1
|
Fusaro L, Bangari DS, Pasterkamp RJ, Fernández-Ruiz J, Youssef SA, Sharma AK. Neurodegenerative Diseases: Pathogenesis and Preclinical Models for Translational Drug Discovery. Toxicol Pathol 2025:1926233251339105. [PMID: 40370030 DOI: 10.1177/01926233251339105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The fourth session of the 2024 European Society of Toxicologic Pathology (ESTP) Congress brought together lectures focused on the use of in vitro and in vivo models to investigate neurodegenerative diseases. Four presentations highlighted various aspects of neurodegenerative diseases including dementia, immune-mediated conditions, and neuromuscular disorders. The session began with an overview of animal models of dementia underscoring their critical role in understanding disease pathogenesis and supporting the development of effective therapeutic drugs. Subsequent presentations investigated immunological self-tolerance in autoimmune neurodegenerative diseases, such as multiple sclerosis and Guillain-Barré syndrome, and the application of in vitro models to study neuromuscular diseases such as amyotrophic lateral sclerosis. The final presentation examined cannabinoid-based therapeutic options for treating neurodegenerative diseases, highlighting their potential in neuroprotection and neurorepair. This session provided valuable insights into the latest research and advancements in neurodegenerative disease modeling and therapy, offering promising directions for improved modeling and therapeutic strategies.
Collapse
Affiliation(s)
- Laura Fusaro
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
2
|
Anwar S, Syed QA, Saleh M, Akram MS, Sultan G, Khalid S, Ishaq A, Abdi G, Aadil RM. Fatty fried food toxins as triggering stimuli to immune system interplay in global autoimmune diseases: A systematic review. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2025; 19:101568. [DOI: 10.1016/j.jafr.2024.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Seweryn P, Waliszewska-Prosol M, Straburzynski M, Smardz J, Orzeszek S, Bombala W, Bort M, Jenca Jr A, Paradowska-Stolarz A, Wieckiewicz M. Prevalence of central sensitization and somatization in adults with temporomandibular disorders-a prospective observational study. J Oral Facial Pain Headache 2024; 38:33-44. [PMID: 39800954 PMCID: PMC11810652 DOI: 10.22514/jofph.2024.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/07/2024] [Indexed: 02/16/2025]
Abstract
Temporomandibular disorders (TMD) comprise a group of conditions affecting the masticatory muscles, the temporomandibular joints and associated structures, often manifesting as orofacial pain and functional limitations of the mandible. Central sensitization (CS) is gaining increasing attention in research focused on pain syndromes and somatization, playing a significant role in the pain experience. This study investigates the prevalence of CS and somatization among TMD patients, analyzing their relationships with TMD diagnoses and the intensity of chronic masticatory muscle pain (MMP). A prospective observational study was conducted with 214 adult participants diagnosed with TMD, based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD). The Central Sensitization Inventory (CSI) and the Somatic Symptom Scale-8 (SSS-8) were utilized to assess CS and the burden of somatic symptoms, respectively. Furthermore, the patients were assessed for MMP, and the average pain in these muscles was calculated. Statistical analysis investigated correlations between CSI and SSS-8 scores, specific TMD diagnoses and MMP intensity. Most participants did not surpass the subclinical level for CS as assessed by the CSI. Women reported higher SSS-8 scores than men, suggesting sex differences in somatic symptom reporting. No significant relationship was found between specific TMD diagnoses and levels of CS or the SSS-8. However, a significant correlation was observed between SSS-8 scores and the intensity of chronic MMP, underscoring the impact of the intensity of chronic MMP on the perception of somatic symptoms among TMD patients. Additionally, the group with subclinical levels of CS presented significantly lower SSS-8 scores than other groups. This study highlights a lower-than-expected prevalence of CS among TMD patients. Higher levels of somatization were related to higher levels of CS and greater MMP. The findings suggest that TMD management should not only address specific pain sources but also consider the broader psychosocial aspects of the disorders, especially in chronic types.
Collapse
Affiliation(s)
- Piotr Seweryn
- Department of Experimental Dentistry,
Wroclaw Medical University, 50-425
Wroclaw, Poland
| | | | - Marcin Straburzynski
- Department of Family Medicine and
Infectious Diseases, University of
Warmia and Mazury, 10-719 Olsztyn,
Poland
| | - Joanna Smardz
- Department of Experimental Dentistry,
Wroclaw Medical University, 50-425
Wroclaw, Poland
| | - Sylwia Orzeszek
- Department of Experimental Dentistry,
Wroclaw Medical University, 50-425
Wroclaw, Poland
| | - Wojciech Bombala
- Statistical Analysis Center, Wroclaw
Medical University, 50-368 Wroclaw,
Poland
| | - Marta Bort
- Department of Experimental Dentistry,
Wroclaw Medical University, 50-425
Wroclaw, Poland
| | - Andrej Jenca Jr
- Department of Stomatology and
Maxillofacial Surgery, Faculty of
Medicine, Pavol Jozef Safarik University
in Kosice and Akademia Kosice, 040 01
Kosice, Slovakia
| | - Anna Paradowska-Stolarz
- Department of Maxillofacial
Orthopedics and Orthodontics, Wroclaw
Medical University, 50-425 Wroclaw,
Poland
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry,
Wroclaw Medical University, 50-425
Wroclaw, Poland
| |
Collapse
|
4
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
5
|
Lin Y, Zhou X, Wu J, Mei Y, Ni L, Qiu H, Zhou Y, Chen Y, Wan W. Effectiveness of double-filtration plasmapheresis in reducing immunoglobulin and culprit antibody levels in neuroimmune disorders: A single-center retrospective analysis from China. J Neuroimmunol 2024; 396:578463. [PMID: 39396401 DOI: 10.1016/j.jneuroim.2024.578463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE This study aims to evaluate the effectiveness of double-filtration plasmapheresis (DFPP) in reducing immunoglobulins and culprit antibodies in neuroimmune disorders. METHODS A retrospective analysis was conducted on 51 patients with neuroimmune diseases treated with DFPP, immunotherapy, and symptomatic treatment. Immunoglobulin and antibody levels were measured pre- and post-treatment, along with neurological function assessments using scales like the modified Rankin Scale (mRS), Expanded Disability Status Scale (EDSS), Clinical Assessment Scale for Autoimmune Encephalitis (CASE), and Myasthenia Gravis-specific scales. RESULTS The cohort included patients with neuromyelitis optica spectrum disorder (NMOSD), autoimmune encephalitis (AIE), myasthenia gravis (MG), anti-myelin oligodendrocyte glycoprotein associated disease (MOGAD), and paraneoplastic neurological syndromes (PNS). DFPP significantly reduced immunoglobulin levels (IgG, IgA, IgM) by ∼70 %. Most patients showed decreased antibody titers and significant neurological improvement. The median mRS score improved from 2 (IQR 2-3) to 1 (IQR 1-2) post-treatment, with further improvement at 90 days. Notable improvements were observed across various scales specific to NMOSD, MOGAD, AIE, and MG. Minor adverse events were reported, with no serious adverse events. CONCLUSIONS DFPP is effective in reducing immunoglobulin and antibody levels, leading to improved neurological function in neuroimmune disorders. Further large-scale studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Yan Lin
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Jun Wu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Yufang Mei
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Liping Ni
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Huiying Qiu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Yan Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Ying Chen
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China.
