1
|
Zhou C, Feng SJ, Leong S, Breil E, Voruz F, Valentini C, Hammer DR, Aksit A, Olson ES, Guo J, Kysar JW, Lalwani AK. Contrast Enhancement of Cochlea after Direct Microneedle Intracochlear Injection of Gadodiamide through the Round Window Membrane with Minimal Dosage. Acad Radiol 2025; 32:2152-2162. [PMID: 39500641 DOI: 10.1016/j.acra.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 04/11/2025]
Abstract
RATIONALE AND OBJECTIVES The potential of contrast-enhanced MRI for diagnosing endolymphatic hydrops is limited by long wait times following intravenous (IV) or intratympanic (IT) delivery, high contrast dosages, and inconsistent signal intensity enhancements. This study investigates microneedle-mediated intracochlear (IC) gadodiamide injection for consistent and efficient contrast delivery with minimal contrast dosage. MATERIALS AND METHODS A 100 µm diameter microneedle with 35 µm lumen was used to inject 1 µL of diluted gadodiamide (17.4 mM) into a guinea pig cochlea via the round window membrane. Serial MRI imaging was performed in a post-mortem animal using a 9.4 T small-animal MRI. Maximum intensity projections of MRI scans were generated to visualize diffusion of contrast within cochlea over time; mean intensities in defined regions of interest (ROIs) were calculated. Contrast diffusion time and intensity enhancements were determined. RESULTS Contrast was observed in the basal turn of scala tympani (ST) and scala vestibuli (SV) in the first MRI scan for all subjects which was acquired as early as 35 min after injection. Two-tailed paired t-tests confirmed that contrast reached the first two turns of ST and SV within 60 min, and the second half of third turns and apical turns of ST and SV within 90 min (p < 0.05). Intensity enhancements, defined as the percentage increase of the ROI mean intensity in the injection side compared to the contralateral side, exceeded 100% in the first turn and ranged from 12% to 32% in the third and apical turns of ST and SV at 90 min after injection. CONCLUSIONS IC gadodiamide enables controllable and efficient contrast delivery with significantly lower contrast dosage, making it a viable alternative for contrast-enhanced cochlear MRI.
Collapse
Affiliation(s)
- Chaoqun Zhou
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Sharon J Feng
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Stephen Leong
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA
| | - Eugénie Breil
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - François Voruz
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Chris Valentini
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Daniella R Hammer
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, NY
| | - Elizabeth S Olson
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY
| | - Jia Guo
- Department of Psychiatry & The Zuckerman Institute, Columbia University, New York, NY.
| | - Jeffrey W Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| | - Anil K Lalwani
- Department of Mechanical Engineering, Columbia University, New York, NY; Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY
| |
Collapse
|
2
|
Zhao R, Yi T, Wu Q, Liu X, He J, Tan Y. Expression of AQP8 in Serum of Patients With Meniere's Disease and Its Value in Evaluating the Degree of Hydrolabyrinth and Predicting Prognosis. Clin Otolaryngol 2025; 50:255-261. [PMID: 39434677 DOI: 10.1111/coa.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE This study aims to explore the role of serum aquaporin 8 (AQP8) expression in evaluating the degree of hydrolabyrinth and predicting prognosis in patients with Meniere's disease. METHODS One hundred and five patients diagnosed with Meniere's disease in our hospital were enrolled in the Meniere's disease group. Another 102 healthy subjects were enrolled as the control group. The expression of serum AQP8 mRNA was determined by the quantitative real-time PCR (qRT-PCR) method. Receiver operating characteristic (ROC) curve analysis was carried out to analyse the predictive value of serum AQP8 mRNA expression for poor prognosis in Meniere's disease patients. Multivariate logistic regression was used to analyse the influencing factors of poor prognosis in patients with Meniere's disease. RESULTS The expression level of serum AQP8 mRNA in the Meniere's disease group was significantly higher than that in the control group (p < 0.05). In the severe hydrops group, serum AQP8 mRNA expression levels were higher than in the mild hydrops group and the no endolymphatic hydrops group. Additionally, the mild hydrops group had higher serum AQP8 mRNA levels than the no endolymphatic hydrops group (p < 0.05). The disease course, proportion of severe hydrops and serum AQP8 mRNA expression were all higher in the poor prognosis group compared to the good prognosis group (p < 0.05). The area under the curve (AUC) for serum AQP8 mRNA in predicting poor prognosis in Meniere's disease patients was 0.812 (95%CI: 0.702-0.922). CONCLUSION AQP8 mRNA is associated with the degree of hydrolabyrinth in patients with Meniere's disease and plays an important role in predicting prognosis.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| | - Tianhua Yi
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| | - Qinqin Wu
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| | - Xuemei Liu
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| | - Jianqiao He
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| | - Yufang Tan
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, China
| |
Collapse
|
3
|
