (odds ratio = 12.24, 95%CI: 2.54-35.25; P = 8.3 × 10-5]. Collectively, these findings highlight an important role of rare genetic variation and the HTRA1 protease in determining WMH burden in the general population.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Frerich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Amy C Ferguson
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- The Barts Heart Centre and NIHR Barts Biomedical Research Centre - Barts Health NHS Trust, The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45141, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TL, UK
- Health Data Research UK Scotland, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology, Munich 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
| |
Collapse
|
46
|
Muthusamy K, Ferrer A, Klee EW, Wierenga KJ, Gavrilova RH. Clinicoradiographic and genetic features of cerebral small vessel disease indicate variability in mode of inheritance for monoallelic HTRA1 variants. Mol Genet Genomic Med 2021; 9:e1799. [PMID: 34510819 PMCID: PMC8580093 DOI: 10.1002/mgg3.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Biallelic pathogenic variants in HTRA1 cause CARASIL. More recently, monoallelic variants have been associated with the autosomal dominant disorder CADASIL2 but not all carriers develop disease manifestations. We describe the clinicoradiologic and mutation spectrum of four new CADASIL2 individuals. METHODS Medical records at Mayo Clinic between 2013 and 2020 were retrospectively reviewed to identify patients with cerebral small vessel disease related to monoallelic HTRA1 variants. RESULTS Four patients met the study inclusion criteria for cerebral small vessel disease related to HTRA1 monoallelic variants. The mean age at onset of first clinical stroke was 51.25 years (range 41-64 years). The mean disease duration was 6.5 years (range 4-12). All individuals had recurrent strokes within the duration of follow-up with a mean number of strokes per patient being 5.5 (range 2-12). Three individuals had leukoencephalopathy with brain stem involvement. Microhemorrhages were seen on brain MRI in three patients. HTRA1 monoallelic variants identified in our cohort were missense variants in three patients and a novel frameshift variation in one patient. Interestingly, two of these missense variants were previously reported in an autosomal recessive pattern of inheritance and here are associated with a dominant effect. CONCLUSIONS Clinicoradiologic characteristics of heterozygous HTRA1-related CSVD may overlap with sporadic CSVD. Heterozygous HTRA1 variants can contribute to dominant or recessive disease mechanisms.
Collapse
Affiliation(s)
| | | | - Eric W. Klee
- Department of Clinical GenomicsMayo ClinicRochesterMNUSA
- Center for Individualized MedicineMayo ClinicRochesterMNUSA
- Department of Health Sciences and ResearchMayo ClinicRochesterMNUSA
| | | | - Ralitza H. Gavrilova
- Department of Clinical GenomicsMayo ClinicRochesterMNUSA
- Department of NeurologyMayo ClinicRochesterMNUSA
| |
Collapse
|
47
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
48
|
Campbell RA, Campbell HD, Bircher JS, de Araujo CV, Denorme F, Crandell JL, Rustad JL, Monts J, Cody MJ, Kosaka Y, Yost CC. Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide. Blood 2021; 138:977-988. [PMID: 34192300 PMCID: PMC9069473 DOI: 10.1182/blood.2020009021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/30/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are important components of innate immunity. Neonatal neutrophils (polymorphonuclear leukocytes [PMNs]) fail to form NETs due to circulating NET-inhibitory peptides (NIPs), cleavage fragments of α1-antitrypsin (A1AT). How fetal and neonatal blood NIPs are generated remains unknown, however. The placenta expresses high-temperature requirement serine protease A1 (HTRA1) during fetal development, which can cleave A1AT. We hypothesized that placentally expressed HTRA1 regulates the formation of NIPs and that NET competency changed in PMNs isolated from neonatal HTRA1 knockout mice (HTRA1-/-). We found that umbilical cord blood plasma has elevated HTRA1 levels compared with adult plasma and that recombinant and placenta-eluted HTRA1 cleaves A1AT to generate an A1AT cleavage fragment (A1ATM383S-CF) of molecular weight similar to previously identified NIPs that block NET formation by adult neutrophils. We showed that neonatal mouse pup plasma contains A1AT fragments that inhibit NET formation by PMNs isolated from adult mice, indicating that NIP generation during gestation is conserved across species. Lipopolysaccharide-stimulated PMNs isolated from HTRA1+/+ littermate control pups exhibit delayed NET formation after birth. However, plasma from HTRA1-/- pups had no detectable NIPs, and PMNs from HTRA1-/- pups became NET competent earlier after birth compared with HTRA1+/+ littermate controls. Finally, in the cecal slurry model of neonatal sepsis, A1ATM383S-CF improved survival in C57BL/6 pups by preventing pathogenic NET formation. Our data indicate that placentally expressed HTRA1 is a serine protease that cleaves A1AT in utero to generate NIPs that regulate NET formation by human and mouse PMNs.