| | - Wenbin Wan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China.
| |
Collapse
|
6
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 PMCID: PMC7617303 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Anilkumar AS, Veerabathiran R. The Impact of Epstein-Barr Virus on Autoimmune Neuromuscular Disorders: A Comparative Study of Myasthenia Gravis and Guillain–Barre Syndrome. Curr Treat Options Neurol 2024; 26:495-507. [DOI: 10.1007/s11940-024-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 01/12/2025]
|
8
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
9
|
Brittain G, Roldan E, Alexander T, Saccardi R, Snowden JA, Sharrack B, Greco R. The Role of Chimeric Antigen Receptor T-Cell Therapy in Immune-Mediated Neurological Diseases. Ann Neurol 2024; 96:441-452. [PMID: 39015040 DOI: 10.1002/ana.27029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Despite the use of 'high efficacy' disease-modifying therapies, disease activity and clinical progression of different immune-mediated neurological diseases continue for some patients, resulting in accumulating disability, deteriorating social and mental health, and high economic cost to patients and society. Although autologous hematopoietic stem cell transplant is an effective treatment modality, it is an intensive chemotherapy-based therapy with a range of short- and long-term side-effects. Chimeric antigen receptor T-cell therapy (CAR-T) has revolutionized the treatment of B-cell and other hematological malignancies, conferring long-term remission for otherwise refractory diseases. However, the toxicity of this treatment, particularly cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and the complexity of production necessitate the need for a high level of specialization at treating centers. Early-phase trials of CAR-T therapies in immune-mediated B cell driven conditions, such as systemic lupus erythematosus, neuromyelitis optica spectrum disorder and myasthenia gravis, have shown dramatic clinical response with few adverse events. Based on the common physiopathology, CAR-T therapy in other immune-mediated neurological disease, including multiple sclerosis, chronic inflammatory polyradiculopathy, autoimmune encephalitis, and stiff person syndrome, might be an effective option for patients, avoiding the need for long-term immunosuppressant medications. It may prove to be a more selective immunoablative approach than autologous hematopoietic stem cell transplant, with potentially increased efficacy and lower adverse events. In this review, we present the state of the art and future directions of the use of CAR-T in such conditions. ANN NEUROL 2024;96:441-452.
Collapse
Affiliation(s)
- Gavin Brittain
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology-Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)-a Leibniz Institute, Autoimmunology Group, Berlin, Germany
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Pitter JG, Nagy L, Nagy B, Hren R. Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront. J Pers Med 2024; 14:599. [PMID: 38929820 PMCID: PMC11204597 DOI: 10.3390/jpm14060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Primary demyelinating disorders of the central nervous system (CNS) include multiple sclerosis and the orphan conditions neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD). Curative technologies under development aim to selectively block autoimmune reactions against specific autoantigens while preserving the responsiveness of the immune system to other antigens. Our analysis focused on target patient selection for such developments, carefully considering the relevant clinical, regulatory, and market-related aspects. We found that the selection of patients with orphan conditions as target populations offers several advantages. Treatments for orphan conditions are associated with limited production capacity, qualify for regulatory incentives, and may require significantly shorter and lower-scale clinical programs. Furthermore, they may meet a higher acceptable cost-effectiveness threshold in order to compensate for the low numbers of patients to be treated. Finally, curative technologies targeting orphan indications could enter less competitive markets with lower risk of generic price erosion and would benefit from additional market protection measures available only for orphan products. These advantages position orphan conditions and subgroups as the most attractive target indications among primary demyelinating disorders of the CNS. The authors believe that after successful proof-of-principle demonstrations in orphan conditions, broader autoimmune patient populations may also benefit from the success of these pioneering developments.
Collapse
Affiliation(s)
- János György Pitter
- Syreon Research Institute, 1142 Budapest, Hungary
- Division of Pharmacoeconomics, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary
| | - László Nagy
- Syreon Research Institute, 1142 Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, 1142 Budapest, Hungary
| | - Rok Hren
- Syreon Research Institute, 1142 Budapest, Hungary
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Mathematics, Physics, and Mechanics, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Tunagur MT, Aksu H, Tileklioğlu E, Ertabaklar H. The impact of Toxocara-seropositivity on attention and motor skills in children with attention-deficit hyperactivity disorder. Early Hum Dev 2024; 193:106017. [PMID: 38663140 DOI: 10.1016/j.earlhumdev.2024.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The study aims to compare neurological soft signs and executive functions between Toxocara-seropositive and seronegative groups in children with attention-deficit/hyperactivity disorder. METHODS The study included 60 boys with ADHD, aged 7-12. After blood samples were taken, the Stroop Color Word Test and Judgment of Line Orientation test (JLOT) were implemented to measure executive functions. Neurological soft signs were evaluated with Physical and Neurological Examination for Subtle Signs (PANESS). RESULTS Serological tests were positive for Toxocara antibodies in 20 cases. There was no significant difference between Toxocara seropositive and seronegative regarding age, socioeconomic status, developmental stages, and ADHD severity. However, Toxocara-seropositive children had higher Stroop time and Stroop interference scores and lower JLOT scores than Toxocara-seronegative children. Furthermore, Toxocara-seropositive children exhibited more neurological soft signs, such as gait and station abnormalities, dysrhythmia, and a longer total time in timed movements compared to Toxocara-seronegative children. CONCLUSION Our study indicates a link between Toxocara-seropositivity and impaired neurological soft signs and executive functions in ADHD. Further research is needed to understand ADHD mechanisms, develop practical treatments considering immunological factors, and thoroughly evaluate how Toxocara seropositivity affects executive functions and motor skills in children with ADHD.