Shi Y, Wei J, Nie Y, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Plant-derived miR166a-3p packaged into exosomes to cross-kingdom inhibit mammary cell proliferation and promote apoptosis by targeting APLNR gene. Int J Biol Macromol 2025; 286:138470. [PMID: 39645121 DOI: 10.1016/j.ijbiomac.2024.138470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Plant-derived microRNAs (miRNAs) have attracted significant attention for their potential in cross-kingdom gene regulation, but the mechanisms of their entry, stability, and function in animal bodies need further investigation. We provided an in-depth analysis of tissue-specific miRNA expression in dairy cows, identifying 347 miRNAs, including 16 novel candidates, across 21 normal tissues. Our findings revealed that specific miRNAs, such as miR-192, miR-143, miR-148a, miR-486, and miR-21-5p, showed distinct tissue enrichment. In addition, a total of 167 maize-derived miRNAs were identified in dairy cow tissues, particularly in the rumen, mammary glands, serum, and exosomes. These exogenous miRNAs, which are abundant and conserved among plants, may be absorbed by the SLC46A2 transporter in the rumen epithelium during feeding and distributed to other tissues via exosomal encapsulation. The maize-derived miR166a-3p was highly abundant. Transfection experiments confirmed that miR166a-3p reduces the expression of proliferation markers (PCNA, Cyclin D, and Cyclin E) and the anti-apoptotic gene Bcl2, while upregulating the pro-apoptotic gene Bax. Moreover, exosomes derived from bovine serum were found to mediate these effects, as miR166a-3p-enriched exosomes inhibited cell proliferation and promoted apoptosis, further supporting the cross-kingdom role of plant-derived miRNAs in regulating biological processes. This study enhances the understanding of miRNA regulatory mechanisms, particularly the absorption and systemic transport of plant-derived miRNAs in dairy cows. The findings underscore the potential for using exogenous miRNAs, like miR166a-3p, in agricultural and medical contexts, warranting further investigation into their functions and cross-species interactions.
Collapse
Affiliation(s)
- Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junjie Wei
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ying Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Zhang Z, Wang Q, Zhou Z, Peng A, Jiang W. Comparative Proteomic Analysis of Endolymphatic Sac Luminal Fluid in Patients with Meniere's Disease and Controls. J Inflamm Res 2024; 17:10209-10222. [PMID: 39649425 PMCID: PMC11625438 DOI: 10.2147/jir.s474910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Introduction Meniere's disease (MD) is known to be caused by the dysfunction of the endolymphatic sac (ES), but its molecular mechanism is unknown. Methods We performed a comparative proteomic analysis of ES luminal fluids (ELFs) from patients with MD and controls. Results We found 6 differentially expressed proteins, including 2 significantly increased proteins and 4 significantly decreased proteins, 8 proteins identified exclusively in at least 7 of the 8 ELF samples from MD patients and 3 proteins detected solely in at least 4 of the 5 ELF samples from controls. Discussion The increased levels of IGLV 3-9 and IGLV1-47 in MD group compared with control group suggested an increased inflammatory reactions and a decreased level of Aldehyde dehydrogenase 2 in MD group compared with control group might result in oxidative damage and inflammatory lesions in the ES of MD. Whereas CD44 identified exclusively in MD samples might be involved in the metabolism of its ligand, hyaluronic acid for overproduction of endolymph in the ES of MD.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South UniversityChangsha, People’s Republic of China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Gioacchini FM, Re M, Scarpa A, Chiarella G, Viola P, Pisani D, Iannella G, Ralli M, Di Stadio A. Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings. Life (Basel) 2024; 14:1323. [PMID: 39459624 PMCID: PMC11509639 DOI: 10.3390/life14101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The ability to analyze perilymph could allow inner ear pathologies to be studied. However, today, perilymph sampling is only performed for research purposes because of the risk of negative outcomes such as hearing loss or balance disorders. This paper aims to analyze the current literature on perilymph sampling and propose a method to collect perilymph in clinical settings. The published literature on perilymph sampling and its analyses was screened, and the results were analyzed and discussed in this mini review. Also, articles that discussed microneedle technology were reviewed and included in the analysis of the data. Based on the results of this review, we would like to propose a feasible technique to perform perilymph sampling in clinical settings. A total of eight studies analyzing perilymph were identified; data on proteomic, metabolomic and miRNA features present within human perilymph were collected and described. Two articles describing the use and auditory outcomes post microneedle drug injection into the inner ear were identified. Based on the methods for perilymph sampling described in humans and the recent innovations introduced by the use of microneedles, we suggested a feasible method to collect perilymph in the outpatient setting. The analysis of perilymph undoubtedly represents a valid instrument to fully understand inner ear diseases. A combination of traditional and innovative techniques, such as gaining access to the round window through the transcanalar approach using micro-endoscopes and microneedles to perform sampling, might simplify the sampling procedure and make it practicable in a clinical setting.
