1
|
Chaturvedi SM, Sarafinovska S, Selmanovic D, McCullough KB, Swift RG, Maloney SE, Dougherty JD. Chromosomal and gonadal sex have differing effects on social motivation in mice. Biol Sex Differ 2025; 16:13. [PMID: 39966983 PMCID: PMC11837725 DOI: 10.1186/s13293-025-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Sex differences in brain development are thought to lead to sex variation in social behavior. Sex differences are fundamentally driven by both gonadal hormones and sex chromosomes, yet little is known about the independent effects of each on social behavior. Further, mouse models of the genetic liability for the neurodevelopmental disorder MYT1L Syndrome have shown sex-specific deficits in social motivation. In this study, we aimed to determine if gonadal hormones or sex chromosomes primarily mediate the sex differences seen in mouse social behavior, both at baseline and in the context of Myt1l haploinsufficiency. METHODS Four-core genotypes (FCG) mice, which uncouple gonadal and chromosomal sex, were crossed with MYT1L heterozygous mice to create eight different groups with unique combinations of sex factors and MYT1L genotype. A total of 131 mice from all eight groups were assayed for activity and social behavior via the open field and social operant paradigms. Measures of social seeking and orienting were analyzed for main effects of chromosome, gonads, and their interactions with Myt1l mutation. RESULTS The FCGxMYT1L cross revealed independent effects of both gonadal and chromosomal sex on activity and social behavior. Specifically, the presence of ovarian hormones led to greater overall activity, social seeking, and social orienting regardless of MYT1L genotype. In contrast, sex chromosomes affected social behavior mainly in the MYT1L heterozygous group, with XX MYT1L mutant mice demonstrating elevated levels of social orienting and seeking compared to XY MYT1L mutant mice. CONCLUSIONS Gonadal and chromosomal sex have independent mechanisms of driving greater social motivation in females. Additionally, genes on the sex chromosomes may interact with neurodevelopmental risk genes to influence sex variation in atypical social behavior.
Collapse
Affiliation(s)
- Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Raylynn G Swift
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Su J, Gupta R, Van Hoof S, Kreye J, Prüss H, Spielman B, Brimberg L, Volpe BT, Huerta PT, Diamond B. Heterogeneity of anti-Caspr2 antibodies: specificity and pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633238. [PMID: 39896527 PMCID: PMC11785012 DOI: 10.1101/2025.01.16.633238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Maternal anti-Caspr2 (Contactin-associated protein-like 2) antibodies have been associated with increased risk for autism spectrum disorder (ASD). Previous studies have shown that in utero exposure to anti-Caspr2 antibodies results in a phenotype with ASD-like features in male mice. Here we ask whether four newly generated antibodies against Caspr2 are pathogenic to the developing fetal brain and whether they function through similar means. Our results show that the novel anti-Caspr2 antibodies recognize different epitopes of Caspr2. In utero exposure to these antibodies elicits differential ASD-like phenotypes in male offspring, tested in the social interaction, open field, and light-dark tasks. These results demonstrate variability in the antigenic specificity and pathogenicity of anti-Caspr2 antibodies which may have clinical implications.
Collapse
|
3
|
Pavlinek A, Adhya D, Tsompanidis A, Warrier V, Vernon AC, Lancaster M, Mill J, Srivastava DP, Baron-Cohen S. Using Organoids to Model Sex Differences in the Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100343. [PMID: 39092139 PMCID: PMC11292257 DOI: 10.1016/j.bpsgos.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | | | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|