Collapse
Affiliation(s)
- Mustafa Tolga Tunagur
- Sakarya University Training and Research Hospital, Child and Adolescent Psychiatry, Sakarya, Turkiye.
| | - Hatice Aksu
- Aydın Adnan Menderes University, Child and Adolescent Psychiatry, Aydın, Turkiye
| | - Evren Tileklioğlu
- Aydın Adnan Menderes University, Department of Parasitology, Aydın, Turkiye
| | - Hatice Ertabaklar
- Aydın Adnan Menderes University, Department of Parasitology, Aydın, Turkiye
| |
Collapse
|
12
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
Khojali WMA, Khalifa NE, Alshammari F, Afsar S, Aboshouk NAM, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Syed RU, Nagaraju P. Pyroptosis-related non-coding RNAs emerging players in atherosclerosis pathology. Pathol Res Pract 2024; 255:155219. [PMID: 38401375 DOI: 10.1016/j.prp.2024.155219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Globally, atherosclerosis a persistent inflammatory condition of the artery walls continues to be the primary cause of cardiovascular illness and death. The ncRNAs are important regulators of important signalling pathways that affect pyroptosis and the inflammatory environment in atherosclerotic plaques. Comprehending the complex interaction between pyroptosis and non-coding RNAs (ncRNAs) offers fresh perspectives on putative therapeutic targets for ameliorating cardiovascular problems linked to atherosclerosis. The discovery of particular non-coding RNA signatures linked to the advancement of atherosclerosis could lead to the creation of novel biomarkers for risk assessment and customised treatment approaches. A thorough investigation of the regulatory networks regulated by these non-coding RNAs has been made possible by the combination of cutting-edge molecular methods and bioinformatics tools. Studying pyroptosis-related ncRNAs in detail appears to be a promising way to advance our understanding of disease pathophysiology and develop focused therapeutic methods as we work to unravel the complex molecular tapestry of atherosclerosis. This review explores the emerging significance of non-coding RNAs (ncRNAs) in the regulation of pyroptosis and their consequential impact on atherosclerosis pathology.
Collapse
Affiliation(s)
- Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman 14415, Republic of the Sudan
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Republic of the Sudan
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Maharashtra, India
| |
Collapse
|
14
|
Luo EY, Sugimura RR. Taming microglia: the promise of engineered microglia in treating neurological diseases. J Neuroinflammation 2024; 21:19. [PMID: 38212785 PMCID: PMC10785527 DOI: 10.1186/s12974-024-03015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Microglia, the CNS-resident immune cells, are implicated in many neurological diseases. Nearly one in six of the world's population suffers from neurological disorders, encompassing neurodegenerative and neuroautoimmune diseases, most with dysregulated neuroinflammation involved. Activated microglia become phagocytotic and secret various immune molecules, which are mediators of the brain immune microenvironment. Given their ability to penetrate through the blood-brain barrier in the neuroinflammatory context and their close interaction with neurons and other glial cells, microglia are potential therapeutic delivery vehicles and modulators of neuronal activity. Re-engineering microglia to treat neurological diseases is, thus, increasingly gaining attention. By altering gene expression, re-programmed microglia can be utilized to deliver therapeutics to targeted sites and control neuroinflammation in various neuroinflammatory diseases. This review addresses the current development in microglial engineering, including genetic targeting and therapeutic modulation. Furthermore, we discuss limitations to the genetic engineering techniques and models used to test the functionality of re-engineered microglia, including cell culture and animal models. Finally, we will discuss future directions for the application of engineered microglia in treating neurological diseases.
Collapse
Affiliation(s)
- Echo Yongqi Luo
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rio Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
16
|
Huang KY, Wu CL, Chang YS, Huang WY, Su FC, Lin SW, Chien YY, Weng WC, Wei YC. Elevated plasma neurofilament light chain in immune-mediated neurological disorders (IMND) detected by immunomagnetic reduction (IMR). Brain Res 2023; 1821:148587. [PMID: 37739331 DOI: 10.1016/j.brainres.2023.148587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND In cases of immune-mediated neurological disorders (IMND), different syndromes are associated with antibodies against neuronal surface antigens, intra-neuronal antigens, astrocytic aquaporin, and gangliosides. These autoantibodies can be pathogenic or connected to neuroinflammation and resulting neuronal injuries. This study aims to identify a blood biomarker that can detect neuronal damage in individuals with IMND. To this end, we use immunomagnetic reduction (IMR) nanobead technology to measure plasma neurofilament light chain (NfL). METHODS The patients with IMND were enrolled in the Chang Gung Memorial Hospital at Keelung from 2018 to 2023. Seronegative patients were excluded based on the results of antibody tests. The healthy controls (HC) were community-dwelling adults from the Northeastern Taiwan Community Medicine Research Cohort (NTCMRC) conducted by the Community Medicine Research Center of the Keelung CGMH from 2020 to 2022. IMR technique detects magnetic susceptibility via measuring magnetic signal reduction caused by antigen-antibody immunocomplex formation on magnetic nanobeads. The plasma level of NfL was determined by the magnetic susceptibility changes in IMR. RESULTS The study enrolled 57 IMND patients from the hospital and 73 HC participants from the communities. The plasma NfL was significantly higher in the IMND than in the HC (11.022 ± 2.637 vs. 9.664 ± 2.610 pg/mL, p = 0.004), regardless of age effects on plasma NfL in an analysis of covariance (ANCOVA) (F = 0.720, p = 0.950). In the receiver of operation curve analysis, the area under curve for plasma NfL to discriminate IMND and HC was 0.664 (95% CI = 0.549 to 0.739, p = 0.005). The subgroup analysis of plasma NfL in the IMND patients showed no difference between peripheral immune-mediated neuropathy (IMN) and central immune-mediated encephalomyelitis (IMEM) (11.331 ± 2.895 vs. 10.627 ± 2.260 pg/mL, p = 0.322), nor between tumor and non-tumor IMND (10.784 ± 3.446 vs. 11.093 ± 2.391 pg/mL, p = 0.714). Additionally, the antibody class of ganglioside antibodies in IMN did not have an impact on plasma NfL level (p = 0.857). CONCLUSION Plasma NfL measurement is a reliable indicator of axonal injuries in patients with IMND. It is equally effective in detecting nerve injuries in inflammatory peripheral neuropathies and central neuroinflammation. The IMR nanobead technology offers a feasible method of detecting plasma NfL, which helps identify axonal injuries in IMND.
