1
|
Socała K, Kowalczuk-Vasilev E, Komar M, Szalak R, Wyska E, Wlaź P. Effect of apigenin on seizure susceptibility, parvalbumin immunoreactivity, and GABA A receptor expression in the hippocampal neurons in mice. Eur J Pharmacol 2025; 996:177548. [PMID: 40157704 DOI: 10.1016/j.ejphar.2025.177548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Apigenin is a flavonoid compound found in many fruits, vegetables, and medicinal herbs. It possesses a wide range of biological activities including antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective effects. Some initial evidence also suggests that apigenin may have antiseizure properties. In this study, we aimed at providing more insight into the potential influence of apigenin on seizure susceptibility in mice and its influence on parvalbumin and GABAA receptor immunoreactivity (PV-IR and GABAAR-IR) in the hippocampus. We also assessed the pharmacokinetic profile of apigenin after intraperitoneal route of administration and its possible side effects. Acute administration of apigenin, at doses of 100 and 150 mg/kg, significantly increased the threshold for various types of seizures, i.e., the myoclonic twitch in the ivPTZ test, the 6 Hz-induced seizure, and hindlimb tonus in the maximal electroshock seizure test. A 14-day treatment with apigenin at a lower dose of 50 mg/kg also increased the threshold for maximal electroshock-induced seizures. Pharmacokinetic profiling revealed a very slow elimination of apigenin from serum, and even slower from the brain, after intraperitoneal administration. In consequence, a relatively high accumulation of this compound in the brain can be expected. In addition, apigenin given repeatedly increased the mean number of GABAAR-IR and PV-IR neurons in hippocampal fields suggesting its potential influence on neuronal Ca2+ metabolism. This study indicates that apigenin has a relatively minor effect on acute seizures in mice. However, modifying the quantity of GABAAR-IR and PV-IR hippocampal neurons provides further support for the neuroprotective effects of apigenin.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland.
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Science and Bioeconomy, University of Life Sciences, Akademicka 13, PL 20-950, Lublin, Poland
| | - Małgorzata Komar
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, PL 20-950, Lublin, Poland
| | - Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, PL 20-950, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| |
Collapse
|
2
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Ammothumkandy A, Cayce A, Shariq M, Bonaguidi MA. Astroglia's role in synchronized spontaneous neuronal activity: from physiology to pathology. Front Cell Neurosci 2025; 19:1544460. [PMID: 40177583 PMCID: PMC11961896 DOI: 10.3389/fncel.2025.1544460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The nervous system relies on a balance of excitatory and inhibitory signals. Aberrant neuronal hyperactivity is a pathological phenotype associated with several neurological disorders, with its most severe effects observed in epilepsy patients. This review explores the literature on spontaneous synchronized neuronal activity, its physiological role, and its aberrant forms in disease. Emphasizing the importance of targeting underlying disease mechanisms beyond traditional neuron-focused therapies, the review delves into the role of astroglia in epilepsy progression. We detail how astroglia transitions from a normal to a pathological state, leading to epileptogenic seizures and cognitive decline. Astroglia activity is correlated with epileptiform activity in both animal models and human tissue, indicating their potential role in seizure induction and modulation. Understanding astroglia's dual beneficial and detrimental roles could lead to novel treatments for epilepsy and other neurological disorders with aberrant neuronal activity as the underlying disease substrate.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Mohammad Shariq
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Gerontology, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Islam J, Rahman MT, Ali M, Kim HK, Kc E, Park YS. Optogenetic inhibition of ventrolateral orbitofrontal cortex astrocytes facilitates ventrolateral periaqueductal gray glutamatergic activity to reduce hypersensitivity in infraorbital nerve injury rat model. J Headache Pain 2025; 26:41. [PMID: 39994518 PMCID: PMC11854010 DOI: 10.1186/s10194-025-01977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Trigeminal neuropathic pain (TNP) is a chronic condition characterized by heightened nociceptive responses and neuroinflammatory changes. While astrocytes are recognized as critical players in pain modulation, their specific role in influencing descending trigeminal pain pathways via ventrolateral orbitofrontal cortex (vlOFC) activity modulation remains underexplored. Therefore, we investigated the impact of optogenetic modulation of astrocytes in the vlOFC on pain hypersensitivity in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). METHOD Adult female Sprague Dawley rats underwent ION constriction to mimic TNP symptoms, with naive and sham animals serving as controls. AAV8-GFAP-hChR2-mCherry, AAV8-GFAP-eNpHR3.0-mCherry, or