1
|
Eldar D, Albert S, Tatyana A, Galina S, Albert R, Yana M. Optogenetic approaches for neural tissue regeneration: A review of basic optogenetic principles and target cells for therapy. Neural Regen Res 2026; 21:521-533. [PMID: 39995064 DOI: 10.4103/nrr.nrr-d-24-00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 02/26/2025] Open
Abstract
Optogenetics has revolutionized the field of neuroscience by enabling precise control of neural activity through light-sensitive proteins known as opsins. This review article discusses the fundamental principles of optogenetics, including the activation of both excitatory and inhibitory opsins, as well as the development of optogenetic models that utilize recombinant viral vectors. A considerable portion of the article addresses the limitations of optogenetic tools and explores strategies to overcome these challenges. These strategies include the use of adeno-associated viruses, cell-specific promoters, modified opsins, and methodologies such as bioluminescent optogenetics. The application of viral recombinant vectors, particularly adeno-associated viruses, is emerging as a promising avenue for clinical use in delivering opsins to target cells. This trend indicates the potential for creating tools that offer greater flexibility and accuracy in opsin delivery. The adaptations of these viral vectors provide advantages in optogenetic studies by allowing for the restricted expression of opsins through cell-specific promoters and various viral serotypes. The article also examines different cellular targets for optogenetics, including neurons, astrocytes, microglia, and Schwann cells. Utilizing specific promoters for opsin expression in these cells is essential for achieving precise and efficient stimulation. Research has demonstrated that optogenetic stimulation of both neurons and glial cells-particularly the distinct phenotypes of microglia, astrocytes, and Schwann cells-can have therapeutic effects in neurological diseases. Glial cells are increasingly recognized as important targets for the treatment of these disorders. Furthermore, the article emphasizes the emerging field of bioluminescent optogenetics, which combines optogenetic principles with bioluminescent proteins to visualize and manipulate neural activity in real time. By integrating molecular genetics techniques with bioluminescence, researchers have developed methods to monitor neuronal activity efficiently and less invasively, enhancing our understanding of central nervous system function and the mechanisms of plasticity in neurological disorders beyond traditional neurobiological methods. Evidence has shown that optogenetic modulation can enhance motor axon regeneration, achieve complete sensory reinnervation, and accelerate the recovery of neuromuscular function. This approach also induces complex patterns of coordinated motor neuron activity and promotes neural reorganization. Optogenetic approaches hold immense potential for therapeutic interventions in the central nervous system. They enable precise control of neural circuits and may offer new treatments for neurological disorders, particularly spinal cord injuries, peripheral nerve injuries, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Davletshin Eldar
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianov Albert
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Research and Educational Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Ageeva Tatyana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sufianova Galina
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Rizvanov Albert
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Mukhamedshina Yana
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Tataranu LG, Rizea RE. Neuroplasticity and Nervous System Recovery: Cellular Mechanisms, Therapeutic Advances, and Future Prospects. Brain Sci 2025; 15:400. [PMID: 40309875 PMCID: PMC12025631 DOI: 10.3390/brainsci15040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025] Open
Abstract
Neuroplasticity, the ability of the nervous system to adapt structurally and functionally in response to environmental interactions and injuries, is a cornerstone of recovery in the central (CNS) and peripheral nervous systems (PNS). This review explores the mechanisms underlying neuroplasticity, focusing on the dynamic roles of cellular and molecular processes in recovery from nervous system injuries. Key cellular players, including Schwann cells, oligodendrocytes, and neural stem cells, are highlighted for their contributions to nerve repair, myelination, and regeneration. Advances in therapeutic interventions, such as electrical stimulation, bioluminescent optogenetics, and innovative nerve grafting techniques, are discussed alongside their potential to enhance recovery and functional outcomes. The molecular underpinnings of plasticity, involving synaptic remodeling, homeostatic mechanisms, and activity-dependent regulation of gene expression, are elucidated to illustrate their role in learning, memory, and injury repair. Integrating emerging technologies and therapeutic approaches with a foundational understanding of neuroplasticity offers a pathway toward more effective strategies for restoring nervous system functionality after injury.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Neurosurgery, Bagdasar-Arseni Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Radu Eugen Rizea
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Neurosurgery, Bagdasar-Arseni Emergency Clinical Hospital, 041915 Bucharest, Romania
| |
Collapse
|
3
|
Ikefuama EC, Slaviero AN, Silvagnoli AD, Crespo EL, Schalau R, Gott M, Tree MO, Dunbar GL, Rossignol J, Hochgeschwender U. Presymptomatic targeted circuit manipulation for ameliorating Huntington's disease pathogenesis. iScience 2025; 28:112022. [PMID: 40092615 PMCID: PMC11910118 DOI: 10.1016/j.isci.2025.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebenezer C. Ikefuama
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ashley N. Slaviero
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | - Emmanuel L. Crespo
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Raegan Schalau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Madison Gott
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
4
|
Lambert GG, Crespo EL, Murphy J, Boassa D, Luong S, Celinskis D, Venn S, Nguyen DK, Hu J, Sprecher B, Tree MO, Orcutt R, Heydari D, Bell AB, Torreblanca-Zanca A, Hakimi A, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. CaBLAM! A high-contrast bioluminescent Ca 2+ indicator derived from an engineered Oplophorus gracilirostris luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546478. [PMID: 37425712 PMCID: PMC10327125 DOI: 10.1101/2023.06.25.546478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays much higher contrast (dynamic range) than previously described bioluminescent GECIs and has a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons and in vivo. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.