Collapse
Affiliation(s)
- Kuan-Yu Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chia-Lun Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yueh-Shih Chang
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Feng-Chieh Su
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shun-Wen Lin
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yu-Yi Chien
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Chieh Weng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| |
Collapse
|
17
|
Lamloum NS, Soliman HA, Rashad Ahmed R, Ahmed OM, Abdel-Maksoud MA, Kotob MH, Zaky MY. Improvement effects of green tea and pumpkin oils on myelin oligodendrocyte glycoprotein-induced Multiple sclerosis in rats. J Funct Foods 2023; 111:105876. [DOI: 10.1016/j.jff.2023.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
|
18
|
Meira AT, de Moraes MPM, Ferreira MG, Franklin GL, Rezende Filho FM, Teive HAG, Barsottini OGP, Pedroso JL. Immune-mediated ataxias: Guide to clinicians. Parkinsonism Relat Disord 2023; 117:105861. [PMID: 37748994 DOI: 10.1016/j.parkreldis.2023.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune-mediated cerebellar ataxias were initially described as a clinical entity in the 1980s, and since then, an expanding body of evidence has contributed to our understanding of this topic. These ataxias encompass various etiologies, including postinfectious cerebellar ataxia, gluten ataxia, paraneoplastic cerebellar degeneration, opsoclonus-myoclonus-ataxia syndrome and primary autoimmune cerebellar ataxia. The increased permeability of the brain-blood barrier could potentially explain the vulnerability of the cerebellum to autoimmune processes. In this manuscript, our objective is to provide a comprehensive review of the most prevalent diseases within this group, emphasizing clinical indicators, pathogenesis, and current treatment approaches.
Collapse
Affiliation(s)
- Alex T Meira
- Universidade Federal da Paraíba, Departamento de Medicina Interna, Serviço de Neurologia, João Pessoa, PB, Brazil.
| | | | - Matheus G Ferreira
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | - Gustavo L Franklin
- Pontifícia Universidade Católica, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | | | - Hélio A G Teive
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Medicina Interna, Serviço de Neurologia, Curitiba, PR, Brazil
| | | | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Poonja S, Costello F. Neuro-ophthalmic manifestations of autoimmune disorders: diagnostic pearls & pitfalls. Curr Opin Ophthalmol 2023; 34:500-513. [PMID: 37729661 DOI: 10.1097/icu.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight a clinical-anatomical approach to localizing neuro-ophthalmic manifestations of associated autoimmune disorders. RECENT FINDINGS Our understanding of autoimmune conditions has changed considerably over recent years, particularly with the emergence of novel autoantibodies. Cardinal neuro-ophthalmic signs and symptoms of antibody-mediated autoimmune disorders have been well characterized; knowledge thereof may be the first step towards an accurate diagnosis. SUMMARY A thorough history, further refined by a comprehensive examination are cornerstones to disease localization in clinical medicine. Taken together, these essential steps both guide investigations and facilitate early recognition of autoimmune disorders. From a neuro-ophthalmic perspective, it is important to understand heralding signs and symptoms of autoimmune syndromes, avoid cognitive errors, and remain mindful of common diagnostic pitfalls to optimize care. VIDEO ABSTRACT http://links.lww.com/COOP/A61.
Collapse
Affiliation(s)
- Sabrina Poonja
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton
| | - Fiona Costello
- Departments of Clinical Neurosciences
- Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Rook J, Llufriu S, de Kok D, Rofes A. Language impairments in people with autoimmune neurological diseases: A scoping review. JOURNAL OF COMMUNICATION DISORDERS 2023; 106:106368. [PMID: 37717472 DOI: 10.1016/j.jcomdis.2023.106368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Autoimmune neurological diseases (ANDs) are a specific type of autoimmune disease that affect cells within the central and peripheral nervous system. ANDs trigger various physical/neuropsychiatric symptoms. However, language impairments in people with ANDs are not well characterized. Here we aimed to determine the kinds of language impairment that most commonly emerge in 10 ANDs, the characteristics of the patients (demographic, neurological damage), and the assessment methods used. METHODS We followed the PRISMA Extension for Scoping Reviews (PRISMA-ScR). PubMed and Google Scholar were searched. We used a list of search terms containing 10 types of ANDs (e.g., multiple sclerosis, acute disseminated encephalomyelitis) in combination with the terms aphasia, dysphasia, fluency, language, listening, morphology, phonology, pragmatics, reading, semantics, speaking, syntax, writing. The reference lists and citations of the relevant papers were also investigated. The type of AND, patient characteristics, neurological damage and examination technique, language tests administered, and main findings were noted for each study meeting the inclusion criteria. RESULTS We found 171 studies meeting our inclusion criteria. These comprised group studies and case studies. Language impairments differed largely among types of ANDs. Neurological findings were mentioned in most of the papers, but specific language tests were rarely used. CONCLUSIONS Language symptoms in people with ANDs are commonly reported. These are often not full descriptions or only focus on specific time points in the course of the disease. Future research needs to assess specific language functions in people with ANDs and relate their language impairments to brain damage at different stages of disease evolution.