AAV8-GFAP-mCherry were delivered to the vlOFC for in vivo optogenetic manipulation. Pain behaviors were assessed using acetone, von Frey, and elevated plus maze tests, while electrophysiological recordings from the ventrolateral periaqueductal gray (vlPAG) and ventral posteromedial (VPM) thalamus were obtained. RESULTS Orofacial hyperalgesia, reduced vlPAG activity, and thalamic hyperexcitability were associated with vlOFC astrocytic hyperactivity in the TNP animals. In contrast, optogenetic inhibition of vlOFC astrocytes restored vlOFC glutamatergic signaling, increased vlPAG glutamatergic neuronal activity, and reduced hyperactivity in the VPM thalamus. Behavioral assessments also revealed alleviation of hyperalgesia, allodynia, and anxiety-like behaviors during the stimulation-ON phase, alongside reduced neuroinflammatory markers, including P2 × 3 and Iba-1. However, astrocytic excitation and null virus controls did not alter TNP responses, underscoring the specificity of astrocytic inhibition. CONCLUSION These findings suggest that the astrocytic subpopulation in the vlOFC and its robust influence on vlPAG glutamatergic neurons play a crucial role in restoring descending pain processing pathways, potentially contributing to the development of novel therapeutic approaches for TNP management.
Collapse
Affiliation(s)
- Jaisan Islam
- Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Md Taufiqur Rahman
- Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Muhammad Ali
- Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Alsfouk BA, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, Batiha GES. The potential therapeutic role of berberine in treating epilepsy focusing on temporal lobe epilepsy: State of art and ongoing perspective. Brain Res Bull 2025; 221:111189. [PMID: 39761924 DOI: 10.1016/j.brainresbull.2025.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Epilepsy is a neurological disease characterized by unprovoked recurrent epileptic seizures. Temporal lobe epilepsy (TLE) is the commonest type of focal epilepsy in adults that resist to the conventional anti-seizure medications (ASMs). Interestingly, ASMs do not affect the epileptogenesis and progression of disease. Therefore, repurposing of natural products with anti-inflammatory, anti-oxidant and anti-seizure effects such as berberine (BRB) may be logical in treating refractory epilepsy and TLE. However, the molecular mechanism of BRB against the development of epilepsy and progression of epileptic seizure mainly in TLE was not fully elucidated. Therefore, we attempt in this review to discuss the potential underlying molecular mechanism of BRB against the development and progression of epilepsy mainly the TLE.
Collapse
Affiliation(s)
- Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
6
|
Eberhard J, Henning L, Fülle L, Knöpper K, Böhringer J, Graelmann FJ, Hänschke L, Kenzler J, Brosseron F, Heneka MT, Domingos AI, Eyerich S, Lochner M, Weighardt H, Bedner P, Steinhäuser C, Förster I. Ablation of CCL17-positive hippocampal neurons induces inflammation-dependent epilepsy. Epilepsia 2025; 66:554-568. [PMID: 39607395 PMCID: PMC11827734 DOI: 10.1111/epi.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Neuronal cell death and neuroinflammation are characteristic features of epilepsy, but it remains unclear whether neuronal cell death as such is causative for the development of epileptic seizures. To test this hypothesis, we established a novel mouse line permitting inducible ablation of pyramidal neurons by inserting simian diphtheria toxin (DT) receptor (DTR) cDNA into the Ccl17 locus. The chemokine CCL17 is expressed in pyramidal CA1 neurons in adult mice controlling microglial quiescence. METHODS Seizure activity in CCL17-DTR mice was analyzed by electroencephalographic recordings following treatment with DT for 3 consecutive days. Neuroinflammation and neuronal cell death were evaluated by (immuno)histochemistry. Pharmacological inhibition of TNFR1 signaling was achieved by treatment with XPro1595, a dominant-negative inhibitor of soluble tumor necrosis factor. RESULTS Neuronal cell death was detectable 7 days (d7) after the first DT injection in heterozygous CCL17-DTR mice. Spontaneous epileptic seizures were observed in the vast majority of mice, often with an initial peak at d6-9, followed by a period of reduced activity and a gradual increase during the 1-month observation period. Microglial reactivity was overt from d5 after DT administration not only in the CA1 region but also in the CA2/CA3 area, shortly followed by astrogliosis. Reactive microgliosis and astrogliosis persisted until d30 and, together with neuronal loss and stratum radiatum shrinkage, reflected important features of human hippocampal sclerosis. Granule cell dispersion was detectable only 3 months after DT treatment. Application of XPro1595 significantly reduced chronic seizure burden without affecting the development of hippocampal sclerosis. SIGNIFICANCE In conclusion, our data demonstrate that sterile pyramidal neuronal death is sufficient to cause epilepsy in the absence of other pathological processes. The CCL17-DTR mouse line may thus be a valuable model for further mechanistic studies on epilepsy and assessment of antiseizure medication.