Collapse
Affiliation(s)
- Gerard G. Lambert
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | | | - Jeremy Murphy
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Daniela Boassa
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Selena Luong
- University of California San Diego, La Jolla, CA USA
| | - Dmitrijs Celinskis
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Stephanie Venn
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | | | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA USA
| | - Brittany Sprecher
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Richard Orcutt
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Daniel Heydari
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Aidan B. Bell
- University of California San Diego, La Jolla, CA USA
| | | | | | - Diane Lipscombe
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Christopher I. Moore
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | | | - Nathan C. Shaner
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| |
Collapse
|
5
|
Murphy EF, Means A, Li C, Baez H, Gomez-Ramirez M. Strength of activation and temporal dynamics of bioluminescent-optogenetics in response to systemic injections of the luciferin. Neuroimage 2024; 301:120882. [PMID: 39362505 DOI: 10.1016/j.neuroimage.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
BioLuminescent OptoGenetics ("BL-OG") is a chemogenetic method that can evoke optogenetic reactions in the brain non-invasively. In BL-OG, an enzyme that catalyzes a light producing reaction (i.e., a luciferase) is tethered to an optogenetic element that is activated in response to bioluminescent light. Bioluminescence is generated by injecting a chemical substrate (luciferin, e.g., h-Coelenterazine; h-CTZ) that is catalyzed by the luciferase. By directly injecting the luciferin into the brain, we show that bioluminescent light is proportional to spiking activity, and this relationship scales as a function of luciferin dosage. Here, we build on these previous observations by characterizing the temporal dynamics and dose response curves of bioluminescence generated by luminopsins (LMOs), a proxy of BL-OG effects, to intravenous (IV) injections of the luciferin. We imaged bioluminescence through a thinned skull of mice running on a wheel, while delivering h-CTZ via the tail vein with different dosage concentrations and injection rates. The data reveal a systematic relationship between strength of bioluminescence and h-CTZ dosage, with higher concentration generating stronger bioluminescence. We also found that bioluminescent activity occurs rapidly (< 60 s after IV injection) regardless of concentration dosage. However, as expected, the onset time of bioluminescence is delayed as the injection rate decreases. Notably, the strength and time decay of bioluminescence is invariant to the injection rate of h-CTZ. Taken together, these data show that BL-OG effects are highly consistent across injection parameters of h-CTZ, highlighting the reliability of BL-OG as a minimally invasive neuromodulation method.
Collapse
Affiliation(s)
- Emily F Murphy
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Aniya Means
- The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chen Li
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Hector Baez
- Center for Visual Science, University of Rochester, Rochester NY 14642, USA
| | - Manuel Gomez-Ramirez
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester NY 14642, USA.
| |
Collapse
|
6
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
7
|
Björefeldt A, Murphy J, Crespo EL, Lambert GG, Prakash M, Ikefuama EC, Friedman N, Brown TM, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. Efficient opto- and chemogenetic control in a single molecule driven by FRET-modified bioluminescence. NEUROPHOTONICS 2024; 11:021005. [PMID: 38450294 PMCID: PMC10917299 DOI: 10.1117/1.nph.11.2.021005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Significance Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.
Collapse
Affiliation(s)
- Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
- University of Gothenburg, Institute of Neuroscience and Physiology, Department of Physiology, Gothenburg, Sweden
| | - Jeremy Murphy
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Emmanuel L. Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cell, and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Gerard G. Lambert
- University of California, San Diego, School of Medicine, Department of Neurosciences, La Jolla, California, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Ebenezer C. Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Nina Friedman
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Tariq M. Brown
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I. Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cell, and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Nathan C. Shaner
- University of California, San Diego, School of Medicine, Department of Neurosciences, La Jolla, California, United States
| |
Collapse
|
8
|
Slaviero AN, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. NEUROPHOTONICS 2024; 11:024208. [PMID: 38559366 PMCID: PMC10980360 DOI: 10.1117/1.nph.11.2.024208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer, the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley N. Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L. Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C. Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O. Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M. Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G. Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I. Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C. Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
9
|
Porta-de-la-Riva M, Morales-Curiel LF, Carolina Gonzalez A, Krieg M. Bioluminescence as a functional tool for visualizing and controlling neuronal activity in vivo. NEUROPHOTONICS 2024; 11:024203. [PMID: 38348359 PMCID: PMC10861157 DOI: 10.1117/1.nph.11.2.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.