Collapse
Affiliation(s)
- Janine Rook
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Dörte de Kok
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands
| | - Adrià Rofes
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Kurokawa R, Kurokawa M, Isshiki S, Harada T, Nakaya M, Baba A, Naganawa S, Kim J, Bapuraj J, Srinivasan A, Abe O, Moritani T. Dural and Leptomeningeal Diseases: Anatomy, Causes, and Neuroimaging Findings. Radiographics 2023; 43:e230039. [PMID: 37535461 DOI: 10.1148/rg.230039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Meningeal lesions can be caused by various conditions and pose diagnostic challenges. The authors review the anatomy of the meninges in the brain and spinal cord to provide a better understanding of the localization and extension of these diseases and summarize the clinical and imaging features of various conditions that cause dural and/or leptomeningeal enhancing lesions. These conditions include infectious meningitis (bacterial, tuberculous, viral, and fungal), autoimmune diseases (vasculitis, connective tissue diseases, autoimmune meningoencephalitis, Vogt-Koyanagi-Harada disease, neuro-Behçet syndrome, Susac syndrome, and sarcoidosis), primary and secondary tumors (meningioma, diffuse leptomeningeal glioneuronal tumor, melanocytic tumors, and lymphoma), tumorlike diseases (histiocytosis and immunoglobulin G4-related diseases), medication-induced diseases (immune-related adverse effects and posterior reversible encephalopathy syndrome), and other conditions (spontaneous intracranial hypotension, amyloidosis, and moyamoya disease). Although meningeal lesions may manifest with nonspecific imaging findings, correct diagnosis is important because the treatment strategy varies among these diseases. ©RSNA, 2023 Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Mariko Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Saiko Isshiki
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Taisuke Harada
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Moto Nakaya
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Shotaro Naganawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - John Kim
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Jayapalli Bapuraj
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Osamu Abe
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (R.K., M.K., A.B., S.N., J.K., J.B., A.S., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (R.K., M.K., M.N., S.N., O.A.); Department of Radiology, Niizashiki Central General Hospital, Saitama, Japan (S.I.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| |
Collapse
|
23
|
Mihai A, Chitimus DM, Jurcut C, Blajut FC, Opris-Belinski D, Caruntu C, Ionescu R, Caruntu A. Comparative Analysis of Hematological and Immunological Parameters in Patients with Primary Sjögren's Syndrome and Peripheral Neuropathy. J Clin Med 2023; 12:jcm12113672. [PMID: 37297866 DOI: 10.3390/jcm12113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Primary Sjögren syndrome (pSS) is a multisystem disorder of autoimmune etiology, frequently involving peripheral nerves. Early detection of peripheral neuropathy (PN) manifestations might improve prognosis and disease control. The purpose of the study was to evaluate the predictive potential of hematological and immunological parameters associated with PN development in pSS patients. METHODS This single-center retrospective study included patients with pSS who were divided into two groups, according to the occurrence of neurological manifestations throughout the follow-up period. RESULTS From the total of 121 pSS patients included in the study, 31 (25.61%) developed neurological manifestations (PN+ group) during the follow-up period. At the moment of pSS diagnosis, 80.64% of PN+ patients exhibited increased disease activity, with ESSDAI scores above 14 (p = 0.001), and significantly higher values for VASp score (p = 0.001), with a mean value of 4.90 ± 2.45, compared to 1.27 ± 1.32 in the PN- group. The hematological assessment at the moment of pSS diagnosis revealed that neutrophils and neutrophil-to-lymphocyte ratio (NLR) were significantly higher in the PN+ group (p = 0.001), while lymphocytes, monocytes and monocyte-to-lymphocyte ratio (MLR) were significantly lower (p = 0.025, p = 0.13 and p = 0.003, respectively). Immuno-inflammatory parameters-gammaglobulins, complement fractions C3, C4, total proteins and vitamin D were significantly lower in the PN+ patients' group. In multivariate analysis, the independent predictive character for PN development in pSS patients was confirmed for NLR (95% CI 0.033 to 0.263, p = 0.012), MLR (95% CI -1.289 to -0.194, p = 0.008), gammaglobulins (95% CI -0.426 to -0.088, p < 0.003), complement fraction C4 (95% CI -0.018 to -0.001, p < 0.030) and vitamin D (95% CI -0.017 to -0.003, p < 0.009). CONCLUSIONS Readily available and frequently used hematological and immunological markers, such as NLR, MLR, gammaglobulins, C4 and vitamin D could be helpful in predicting the neurological involvement in pSS patients. These biological parameters might become useful tools for clinicians to monitor disease progression and identify potentially severe extraglandular manifestations in pSS patients.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Neurology, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
24
|
Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol 2023; 23:201. [PMID: 37221459 DOI: 10.1186/s12883-023-03239-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Multiple Sclerosis Research Center, Neuroscience Institut, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taraneh Rajaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
25
|
Pratap Shankar KM, Pratibha PN, Saritha V. Ayurvedic management of neurological deficits post COVID-19 vaccination - A report of two cases. J Ayurveda Integr Med 2023; 14:100737. [PMID: 37343418 PMCID: PMC10247886 DOI: 10.1016/j.jaim.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
The world witnessed much research fund allocation on the COVID-19 outbreak's epidemiology, pathology, impact on lifestyles, social behaviours and treatment possibilities. The highly contagious nature of the disease compelled scientific communities and related organisations to hasten vaccine development and supplies. Well-timed international collaborations resulted in quicker development of varied forms of vaccines against COVID-19. Prospective observational studies and systematic reviews on vaccine trials reported their safety and efficacies. Nevertheless, post-marketing surveillance is quintessential to ascertain such safety and efficacy claims. There have been scattered reports lately of several adverse temporal events, such as haematological, immunological and neurological untoward occurrences following COVID-19 inoculation. There is a growing piece of evidence of the impact of COVID vaccination on patients with neurological-neuroimmunological disorders. Here two unrelated cases of neurological deficits post-COVID vaccination are reported. One was an incidence of Acute Disseminated Encephalomyelitis, while the other was an acute exacerbation of Multiple Sclerosis following vaccination. Ayurvedic treatments were effective in either of these conditions. Case series and case reports shall judiciously add information to vaccine safety data and acknowledge the necessity of clinician approval, based on detailed individualised assessments before mass vaccination.
Collapse
Affiliation(s)
- K M Pratap Shankar
- National Ayurveda Research Institute for Panchakarma, Cheruthuruthy, Thrissur, Kerala, India.
| | - P Nair Pratibha
- Department Of Kayachikitsa, VPSV Ayurveda College, Kottakkal, Kerala, India
| | - V Saritha
- Department of Radiology, Government Medical College, Palakkad, Kerala, India
| |
Collapse
|
26
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. J Clin Med 2023; 12:3190. [PMID: 37176630 PMCID: PMC10179128 DOI: 10.3390/jcm12093190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous investigations have demonstrated significant and long-lasting neurological manifestations of COVID-19. It has been suggested that as many as four out of five patients who sustained COVID-19 will show one or several neurological symptoms that can last months after the infection has run its course. Neurological symptoms are most common in people who are less than 60 years of age, while encephalopathy is more common in those over 60. Biological mechanisms for these neurological symptoms need to be investigated and may include both direct and indirect effects of the virus on the brain and spinal cord. Individuals with Alzheimer's disease (AD) and related dementia, as well as persons with Down syndrome (DS), are especially vulnerable to COVID-19, but the biological reasons for this are not clear. Investigating the neurological consequences of COVID-19 is an urgent emerging medical need, since close to 700 million people worldwide have now had COVID-19 at least once. It is likely that there will be a new burden on healthcare and the economy dealing with the long-term neurological consequences of severe SARS-CoV-2 infections and long COVID, even in younger generations. Interestingly, neurological symptoms after an acute infection are strikingly similar to the symptoms observed after a mild traumatic brain injury (mTBI) or concussion, including dizziness, balance issues, anosmia, and headaches. The possible convergence of biological pathways involved in both will be discussed. The current review is focused on the most commonly described neurological symptoms, as well as the possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045-0511, USA
| |
Collapse
|
28
|
Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int J Mol Sci 2023; 24:7960. [PMID: 37175665 PMCID: PMC10178921 DOI: 10.3390/ijms24097960] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Moon-Jung Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
29
|
Foettinger F, Pilz G, Wipfler P, Harrer A, Kern JM, Trinka E, Moser T. Immunomodulatory Aspects of Therapeutic Plasma Exchange in Neurological Disorders—A Pilot Study. Int J Mol Sci 2023; 24:ijms24076552. [PMID: 37047524 PMCID: PMC10095570 DOI: 10.3390/ijms24076552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Therapeutic plasma exchange (TPE) is used for drug-resistant neuroimmunological disorders, but its mechanism of action remains poorly understood. We therefore prospectively explored changes in soluble, humoral, and cellular immune components associated with TPE. We included ten patients with neurological autoimmune disorders that underwent TPE and assessed a panel of clinically relevant pathogen-specific antibodies, total serum immunoglobulin (Ig) levels, interleukin-6 (IL-6, pg/mL), C-reactive protein (CRP, mg/dL), procalcitonin (PCT, µg/L) and major lymphocyte subpopulations (cells/µL). Blood was collected prior to TPE (pre-TPE, baseline), immediately after TPE (post-TPE), as well as five weeks (follow-up1) and 130 days (follow-up2) following TPE. Pathogen-specific antibody levels were reduced by −86% (p < 0.05) post-TPE and recovered to 55% (follow-up1) and 101% (follow-up2). Ig subclasses were reduced by −70–89% (p < 0.0001) post-TPE with subsequent complete (IgM/IgA) and incomplete (IgG) recovery throughout the follow-ups. Mean IL-6 and CRP concentrations increased by a factor of 3–4 at post-TPE (p > 0.05) while PCT remained unaffected. We found no alterations in B- and T-cell populations. No adverse events related to TPE occurred. TPE induced a profound but transient reduction in circulating antibodies, while the investigated soluble immune components were not washed out. Future studies should explore the effects of TPE on particular cytokines and assess inflammatory lymphocyte lineages to illuminate the mode of action of TPE beyond autoantibody removal.