Collapse
Affiliation(s)
- Federico Maria Gioacchini
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Conca 71, 60020 Ancona, Italy;
| | - Massimo Re
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Conca 71, 60020 Ancona, Italy;
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, 84084 Salerno, Italy;
| | - Giuseppe Chiarella
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (G.C.); (P.V.); (D.P.)
| | - Pasquale Viola
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (G.C.); (P.V.); (D.P.)
| | - Davide Pisani
- Unit of Audiology, Regional Centre of Cochlear Implants and ENT Diseases, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (G.C.); (P.V.); (D.P.)
| | - Giannicola Iannella
- Department of Organi di Senso, Sapienza University, 00185 Rome, Italy; (G.I.); (M.R.)
| | - Massimo Ralli
- Department of Organi di Senso, Sapienza University, 00185 Rome, Italy; (G.I.); (M.R.)
| | - Arianna Di Stadio
- GF Ingrassia Department, Otolaryngology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Di Stadio A, Ralli M, Kaski D, Koohi N, Gioacchini FM, Kysar JW, Lalwani AK, Warnecke A, Bernitsas E. Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal. Brain Sci 2024; 14:621. [PMID: 38928621 PMCID: PMC11201480 DOI: 10.3390/brainsci14060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Recent evidence shows that it is possible to identify the elements responsible for sensorineural hearing loss, such as pro-inflammatory cytokines and macrophages, by performing perilymph sampling. However, current studies have only focused on the diagnosis of such as otologic conditions. Hearing loss is a feature of certain neuroinflammatory disorders such as multiple sclerosis, and sensorineural hearing loss (SNHL) is widely detected in Alzheimer's disease. Although the environment of the inner ear is highly regulated, there are several communication pathways between the perilymph of the inner ear and cerebrospinal fluid (CSF). Thus, examination of the perilymph may help understand the mechanism behind the hearing loss observed in certain neuroinflammatory and neurodegenerative diseases. Herein, we review the constituents of CSF and perilymph, the anatomy of the inner ear and its connection with the brain. Then, we discuss the relevance of perilymph sampling in neurology. Currently, perilymph sampling is only performed during surgical procedures, but we hypothesize a simplified and low-invasive technique that could allow sampling in a clinical setting with the same ease as performing an intratympanic injection under direct visual check. The use of this modified technique could allow for perilymph sampling in people with hearing loss and neuroinflammatory/neurodegenerative disorders and clarify the relationship between these conditions; in fact, by measuring the concentration of neuroinflammatory and/or neurodegenerative biomarkers and those typically expressed in the inner ear in aging SNHL, it could be possible to understand if SNHL is caused by aging or neuroinflammation.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95131 Catania, Italy
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza, 00185 Rome, Italy;
| | - Diego Kaski
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Nehzat Koohi
- Sense Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (D.K.); (N.K.)
| | - Federico Maria Gioacchini
- Ear, Nose, and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | - Jeffrey W. Kysar
- Otolaryngology—Head and Neck Department, Columbia University, New York, NY 10032, USA; (J.W.K.); (A.K.L.)
| | - Anil K. Lalwani
- Otolaryngology—Head and Neck Department, Columbia University, New York, NY 10032, USA; (J.W.K.); (A.K.L.)
| | - Athanasia Warnecke
- Department of Otolaryngology—Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany;
| | - Evanthia Bernitsas
- Multiple Sclerosis Center, Neurology Department, Wayne State University, Detroit, MI 48201, USA;
| |
Collapse
|
7
|
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024; 12:17. [PMID: 38921823 PMCID: PMC11207525 DOI: 10.3390/proteomes12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.