Collapse
Affiliation(s)
- Montserrat Porta-de-la-Riva
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Luis-Felipe Morales-Curiel
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Adriana Carolina Gonzalez
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michael Krieg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
10
|
Townsend KM, Prescher JA. Recent advances in bioluminescent probes for neurobiology. NEUROPHOTONICS 2024; 11:024204. [PMID: 38390217 PMCID: PMC10883388 DOI: 10.1117/1.nph.11.2.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Bioluminescence is a popular modality for imaging in living organisms. The platform relies on enzymatically (luciferase) generated light via the oxidation of small molecule luciferins. Since no external light is needed for photon production, there are no concerns with background autofluorescence or photobleaching over time-features that have historically limited other optical readouts. Bioluminescence is thus routinely used for longitudinal tracking across whole animals. Applications in the brain, though, have been more challenging due to a lack of sufficiently bioavailable, bright, and easily multiplexed probes. Recent years have seen the development of designer luciferase and luciferin pairs that address these issues, providing more sensitive and real-time readouts of biochemical features relevant to neurobiology. This review highlights many of the advances in bioluminescent probe design, with a focus on the small molecule light emitter, the luciferin. Specific efforts to improve luciferin pharmacokinetics and tissue-penetrant emission are covered, in addition to applications that such probes have enabled. The continued development of improved bioluminescent probes will aid in illuminating critical neurochemical processes in the brain.
Collapse
Affiliation(s)
- Katherine M Townsend
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
| | - Jennifer A Prescher
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- University of California, Irvine, Department of Molecular Biology and Biochemistry, Irvine, California, United States
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California, United States
| |
Collapse
|
11
|
Klein E, Marsh S, Becker J, Andermann M, Lehtinen M, Moore CI. BioLuminescent OptoGenetics in the choroid plexus: integrated opto- and chemogenetic control in vivo. NEUROPHOTONICS 2024; 11:024210. [PMID: 38948888 PMCID: PMC11213259 DOI: 10.1117/1.nph.11.2.024210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Significance The choroid plexus (ChP) epithelial network displays diverse dynamics, including propagating calcium waves and individuated fluctuations in single cells. These rapid events underscore the possibility that ChP dynamics may reflect behaviorally relevant and clinically important changes in information processing and signaling. Optogenetic and chemogenetic tools provide spatiotemporally precise and sustained approaches for testing such dynamics in vivo. Here, we describe the feasibility of a novel combined opto- and chemogenetic tool, BioLuminescent-OptoGenetics (BL-OG), for the ChP in vivo. In the "LuMinOpsin" (LMO) BL-OG strategy, a luciferase is tethered to an adjacent optogenetic element. This molecule allows chemogenetic activation when the opsin is driven by light produced through luciferase binding a small molecule (luciferin) or by conventional optogenetic light sources and BL-OG report of activation through light production. Aim To test the viability of BL-OG/LMO for ChP control. Approach Using transgenic and Cre-directed targeting to the ChP, we expressed LMO3 (a Gaussia luciferase-VChR1 fusion), a highly effective construct in neural systems. In mice expressing LMO3 in ChP, we directly imaged BL light production following multiple routes of coelenterazine (CTZ: luciferin) administration using an implanted cannula system. We also used home-cage videography with Deep LabCut analysis to test for any impact of repeated CTZ administration on basic health and behavioral indices. Results Multiple routes of CTZ administration drove BL photon production, including intracerebroventricular, intravenous, and intraperitoneal injection. Intravenous administration resulted in fast "flash" kinetics that diminished in seconds to minutes, and intraperitoneal administration resulted in slow rising activity that sustained hours. Mice showed no consistent impact of 1 week of intraperitoneal CTZ administration on weight, drinking, motor behavior, or sleep/wake cycles. Conclusions BL-OG/LMO provides unique advantages for testing the role of ChP dynamics in biological processes.