Collapse
|
30
|
Kheirdeh M, Koushkie Jahromi M, Hemmatinafar M, Nemati J. Additive beneficial effects of aerobic training and royal jelly on hippocampal inflammation and function in experimental autoimmune encephalomyelitis rats. Mult Scler Relat Disord 2023; 70:104527. [PMID: 36696832 DOI: 10.1016/j.msard.2023.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although the beneficial role of training and the use of some antioxidants in physiological and psychological disorders in autoimmune diseases has been reported, the simultaneous effect of aerobic training (AT) and royal jelly (RJ) with different doses is not well understood. The present study aimed to investigate the impact of AT and RJ on inflammatory factors in the hippocampus, as well as depression and anxiety in the experimental autoimmune encephalomyelitis (EAE). METHODS Sprague-Dawley rats with EAE were assigned to seven groups: (1) EAE without any other intervention (EAE); (2) sham, receiving normal saline (Sh); (3) 50 mg/kg RJ (RJ50); (4) 100 mg/kg RJ (RJ100); (5) AT; (6) AT + RJ50; and (7) AT + RJ100. In addition, a healthy control group was assessed. RESULTS EAE significantly increased interleukin 17 (IL-17), transforming growth factor-β (TGF-β) gene expression and immobilization time as well as anxiety and depression indices, and significantly decreased interleukin 10 (IL-10), compared to the control group. AT decreased significantly IL-17, TGF-β gene expression and immobilization time as well as anxiety and depression indices, while it significantly increased IL-10, compared to the EAE group. RJ50 and RJ100 decreased significantly IL-17, IL-23 gene expression, anxiety and depression indices, and significantly increased IL-10 compared to the EAE group. AT + RJ50 and AT + RJ100 significantly decreased IL-17, IL-23, and TGF-β and as well as anxiety and depression indices while significantly increasing IL-10 compared to the EAE group. The effects of AT + RJ100 on significant decreasing IL-17, IL-23, anxiety and depression and increasing TGF-β, IL-10 were more favorable than RJ50. CONCLUSION AT and RJ improved inflammatory and regulatory factors of autoimmunity and reduced anxiety and depression. The RJ combined with AT induced additive effects while using RJ100 was more favorable than RJ50.
Collapse
Affiliation(s)
- Maryam Kheirdeh
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | | | - Mohammad Hemmatinafar
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| | - Javad Nemati
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Iran
| |
Collapse
|
31
|
Mirmosayyeb O, Badihian S, Shaygannejad V, Hartung HP. Editorial: CNS autoimmune disorders and COVID-19. Front Neurol 2023; 14:1183998. [PMID: 37082445 PMCID: PMC10112508 DOI: 10.3389/fneur.2023.1183998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shervin Badihian
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vahid Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Hans-Peter Hartung
| |
Collapse
|
32
|
Shu Y, Ma X, Chen C, Wang Y, Sun X, Zhang L, Lu Z, Petersen F, Qiu W, Yu X. Myelin oligodendrocyte glycoprotein-associated disease is associated with BANK1, RNASET2 and TNIP1 polymorphisms. J Neuroimmunol 2022; 372:577937. [PMID: 36054934 DOI: 10.1016/j.jneuroim.2022.577937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
AIM Here we aimed to compare association of common immune-related genetic variants with three autoimmune central nervous system (CNS) demyelinating diseases, namely myelin oligodendrocyte glycoprotein-associated disease (MOGAD), multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). METHODS In this retrospective cross-sectional study, 26 common immune-related single nucleotide polymorphisms were genotyped in 102 patients with MOGAD, 100 patients with MS, 198 patients with NMOSD and 541 healthy control subjects recruited from Guangzhou, China. RESULTS Among all tested genetic variations, one polymorphism, B cell scaffold protein with ankyrin repeats 1 (BANK1) rs4522865 was associated with multiple disorders, namely MOGAD (OR = 1.94, 95% CI:1.19-3.17, P = 0.0059) and NMOSD (OR = 1.69, 95% CI:1.17-2.45). Besides BANK1 rs4522865, two other non-HLA loci, ribonuclease T2 (RNASET2) rs9355610 (OR = 0.47, 95% CI: 0.26-0.85) and TNFAIP3 interacting protein 1 (TNIP1) rs10036748 (OR = 1.76, 95% CI: 1.16-2.71), were associated with MOGAD. In addition, NMOSD was associated with signal transducer and activator of transcription 4 (STAT4) rs7574865 (OR = 1.58, 95% CI: 1.12-2.24) and general transcription factor Iii (GTF2I) rs73366469 (OR = 1.60, 95% CI:1.12-2.29), while MS was associated with a killer cell lectin like receptor G1 (KLRG1) rs1805673 (OR = 0.61, 95% CI: 0.40-0.94) and T-box transcription factor 21 (TBX21) rs17244587 (OR = 2.25, 95% CI: 1.25-4.06). CONCLUSION The current study suggests for the first time three non-HLA susceptibility loci for MOGAD. In addition, comparison of association of 26 immune-related polymorphisms with three autoimmune CNS demyelinating diseases demonstrates substantial difference in genetic basis of those disorders.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
| |
Collapse
|
33
|
Faria P, Pacheco C, Moura RP, Sarmento B, Martins C. Multifunctional nanomedicine strategies to manage brain diseases. Drug Deliv Transl Res 2022; 13:1322-1342. [PMID: 36344871 DOI: 10.1007/s13346-022-01256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Brain diseases represent a substantial social and economic burden, currently affecting one in six individuals worldwide. Brain research has been focus of great attention in order to unravel the pathogenesis and complexity of brain diseases at the cellular, molecular, and microenvironmental levels. Due to the intrinsic nature of the brain, the presence of the highly restrictive blood-brain barrier (BBB), and the pathophysiology of most diseases, therapies can hardly be considered successful purely by the administration of one drug to a patient. Apart from improving pharmacokinetic parameters, tailoring biodistribution, and reducing the number of side effects, nanomedicines are able to actively co-target the therapeutics to the brain parenchyma and brain lesions, as well as to achieve the delivery of multiple cargos with therapeutic, diagnostic, and theranostic properties. Among other multivalent effects that can be personalized according to the disease needs, this represents a promising class of novel nanosystems, termed multifunctional nanomedicines. Herein, we review the principal mechanisms of therapeutic resistance of the most prevalent brain diseases, how to overcome this therapeutic resistance through the use of multifunctional nanomedicines that tackle multiple fronts of the disease microenvironment, and the promising therapeutic responses achieved by some of the most cutting-edge multifunctional nanomedicines reported in literature.