Collapse
Affiliation(s)
- Motahare Khorrami
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Christopher Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, Sydney 2109, NSW, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney 2109, NSW, Australia;
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| |
Collapse
|
8
|
Planat M, Chester D. Topology and Dynamics of Transcriptome (Dys)Regulation. Int J Mol Sci 2024; 25:4971. [PMID: 38732192 PMCID: PMC11084388 DOI: 10.3390/ijms25094971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
RNA transcripts play a crucial role as witnesses of gene expression health. Identifying disruptive short sequences in RNA transcription and regulation is essential for potentially treating diseases. Let us delve into the mathematical intricacies of these sequences. We have previously devised a mathematical approach for defining a "healthy" sequence. This sequence is characterized by having at most four distinct nucleotides (denoted as nt≤4). It serves as the generator of a group denoted as fp. The desired properties of this sequence are as follows: fp should be close to a free group of rank nt-1, it must be aperiodic, and fp should not have isolated singularities within its SL2(C) character variety (specifically within the corresponding Groebner basis). Now, let us explore the concept of singularities. There are cubic surfaces associated with the character variety of a four-punctured sphere denoted as S24. When we encounter these singularities, we find ourselves dealing with some algebraic solutions of a dynamical second-order differential (and transcendental) equation known as the Painlevé VI Equation. In certain cases, S24 degenerates, in the sense that two punctures collapse, resulting in a "wild" dynamics governed by the Painlevé equations of an index lower than VI. In our paper, we provide examples of these fascinating mathematical structures within the context of miRNAs. Specifically, we find a clear relationship between decorated character varieties of Painlevé equations and the character variety calculated from the seed of oncomirs. These findings should find many applications including cancer research and the investigation of neurodegenative diseases.
Collapse
Affiliation(s)
- Michel Planat
- Institut FEMTO-ST CNRS UMR 6174, Université de Franche-Comté, 15 B Avenue des Montboucons, F-25044 Besançon, France
| | - David Chester
- Quantum Gravity Research, Los Angeles, CA 90290, USA;
| |
Collapse
|
9
|
Flook M, Rojano E, Gallego-Martinez A, Escalera-Balsera A, Perez-Carpena P, Moleon MDC, Gonzalez-Aguado R, Rivero de Jesus V, Domínguez-Durán E, Frejo L, G Ranea JA, Lopez-Escamez JA. Cytokine profiling and transcriptomics in mononuclear cells define immune variants in Meniere Disease. Genes Immun 2024; 25:124-131. [PMID: 38396174 PMCID: PMC11023934 DOI: 10.1038/s41435-024-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Meniere Disease (MD) is a chronic inner ear disorder characterized by vertigo attacks, sensorineural hearing loss, tinnitus, and aural fullness. Extensive evidence supporting the inflammatory etiology of MD has been found, therefore, by using transcriptome analysis, we aim to describe the inflammatory variants of MD. We performed Bulk RNAseq on 45 patients with definite MD and 15 healthy controls. MD patients were classified according to their basal levels of IL-1β into 2 groups: high and low. Differentially expression analysis was performed using the ExpHunter Suite, and cell type proportion was evaluated using the estimation algorithms xCell, ABIS, and CIBERSORTx. MD patients showed 15 differentially expressed genes (DEG) compared to controls. The top DEGs include IGHG1 (p = 1.64 × 10-6) and IGLV3-21 (p = 6.28 × 10-3), supporting a role in the adaptative immune response. Cytokine profiling defines a subgroup of patients with high levels of IL-1β with up-regulation of IL6 (p = 7.65 × 10-8) and INHBA (p = 3.39 × 10-7) genes. Transcriptomic data from peripheral blood mononuclear cells support a proinflammatory subgroup of MD patients with high levels of IL6 and an increase in naïve B-cells, and memory CD8+ T cells.
Collapse
Affiliation(s)
- Marisa Flook
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- UCL Ear Institute, University College London, London, UK.