Collapse
Affiliation(s)
- Judith Eberhard
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
- Deutsche ForschungsgemeinschaftBonnGermany
| | - Lorenz Fülle
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
- Business Development Europe Research Services, WuXi Biologics, Leverkusen, Germany
| | - Konrad Knöpper
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
- Howard Hughes Medical Institute and Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jana Böhringer
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Frederike J. Graelmann
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Lea Hänschke
- Molecular Developmental Biology, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Julia Kenzler
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
- Sanofi‐Aventis DeutschlandMedical Operations General Medicines in Germany, Switzerland, Austria (GSA)BerlinGermany
| | | | - Michael T. Heneka
- German Center for Neurodegenerative DiseasesBonnGermany
- Luxembourg Center for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Ana I. Domingos
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - Stefanie Eyerich
- Institute for Medical Microbiology, Immunology, and HygieneTechnical University of MunichMunichGermany
- ZAUM—Center of Allergy and EnvironmentTechnical University and Helmholtz Center MunichMunichGermany
| | - Matthias Lochner
- Institute for Medical Microbiology, Immunology, and HygieneTechnical University of MunichMunichGermany
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| | - Heike Weighardt
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
| | | | - Irmgard Förster
- Immunology & Environment, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| |
Collapse
|
7
|
Cheong E, Lee CJ. Gliotransmission in physiologic and pathologic conditions. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:93-116. [PMID: 40122634 DOI: 10.1016/b978-0-443-19104-6.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter explores the roles of gliotransmission in physiologic and pathologic conditions, including psychiatric and neurologic disorders. Gliotransmission, facilitated by astrocytes through the release of gliotransmitters such as glutamate, d-serine, and GABA, regulates neuronal activity and synaptic transmission. Under physiologic conditions, astrocytic gliotransmission maintains the balance of tonic excitation and inhibition, influencing synaptic plasticity and cognitive functions. In psychiatric disorders, the chapter examines how dysregulated gliotransmission contributes to major depression and schizophrenia. In major depression, changes in astrocytic glutamate and adenosine signaling impact mood regulation and cognitive functions. Schizophrenia involves complex astrocyte-neuron interactions, with dysregulated astrocytic activity affecting synaptic function and contributing to symptoms. The chapter also delves into neurologic disorders. In Alzheimer disease, aberrant GABA release from reactive astrocytes impairs memory and cognitive functions. Parkinson disease features alterations in glutamatergic and GABAergic systems, affecting motor and nonmotor symptoms. Epilepsy involves a disruption in the balance between excitatory and inhibitory neurotransmission, with astrocytic GABA accumulation helping to maintain neuronal stability. Autism spectrum disorder (ASD) is linked to imbalances in glutamatergic and GABAergic neurotransmission, underlying sensory, cognitive, and social impairments. Overall, the chapter underscores the pivotal role of gliotransmission in maintaining neural homeostasis and highlights its potential as a therapeutic target in various disorders.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
8
|
Huang H, Chen L, Yuan J, Zhang H, Yang J, Xu Z, Chen Y. Role and mechanism of EphB3 in epileptic seizures and epileptogenesis through Kalirin. Mol Cell Neurosci 2024; 128:103915. [PMID: 38143048 DOI: 10.1016/j.mcn.2023.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND The EphB receptor tyrosine kinase family participates in intricate signaling pathways that orchestrate neural networks, guide neuronal axon development, and modulate synaptic plasticity through interactions with surface-bound ephrinB ligands. Additionally, Kalirin, a Rho guanine nucleotide exchange factor, is notably expressed in the postsynaptic membrane of excitatory neurons and plays a role in synaptic morphogenesis. This study postulates that Kalirin may act as a downstream effector of EphB3 in epilepsy. This investigation focuses on understanding the link between EphB3 and epilepsy. MATERIALS AND METHODS Chronic seizure models using LiCl-pilocarpine (LiCl/Pilo) and pentylenetetrazol were developed in rats. Neuronal excitability