Collapse
|
34
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
35
|
Li ZQ, Li TX, Tian M, Ren ZS, Yuan CY, Yang RK, Shi SJ, Li H, Kou ZZ. Glial cells and neurologic autoimmune disorders. Front Cell Neurosci 2022; 16:1028653. [PMID: 36385950 PMCID: PMC9644207 DOI: 10.3389/fncel.2022.1028653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2023] Open
Abstract
Neurologic autoimmune disorders affect people's physical and mental health seriously. Glial cells, as an important part of the nervous system, play a vital role in the occurrence of neurologic autoimmune disorders. Glial cells can be hyperactivated in the presence of autoantibodies or pathological changes, to influence neurologic autoimmune disorders. This review is mainly focused on the roles of glial cells in neurologic autoimmune disorders and the influence of autoantibodies produced by autoimmune disorders on glial cells. We speculate that the possibility of glial cells might be a novel way for the investigation and therapy of neurologic autoimmune disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
36
|
Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery. Biomedicines 2022; 10:biomedicines10102557. [PMID: 36289819 PMCID: PMC9599955 DOI: 10.3390/biomedicines10102557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory, oxidative, and autoimmune responses cause severe damage to the nervous system inducing loss of myelin layers or demyelination. Even though demyelination is not considered a direct cause of skeletal muscle disease there is extensive damage in skeletal muscles following demyelination and impaired innervation. In vitro and in vivo evidence using exogenous antioxidants in models of demyelination is showing improvements in myelin formation alongside skeletal muscle recovery. For instance, exogenous antioxidants such as EGCG stimulate nerve structure maintenance, activation of glial cells, and reduction of oxidative stress. Consequently, this evidence is also showing structural and functional recovery of impaired skeletal muscles due to demyelination. Exogenous antioxidants mostly target inflammatory pathways and stimulate remyelinating mechanisms that seem to induce skeletal muscle regeneration. Therefore, the aim of this review is to describe recent evidence related to the molecular mechanisms in nerve and skeletal muscle regeneration induced by exogenous antioxidants. This will be relevant to identifying further targets to improve treatments of neuromuscular demyelinating diseases.
Collapse
|
37
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
38
|
Flevaris K, Kontoravdi C. Immunoglobulin G N-glycan Biomarkers for Autoimmune Diseases: Current State and a Glycoinformatics Perspective. Int J Mol Sci 2022; 23:5180. [PMID: 35563570 PMCID: PMC9100869 DOI: 10.3390/ijms23095180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
The effective treatment of autoimmune disorders can greatly benefit from disease-specific biomarkers that are functionally involved in immune system regulation and can be collected through minimally invasive procedures. In this regard, human serum IgG N-glycans are promising for uncovering disease predisposition and monitoring progression, and for the identification of specific molecular targets for advanced therapies. In particular, the IgG N-glycome in diseased tissues is considered to be disease-dependent; thus, specific glycan structures may be involved in the pathophysiology of autoimmune diseases. This study provides a critical overview of the literature on human IgG N-glycomics, with a focus on the identification of disease-specific glycan alterations. In order to expedite the establishment of clinically-relevant N-glycan biomarkers, the employment of advanced computational tools for the interpretation of clinical data and their relationship with the underlying molecular mechanisms may be critical. Glycoinformatics tools, including artificial intelligence and systems glycobiology approaches, are reviewed for their potential to provide insight into patient stratification and disease etiology. Challenges in the integration of such glycoinformatics approaches in N-glycan biomarker research are critically discussed.