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alba Escalera-Balsera
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - M Del Carmen Moleon
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Granada, Spain
| | - Rocio Gonzalez-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | | | - Emilio Domínguez-Durán
- Unidad de Gestión Clínica de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29029, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Coon A, Setzen G, Musah RA. Mass Spectrometric Interrogation of Earwax: Toward the Detection of Ménière's Disease. ACS OMEGA 2023; 8:27010-27023. [PMID: 37546591 PMCID: PMC10399190 DOI: 10.1021/acsomega.3c01943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Many diseases remain difficult to identify because the occurrence of characteristic biomarkers within traditional matrices such as blood and urine remain unknown. Disease diagnosis could, therefore, benefit from the analysis of readily accessible, non-traditional matrices that have a high chemical content and contain distinguishing biomarkers. One such matrix is cerumen (i.e., earwax), whose chemical complexity can pose challenges when analyzed by conventional methods. A combination of cerumen chemical profiles analyzed by gas chromatography-mass spectrometry (GC-MS) and direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) were investigated to ascertain the possible presence of the rare otolaryngological disorder Ménière's disease. This illness is currently identified via "diagnosis by exclusion" in which the disease is distinguished from others with overlapping symptoms by the process of elimination. GC-MS revealed a chemical profile difference between those with and without a Ménière's disease diagnosis by a visually apparent diminution of the compounds present in the Ménière's disease samples. DART-HRMS revealed that the two classes could be differentiated using three fatty acids: cis-9-hexadecenoic acid, cis-10-heptadecenoic acid, and cis-9-octadecenoic acid. These compounds were subsequently quantified by GC-MS and overall, the amounts of these fatty acids were decreased in Ménière's disease patients. The average levels for non-Ménière's disease samples were 7.89 μg/mg for cis-9-hexadecenoic acid, 0.87 μg/mg for cis-10-heptadecenoic acid, and 4.94 μg/mg for cis-9-octadecenoic acid. The average levels for Ménière's disease samples were 1.70 μg/mg for cis-9-hexadecenoic acid, 0.13 μg/mg for cis-10-heptadecenoic acid, and 2.07 μg/mg for cis-9-octadecenoic acid. The confidence levels for cis-9-hexadecenoic acid, cis-10-heptadecenoic acid, and cis-9-octadecenoic acid were 98.7%, 99.9%, and 95.4%, respectively. The results suggest that assessment of the concentrations of these fatty acids could be a useful clinical tool for the more rapid and accurate detection of Ménière's disease.
Collapse
Affiliation(s)
- Allix
Marie Coon
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Gavin Setzen
- Albany
ENT and Allergy Services, 123 Everett Rd, Albany, New York 12205, United States
| | - Rabi Ann Musah
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
11
|
Huang L, Wang Q, Huang C, Zhou Z, Peng A, Zhang Z. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere's Disease. J Assoc Res Otolaryngol 2023; 24:239-251. [PMID: 36715893 PMCID: PMC10121990 DOI: 10.1007/s10162-023-00887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of the endolymphatic sac (ES) is one of the etiologies of Meniere's disease (MD), the mechanism of which remains unclear. The aim of the present study was to explore the molecular pathological characteristics of ES during the development of MD. Metabolomic profiling of ES luminal fluid from patients with MD and patients with acoustic neuroma (AN) was performed. Diluted ES luminal fluid (ELF) samples were obtained from 10 patients who underwent endolymphatic duct blockage for the treatment of intractable MD and from 6 patients who underwent translabyrinthine surgery for AN. ELF analysis was performed using liquid chromatography-mass spectrometry before the raw data were normalized and subjected to subsequent statistical analysis by MetaboAnalyst. Using thresholds of P ≤ 0.05 and variable important in projection > 1, a total of 111 differential metabolites were screened in the ELF, including 52 metabolites in negative mode and 59 in positive mode. Furthermore, 15 differentially altered metabolites corresponding to 15 compound names were identified using a Student's t-test, including 7 significant increased metabolites and 8 significant decreased metabolites. Moreover, two differentially altered metabolites, hyaluronic acid (HA) and 4-hydroxynonenal (4-HNE), were validated to be upregulated in the epithelial lining of the ES, as well as in the subepithelial connective-tissue in patients with MD comparing with that in patients with AN. Among these differentially altered metabolites, an upregulated expression of HA detected in the ES lumen of the patients with MD was supposed to be associated with the increased endolymph in ES, while an increased level of 4-HNE found in the ELF of the patients with MD provided direct evidence to support that oxidative damage and inflammatory lesions underlie the mechanism of MD. Furthermore, citrate and ethylenediaminetetraacetic acid were detected to be decreased substantially in the ELF of the patients with MD, suggesting the elevated endolymphatic Ca2+ in the ears with chronic endolymphatic hydrops is likely to be associated with the reduction of these two chelators of Ca2+ in ES. The results in the present study indicate metabolomic analysis in the ELF of the patients with MD can potentially improve our understanding on the molecular pathophysiological mechanism in the ES during the development of MD.