was gauged through whole-cell patch clamp recordings on rat hippocampal slices. Real-time PCR determined Kalirin's mRNA expression, and Western blotting was employed to quantify EphB3 and Kalirin protein levels. Moreover, dendritic spine density in epileptic rats was evaluated using Golgi staining. RESULTS Modulation of EphB3 functionality influenced acute seizure severity, latency duration, and frequency of spontaneous recurrent seizures. Golgi staining disclosed an EphB3-driven alteration in dendritic spine density within the hippocampus of epileptic rats, underscoring its pivotal role in the reconfiguration of hippocampal neural circuits. Furthermore, our data propose Kalirin as a prospective downstream mediator of the EphB3 receptor. CONCLUSIONS Our findings elucidate that EphB3 impacts the action potential dynamics in isolated rat hippocampal slices and alters dendritic spine density in the inner molecular layer of epileptic rat hippocampi, likely through Kalirin-mediated pathways. This hints at EphB3's significant role in shaping excitatory circuit loops and recurrent seizure activity via Kalirin.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China; Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China
| | - Haiqing Zhang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Juan Yang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China.
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
9
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
11
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
12
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
13
|
Reimers A, Helmstaedter C, Elger CE, Pitsch J, Hamed M, Becker AJ, Witt JA. Neuropathological Insights into Unexpected Cognitive Decline in Epilepsy. Ann Neurol 2023; 93:536-550. [PMID: 36411525 DOI: 10.1002/ana.26557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Some patients unexpectedly display an unfavorable cognitive course after epilepsy surgery subsequent to any direct cognitive sequelae of the surgical treatment. Therefore, we conducted in-depth neuropathological examinations of resective specimens from corresponding patients to provide insights as to the underlying disease processes. METHODS In this study, cases with significant cognitive deterioration following a previous postoperative assessment were extracted from the neuropsychological database of a longstanding epilepsy surgical program. An extensive reanalysis of available specimens was performed using current, state-of-the-art neuropathological examinations. Patients without cognitive deterioration but matched in regard to basic pathologies served as controls. RESULTS Among the 355 operated patients who had undergone more than one postoperative neuropsychological examination, 30 (8%) showed significant cognitive decline in the period after surgery. Of the 24 patients with available specimens, 71% displayed further neuropathological changes in addition to the typical spectrum (ie, hippocampal sclerosis, focal cortical dysplasias, vascular lesions, and low-grade tumors), indicating (1) a secondary, putatively epilepsy-independent neurodegenerative disease process; (2) limbic inflammation; or (3) the enigmatic pathology pattern of "hippocampal gliosis" without segmental neurodegeneration. In the controls, the matched individual principal epilepsy-associated pathologies were not found in combination with the secondary pathology patterns of the study group. INTERPRETATION Our findings indicate that patients who unexpectedly displayed unfavorable cognitive development beyond any direct surgical effects show rare and very particular pathogenetic causes or parallel, presumably independent, neurodegenerative alterations. A multicenter collection of such cases would be appreciated to discern presurgical biomarkers that help with surgical decision-making. ANN NEUROL 2023;93:536-550.
Collapse
Affiliation(s)
- Annika Reimers
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
14
|
Kilb W, Kirischuk S. GABA Release from Astrocytes in Health and Disease. Int J Mol Sci 2022; 23:ijms232415859. [PMID: 36555501 PMCID: PMC9784789 DOI: 10.3390/ijms232415859] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.
Collapse
|
15
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
16
|
Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, Gaeta A, Morano A, Anink J, Mühlebner A, Vezzani A, Aronica E, Palma E. GABA A receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022; 12:17956. [PMID: 36289354 PMCID: PMC9605959 DOI: 10.1038/s41598-022-22806-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1β. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1β reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures.