Collapse
Affiliation(s)
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
39
|
Xu K, Wang D, He Y, Wang S, Liu G, Pan Y, Jiang H, Peng Y, Xiao F, Huang Y, Wang Q, Wu Y, Pan S, Hu Y. Identification of Anti-Collapsin Response Mediator Protein 2 Antibodies in Patients With Encephalitis or Encephalomyelitis. Front Immunol 2022; 13:854445. [PMID: 35479088 PMCID: PMC9036435 DOI: 10.3389/fimmu.2022.854445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose An increasing number of autoimmune encephalitis (AE)-associated autoantibodies have been successfully characterized. However, many cases of AE remain unexplained on account of unknown antibodies. The aim of the present study was to identify a novel antibody against collapsin response mediator protein 2 (CRMP2) in suspected AE patients. Methods A patient's serum and cerebrospinal fluid samples tested negative for known AE antibodies; however, strong immunolabel signals were observed in the neuronal cytoplasm of the cortex, hippocampus, and Purkinje cells on rat brain sections. Immunoprecipitation from the rat brain protein lysate, followed by mass spectrometry analysis, was used to identify the targeting antigen. Western blotting and cell-based assay with antigen-overexpressing HEK293T cells were used for antibody specificity, epitope, IgG subtype determination, and retrospective study. Results An antibody against CRMP2, a synaptic protein involved in axon guidance, was identified. The immunostains of the patient's samples on rat brain sections were eliminated by pre-absorption with HEK293T cells overexpressing CRMP2. The samples specifically immunoreacted with CRMP2, but not with CRMP1, CRMP3, CRMP4, and CRMP5. The C-terminus of CRMP2 with 536 amino acids contained the epitope for antibody binding. The subtype analysis showed that the anti-CRMP2 antibody was IgG4. Furthermore, a screening of 46 patients with neurological disoders and neuro-cytoplasm immunostainings on rat brain sections resulted in the identification of anti-CRMP2 antibodies in a case of encephalomyelitis. The two patients responded well to immunotherapies. Conclusions This study discovered that a novel anti-CRMP2 antibody was associated with suspected AE and thus should be included in the testing list for AE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Ndondo AP, Eley B, Wilmshurst JM, Kakooza-Mwesige A, Giannoccaro MP, Willison HJ, Cruz PMR, Heckmann JM, Bateman K, Vincent A. Post-Infectious Autoimmunity in the Central (CNS) and Peripheral (PNS) Nervous Systems: An African Perspective. Front Immunol 2022; 13:833548. [PMID: 35356001 PMCID: PMC8959857 DOI: 10.3389/fimmu.2022.833548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The direct impact and sequelae of infections in children and adults result in significant morbidity and mortality especially when they involve the central (CNS) or peripheral nervous system (PNS). The historical understanding of the pathophysiology has been mostly focused on the direct impact of the various pathogens through neural tissue invasion. However, with the better understanding of neuroimmunology, there is a rapidly growing realization of the contribution of the innate and adaptive host immune responses in the pathogenesis of many CNS and PNS diseases. The balance between the protective and pathologic sequelae of immunity is fragile and can easily be tipped towards harm for the host. The matter of immune privilege and surveillance of the CNS/PNS compartments and the role of the blood-brain barrier (BBB) and blood nerve barrier (BNB) makes this even more complex. Our understanding of the pathogenesis of many post-infectious manifestations of various microbial agents remains elusive, especially in the diverse African setting. Our exploration and better understanding of the neuroimmunology of some of the infectious diseases that we encounter in the continent will go a long way into helping us to improve their management and therefore lessen the burden. Africa is diverse and uniquely poised because of the mix of the classic, well described, autoimmune disease entities and the specifically "tropical" conditions. This review explores the current understanding of some of the para- and post-infectious autoimmune manifestations of CNS and PNS diseases in the African context. We highlight the clinical presentations, diagnosis and treatment of these neurological disorders and underscore the knowledge gaps and perspectives for future research using disease models of conditions that we see in the continent, some of which are not uniquely African and, where relevant, include discussion of the proposed mechanisms underlying pathogen-induced autoimmunity. This review covers the following conditions as models and highlight those in which a relationship with COVID-19 infection has been reported: a) Acute Necrotizing Encephalopathy; b) Measles-associated encephalopathies; c) Human Immunodeficiency Virus (HIV) neuroimmune disorders, and particularly the difficulties associated with classical post-infectious autoimmune disorders such as the Guillain-Barré syndrome in the context of HIV and other infections. Finally, we describe NMDA-R encephalitis, which can be post-HSV encephalitis, summarise other antibody-mediated CNS diseases and describe myasthenia gravis as the classic antibody-mediated disease but with special features in Africa.
Collapse
Affiliation(s)
- Alvin Pumelele Ndondo
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Brian Eley
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Jo Madeleine Wilmshurst
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Maria Pia Giannoccaro
- Laboratory of Neuromuscular Pathology and Neuroimmunology, Istituto di Ricovero e Cura a CarattereScientifico (IRCCS) Instiuto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation (3I), University of Glasgow, Glasgow, United Kingdom
| | - Pedro M Rodríguez Cruz
- Centro Nacional de Analisis Genomico - Centre for Genomic Regulation (CNAG-CRG ), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Neuromuscular Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom.,Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jeannine M Heckmann
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa.,The University of Cape Town (UCT) Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kathleen Bateman
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
42
|
Cano A, Fonseca E, Ettcheto M, Sánchez-López E, de Rojas I, Alonso-Lana S, Morató X, Souto EB, Toledo M, Boada M, Marquié M, Ruíz A. Epilepsy in Neurodegenerative Diseases: Related Drugs and Molecular Pathways. Pharmaceuticals (Basel) 2021; 14:1057. [PMID: 34681281 PMCID: PMC8538968 DOI: 10.3390/ph14101057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a chronic disease of the central nervous system characterized by an electrical imbalance in neurons. It is the second most prevalent neurological disease, with 50 million people affected around the world, and 30% of all epilepsies do not respond to available treatments. Currently, the main hypothesis about the molecular processes that trigger epileptic seizures and promote the neurotoxic effects that lead to cell death focuses on the exacerbation of the glutamate pathway and the massive influx of Ca2+ into neurons by different factors. However, other mechanisms have been proposed, and most of them have also been described in other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or multiple sclerosis. Interestingly, and mainly because of these common molecular links and the lack of effective treatments for these diseases, some antiseizure drugs have been investigated to evaluate their therapeutic potential in these pathologies. Therefore, in this review, we thoroughly investigate the common molecular pathways between epilepsy and the major neurodegenerative diseases, examine the incidence of epilepsy in these populations, and explore the use of current and innovative antiseizure drugs in the treatment of refractory epilepsy and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
| | - Elena Fonseca
- Epilepsy Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (E.F.); (M.T.)
- Research Group on Status Epilepticus and Acute Seizures, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, 08007 Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Silvia Alonso-Lana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
| | - Xavier Morató
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (E.F.); (M.T.)
- Research Group on Status Epilepticus and Acute Seizures, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (I.d.R.); (S.A.-L.); (X.M.); (M.B.); (M.M.); (A.R.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (E.S.-L.)
| |
Collapse
|
43
|
Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021; 4:100122. [PMID: 34568803 PMCID: PMC8449123 DOI: 10.1016/j.jtauto.2021.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor. FcRn is an intracellular receptor with a key role in IgG and immune complex management. FcRn-targeting therapies are a promising way of treatment in antibodies mediated diseases.
Collapse
Affiliation(s)
- Juliette Lamamy
- EA7501, GICC, Université François Rabelais de Tours, F-37032, Tours, France
| | - Pierre Boulard
- Laboratoire d'immunologie, CHU Tours, F-37032, Tours, France
| | | | | | | | - Yanis Ramdani
- Service de Médecine Interne, CHU Tours, F-37032, Tours, France
| |
Collapse
|