Collapse
Affiliation(s)
- Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
12
|
Dai Q, Long L, Zhao H, Wang R, Zheng H, Duan M. Genetic advances in Meniere Disease. Mol Biol Rep 2023; 50:2901-2908. [PMID: 36565421 PMCID: PMC10011279 DOI: 10.1007/s11033-022-08149-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022]
Abstract
Meniere Disease (MD) is an idiopathic inner ear disease with complex etiology and pathogenesis, which is still unclear. With the development in gene analysis technology, the genetic research of MD has attracted extensive attention, resulting in a large number of studies on the research of the relationship between human genes and MD. This paper aims to review the studies on this topic in recent years. The studies mainly focused on the genetics of familial MD and the correlation between MD and potentially related functional genes. The results of these studies have demonstrated the complexity and diversity of the pathogenesis of MD with both genetic and epigenetic alterations, suggesting that MD might be related to inflammation, immunity, aqua and ion balance in the lymphatic fluid, virus infection, metabolism, and abnormal function of nerve conduction. The finding of rare mutations in TECTA, MYO7A and OTOG genes and other genes such as CDH23, PCDH15 and ADGRV1 in the same families suggest that the integrity of the stereocilia and their interaction with the tectorial and otolithic membranes could be involved in the pathophysiology of familial MD.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan China
- Department of Otolaryngology-Head and Neck, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institute, 17176 Stockholm, Sweden
| | - Lili Long
- Department of Otorhinolaryngology, Sichuan University Hospital of Sichuan University, Chengdu, 610065 Sichuan China
| | - Hui Zhao
- Department of Otorhinolaryngology, Hospital of Civil Aviation Flight University of China, Guanghan, 618300 Sichuan China
| | - Ruikai Wang
- West China School of Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Hong Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan China
| | - Maoli Duan
- Department of Otolaryngology-Head and Neck, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institute, 17176 Stockholm, Sweden
| |
Collapse
|
13
|
Toward Personalized Diagnosis and Therapy for Hearing Loss: Insights From Cochlear Implants. Otol Neurotol 2022; 43:e903-e909. [PMID: 35970169 DOI: 10.1097/mao.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sensorineural hearing loss (SNHL) is the most common sensory deficit, disabling nearly half a billion people worldwide. The cochlear implant (CI) has transformed the treatment of patients with SNHL, having restored hearing to more than 800,000 people. The success of CIs has inspired multidisciplinary efforts to address the unmet need for personalized, cellular-level diagnosis, and treatment of patients with SNHL. Current limitations include an inability to safely and accurately image at high resolution and biopsy the inner ear, precluding the use of key structural and molecular information during diagnostic and treatment decisions. Furthermore, there remains a lack of pharmacological therapies for hearing loss, which can partially be attributed to challenges associated with new drug development. We highlight advances in diagnostic and therapeutic strategies for SNHL that will help accelerate the push toward precision medicine. In addition, we discuss technological improvements for the CI that will further enhance its functionality for future patients. This report highlights work that was originally presented by Dr. Stankovic as part of the Dr. John Niparko Memorial Lecture during the 2021 American Cochlear Implant Alliance annual meeting.