Collapse
Affiliation(s)
- Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Internal Medicine
| | | | | | | | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Jacob L Crandell
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - John L Rustad
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Josh Monts
- Flow Cytometry Core, University of Utah, Salt Lake City, UT
| | - Mark J Cody
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Pediatrics, and
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Christian C Yost
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Pediatrics, and
| |
Collapse
|
49
|
Bekircan-Kurt CE, Çetinkaya A, Gocmen R, Koşukcu C, Soylemezoglu F, Arsava EM, Tuncer A, Erdem-Ozdamar S, Akarsu NA, Topcuoglu MA. One Disease with two Faces: Semidominant Inheritance of a Novel HTRA1 Mutation in a Consanguineous Family. J Stroke Cerebrovasc Dis 2021; 30:105997. [PMID: 34303089 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To identify the underlying genetic defect for a consanguineous family with an unusually high number of members affected by cerebral small vessel disease. MATERIALS AND METHODS A total of 6 individuals, of whom 3 are severely affected, from the family were clinically and radiologically evaluated. SNP genotyping was performed in multiple members to demonstrate genome-wide runs-of-homozygosity. Coding variants in the most likely candidate gene, HTRA1 were explored by Sanger sequencing. Published HTRA1-related phenotypes were extensively reviewed to explore the effect of number of affected alleles on phenotypic expression. RESULTS Genome-wide homozygosity mapping identified a 3.2 Mbp stretch on chromosome 10q26.3 where HTRA1 gene is located. HTRA1 sequencing revealed an evolutionarily conserved novel homozygous c.824C>T (p.Pro275Leu) mutation, affecting the serine protease domain of HtrA1. Early-onset of cognitive and motor deterioration in homozygotes are in consensus with CARASIL. However, there was a clear phenotypic variability between homozygotes which includes alopecia, a suggested hallmark of CARASIL. All heterozygotes, presenting as CADASIL type 2, had spinal disk degeneration and several neuroimaging findings, including leukoencephalopathy and microhemorrhage despite a lack of severe clinical presentation. CONCLUSION Here, we clearly demonstrate that CARASIL and CADASIL type 2 are two clinical consequences of the same disorder with different severities thorough the evaluation of the largest collection of homozygotes and heterozygotes segregating in a family. Considering the semi-dominant inheritance of HTRA1-related phenotypes, genetic testing and clinical follow-up must be offered for all members of a family with HTRA1 mutations regardless of symptoms.
Collapse
Affiliation(s)
- Can Ebru Bekircan-Kurt
- Department of Neurology, Neuromuscular Diseases Research Laboratory, Hacettepe University, Medical Faculty, Sihhiye Ankara 06100, Turkey.
| | - Arda Çetinkaya
- Department of Medical Genetics, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University, Graduate School of Health Sciences, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Ethem Murat Arsava
- Department of Neurology, Neuromuscular Diseases Research Laboratory, Hacettepe University, Medical Faculty, Sihhiye Ankara 06100, Turkey
| | - Asli Tuncer
- Department of Neurology, Neuromuscular Diseases Research Laboratory, Hacettepe University, Medical Faculty, Sihhiye Ankara 06100, Turkey
| | - Sevim Erdem-Ozdamar
- Department of Neurology, Neuromuscular Diseases Research Laboratory, Hacettepe University, Medical Faculty, Sihhiye Ankara 06100, Turkey
| | - Nurten A Akarsu
- Department of Medical Genetics, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Mehmet Akif Topcuoglu
- Department of Neurology, Neuromuscular Diseases Research Laboratory, Hacettepe University, Medical Faculty, Sihhiye Ankara 06100, Turkey
| |
Collapse
|
50
|
Guey S, Lesnik Oberstein SAJ, Tournier-Lasserve E, Chabriat H. Hereditary Cerebral Small Vessel Diseases and Stroke: A Guide for Diagnosis and Management. Stroke 2021; 52:3025-3032. [PMID: 34399586 DOI: 10.1161/strokeaha.121.032620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cerebral small vessel diseases represent a frequent cause of stroke and cognitive or motor disability in adults. A small proportion of cerebral small vessel diseases is attributable to monogenic conditions. Since the characterization in the late 1990s of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, several other monogenic conditions leading to adult-onset ischemic or hemorrhagic stroke have been described. In this practical guide, we summarize the key features that should elicit the differential diagnosis of a hereditary cerebral small vessel diseases in adult stroke patients, describe the main clinical and imaging characteristics of the major hereditary cerebral small vessel diseases that can manifest as stroke, and provide general recommendations for the clinical management of affected patients and their relatives.
Collapse
Affiliation(s)
- Stéphanie Guey
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| | | | - Elisabeth Tournier-Lasserve
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| | - Hugues Chabriat
- CERVCO, FHU NeuroVasc, Assistance Publique des Hôpitaux de Paris and Paris University, France (S.G., E.T.-L., H.C.).,INSERM UMR 1141, NeuroDiderot, Université de Paris, France (S.G., E.T.-L., H.C.)
| |
Collapse
|