Collapse
Affiliation(s)
- Gabriele Ruffolo
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Veronica Alfano
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Alessia Romagnolo
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Till Zimmer
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - James D. Mills
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.83440.3b0000000121901201Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK ,grid.452379.e0000 0004 0386 7187Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Pierangelo Cifelli
- grid.158820.60000 0004 1757 2611Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Gaeta
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Alessandra Morano
- grid.7841.aDepartment of Human Neuroscience, University of Rome Sapienza, Rome, Italy
| | - Jasper Anink
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.7692.a0000000090126352Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annamaria Vezzani
- grid.4527.40000000106678902Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eleonora Aronica
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.419298.f0000 0004 0631 9143Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Eleonora Palma
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
17
|
Neuronal splicing regulator RBFOX3 mediates seizures via regulating Vamp1 expression preferentially in NPY-expressing GABAergic neurons. Proc Natl Acad Sci U S A 2022; 119:e2203632119. [PMID: 35951651 PMCID: PMC9388145 DOI: 10.1073/pnas.2203632119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.
Collapse
|
18
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
19
|
Zhuravleva ZN, Khutsyan SS, Zhuravlev GI. Ultrastructural Immunocytochemistry of GABAergic Cells in Neocortical Neurotransplants. Bull Exp Biol Med 2022; 173:490-493. [DOI: 10.1007/s10517-022-05567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 10/14/2022]
|
20
|
Berger TC, Taubøll E, Heuser K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Front Cell Neurosci 2022; 16:931356. [PMID: 35936496 PMCID: PMC9353008 DOI: 10.3389/fncel.2022.931356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmacological therapy of epilepsy has so far been limited to symptomatic treatment aimed at neuronal targets, with the result of an unchanged high proportion of patients lacking seizure control. The dissection of the intricate pathological mechanisms that transform normal brain matter to a focus for epileptic seizures—the process of epileptogenesis—could yield targets for novel treatment strategies preventing the development or progression of epilepsy. While many pathological features of epileptogenesis have been identified, obvious shortcomings in drug development are now believed to be based on the lack of knowledge of molecular upstream mechanisms, such as DNA methylation (DNAm), and as well as a failure to recognize glial cell involvement in epileptogenesis. This article highlights the potential role of DNAm and related gene expression (GE) as a treatment target in epileptogenesis.
Collapse
Affiliation(s)
- Toni Christoph Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Toni Christoph Berger
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Kjell Heuser
| |
Collapse
|
21
|
Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci 2022; 16:892497. [PMID: 35755777 PMCID: PMC9231434 DOI: 10.3389/fncel.2022.892497] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes, the most numerous glial cells in the brain, play an important role in preserving normal neural functions and mediating the pathogenesis of neurological disorders. Recent studies have shown that astrocytes are GABAceptive and GABAergic astrocytes express GABAA receptors, GABAB receptors, and GABA transporter proteins to capture and internalize GABA. GABAceptive astrocytes thus influence both inhibitory and excitatory neurotransmission by controlling the levels of extracellular GABA. Furthermore, astrocytes synthesize and release GABA to directly regulate brain functions. In this review, we highlight recent research progresses that support astrocytes as GABAceptive and GABAergic cells. We also summarize the roles of GABAceptive and GABAergic astrocytes that serve as an inhibitory node in the intercellular communication in the brain. Besides, we discuss future directions for further expanding our knowledge on the GABAceptive and GABAergic astrocyte signaling.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xuanran Feng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
23
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
24
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
25
|
Heuser K, Enger R. Astrocytic Ca 2+ Signaling in Epilepsy. Front Cell Neurosci 2021; 15:695380. [PMID: 34335188 PMCID: PMC8320018 DOI: 10.3389/fncel.2021.695380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders – estimated to affect at least 65 million worldwide. Most of the epilepsy research has so far focused on how to dampen neuronal discharges and to explain how changes in intrinsic neuronal activity or network function cause seizures. As a result, pharmacological therapy has largely been limited to symptomatic treatment targeted at neurons. Given the expanding spectrum of functions ascribed to the non-neuronal constituents of the brain, in both physiological brain function and in brain disorders, it is natural to closely consider the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key controllers of the composition of the extracellular fluids, and may directly interact with neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca2+ signals promote release of such signaling substances, either through synaptic or non-synaptic mechanisms. Accruing evidence suggests that astrocytic Ca2+ signals play important roles in both seizures and epilepsy, and this review aims to highlight the current knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|