Collapse
|
14
|
Huang C, Wang Q, Pan X, Li W, Liu W, Jiang W, Huang L, Peng A, Zhang Z. Up-Regulated Expression of Interferon-Gamma, Interleukin-6 and Tumor Necrosis Factor-Alpha in the Endolymphatic Sac of Meniere's Disease Suggesting the Local Inflammatory Response Underlies the Mechanism of This Disease. Front Neurol 2022; 13:781031. [PMID: 35280304 PMCID: PMC8904419 DOI: 10.3389/fneur.2022.781031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background Immune mediated inflammatory changes affecting the endolymphatic sac (ES) may underlie the pathology of Meniere's disease (MD). The aim of the present study was to explore the differentially expressed cytokines in ES luminal fluid (ELF) of patients with MD, and the correlation between the expression of cytokines in the ELF with that in the serum was determined by quantitatively analyzing the cytokines in human ELF and serum. Methods Human ELF, serum and ES tissues were collected from patients with unilateral MD and patients with acoustic neuroma (AN) during surgery. The Simoa Cytokine 6-Plex Panel kit was used to analyze the levels of cytokines in the ELF and blood samples of the patients. Immunohistochemistry and immunofluorescence were subsequently used to validate the relative expression levels of the cytokines in MD. Results Significant differences were identified in the expression levels of interferon-γ (IFN-γ) (P < 0.001), interleukin (IL)-6 (P = 0.008) and tumor necrosis factor-α (TNF-α) (P = 0.036) in the luminal fluid of the ES comparing between the MD and AN groups. By contrast, the levels of IFN-γ, IL-10, IL-12p70, IL-17A, IL-6 and TNF-α in the serum of the MD group were not significantly different from those of either the AN group or healthy control subjects. In addition, no significant correlations in the expression levels of cytokines compared between the ELF and serum were found for the patients in either the MD or the AN group. Finally, the detection of positive expression of TNF-α, IL-6 and IFN-γ in the epithelial cells of the majority of ES specimens from patients with MD confirmed the up-regulated expression of these cytokines in the ES of patients with MD. Conclusions The identification of up-regulated expression levels of TNF-α, IL-6 and IFN-γ in the ELF in the present study has provided direct evidence for an increased immunologic activity in the microenvironment of the ES in patients with unilateral MD, may suggest the local inflammatory response underlies the mechanism of this disease.
Collapse
Affiliation(s)
- Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Pan
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Boullaud L, Blasco H, Trinh TT, Bakhos D. Metabolomic Studies in Inner Ear Pathologies. Metabolites 2022; 12:metabo12030214. [PMID: 35323657 PMCID: PMC8955628 DOI: 10.3390/metabo12030214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Sensorineural hearing loss is the most common sensory deficit. The etiologies of sensorineural hearing loss have been described and can be congenital or acquired. For congenital non-syndromic hearing loss, mutations that are related to sites of cochlear damage have been discovered (e.g., connexin proteins, mitochondrial genes, etc.). For cytomegalovirus infection or auditory neuropathies, mechanisms are also well known and well researched. Although the etiologies of sensorineural hearing loss may be evident for some patients, the damaged sites and pathological mechanisms remain unclear for patients with progressive post-lingual hearing loss. Metabolomics is an emerging technique in which all metabolites present in a sample at a given time are analyzed, reflecting a physiological state. The objective of this study was to review the literature on the use of metabolomics in hearing loss. The findings of this review suggest that metabolomic studies may help to develop objective tests for diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Luc Boullaud
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Correspondence: ; Tel.: +33-247-474-785; Fax: +33-247-473-600
| | - Hélène Blasco
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Department of Biochemistry and Molecular Biology, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Thuy-Trân Trinh
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - David Bakhos
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- House Institute Foundation, Los Angeles, CA 90057, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This article reviews recent developments in Ménière's disease including etiologic, diagnostic, and therapeutic investigations that have changed the landscape for medical providers. These updates shed light onto the complex nature of Ménière's disease and generate additional means to provide optimal care to patients. RECENT FINDINGS Given the multifactorial cause of Ménière's disease, five subtypes of Ménière's disease have recently been proposed. A knowledge of these subtypes will aid in the development of an appropriate treatment algorithm. Although newer treatments have not been developed, stepwise treatment algorithms have been proposed and can improve patient care. New MRI modalities and serum testing hold promise as clinical clues and biomarkers. SUMMARY As these updated diagnostic criteria are used, Ménière's disease can be identified and treated more precisely. This will in turn allow for future randomized controlled studies to improve the quality of treatment options available. Future imaging, vestibular testing, and the potential for serum biomarkers may illuminate additional diagnostic criteria, only furthering the improvement in clinical care.
Collapse
Affiliation(s)
- Justin L Hoskin
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
17
|
Kaderbay A, Berger F, Bouamrani A, Bidart M, Petre G, Baguant A, Giraud L, Schmerber S. Perilymph metabolomic and proteomic MALDI-ToF profiling with porous silicon chips: a proof-of-concept study. Hear Res 2022; 417:108457. [DOI: 10.1016/j.heares.2022.108457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|