Collapse
Affiliation(s)
- Eric Klein
- Brown University, Providence, Rhode Island, United States
| | - Sophie Marsh
- Brown University, Providence, Rhode Island, United States
| | - Jordan Becker
- Brown University, Providence, Rhode Island, United States
| | - Mark Andermann
- Beth Israel Deaconess Medical Center Harvard, Boston, Massachusetts, United States
| | - Maria Lehtinen
- Brown University, Providence, Rhode Island, United States
- Boston Children’s Hospital, Boston, Massachusetts, United States
| | | |
Collapse
|
12
|
Ji Y, Heidari A, Nzigou Mombo B, Wegner SV. Photoactivation of LOV domains with chemiluminescence. Chem Sci 2024; 15:1027-1038. [PMID: 38239695 PMCID: PMC10793642 DOI: 10.1039/d3sc04815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
Collapse
Affiliation(s)
- Yuhao Ji
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| |
Collapse
|
13
|
Slaviero A, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568342. [PMID: 38045286 PMCID: PMC10690276 DOI: 10.1101/2023.11.22.568342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
14
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
15
|
Petersen ED, Lapan AP, Castellanos Franco EA, Fillion AJ, Crespo EL, Lambert GG, Grady CJ, Zanca AT, Orcutt R, Hochgeschwender U, Shaner NC, Gilad AA. Bioluminescent Genetically Encoded Glutamate Indicators for Molecular Imaging of Neuronal Activity. ACS Synth Biol 2023; 12:2301-2309. [PMID: 37450884 PMCID: PMC10443529 DOI: 10.1021/acssynbio.2c00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Indexed: 07/18/2023]
Abstract
Genetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity in vivo within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain. Our approach to this problem is to replace the fluorescent elements of the existing biosensors with bioluminescent elements. This eliminates the need of external light sources to illuminate the sensor, thus allowing deeper brain regions to be imaged noninvasively. Here, we report the development of the first genetically encoded neurotransmitter indicators based on bioluminescent light emission. These probes were optimized by high-throughput screening of linker libraries. The selected probes exhibit robust changes in light output in response to the extracellular presence of the excitatory neurotransmitter glutamate. We expect this new approach to neurotransmitter indicator design to enable the engineering of specific bioluminescent probes for multiple additional neurotransmitters in the future, ultimately allowing neuroscientists to monitor activity associated with a specific neurotransmitter as it relates to behavior in a variety of neuronal and psychiatric disorders, among many other applications.
Collapse
Affiliation(s)
- Eric D. Petersen
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- College
of Medicine, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Alexandra P. Lapan
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Adam J. Fillion
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Emmanuel L. Crespo
- College
of Medicine, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Gerard G. Lambert
- Department
of Neurosciences, University of California
San Diego School of Medicine, La Jolla, California 92093, United States
| | - Connor J. Grady
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Albertina T. Zanca
- Department
of Neurosciences, University of California
San Diego School of Medicine, La Jolla, California 92093, United States
| | - Richard Orcutt
- Department
of Neurosciences, University of California
San Diego School of Medicine, La Jolla, California 92093, United States
| | - Ute Hochgeschwender
- College
of Medicine, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nathan C. Shaner
- Department
of Neurosciences, University of California
San Diego School of Medicine, La Jolla, California 92093, United States
| | - Assaf A. Gilad
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
17
|
Goyal D, Kumar H. In Vivo and 3D Imaging Technique(s) for Spatiotemporal Mapping of Pathological Events in Experimental Model(s) of Spinal Cord Injury. ACS Chem Neurosci 2023; 14:809-819. [PMID: 36787542 DOI: 10.1021/acschemneuro.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Endothelial damage, astrogliosis, microgliosis, and neuronal degeneration are the most common events after spinal cord injury (SCI). Studies highlighted that studying the spatiotemporal profile of these events might provide a deeper understanding of the pathophysiology of SCI. For imaging of these events, available conventional techniques such as 2-dimensional histology and immunohistochemistry (IHC) are well established and frequently used to visualize and detect the altered expression of the protein of interest involved in these events. However, the technique requires the physical sectioning of the tissue, and results are also open to misinterpretation. Currently, researchers are focusing more attention toward the advanced tools for imaging the spinal cord's various physiological and pathological parameters. The tools include two-photon imaging, light sheet fluorescence microscopy, in vivo imaging system with fluorescent probes, and in vivo chemical and fluorescent protein-expressing viral-tracers. These techniques outperform the limitations associated with conventional techniques in various aspects, such as optical sectioning of tissue, 3D reconstructed imaging, and imaging of particular planes of interest. In addition to this, these techniques are minimally invasive and less time-consuming. In this review, we will discuss the various advanced imaging methodologies that will evolve in the future to explore the fundamental mechanisms after SCI.
Collapse
Affiliation(s)
- Divya Goyal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat India, 382355
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat India, 382355
| |
Collapse
|
18
|
Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. Int J Mol Sci 2022; 23:ijms232112994. [PMID: 36361784 PMCID: PMC9656028 DOI: 10.3390/ijms232112994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity.
Collapse
|
19
|
Elder N, Fattahi F, McDevitt TC, Zholudeva LV. Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Front Cell Neurosci 2022; 16:962103. [PMID: 36238834 PMCID: PMC9550918 DOI: 10.3389/fncel.2022.962103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
The rapidly growing field of cellular engineering is enabling scientists to more effectively create in vitro models of disease and develop specific cell types that can be used to repair damaged tissue. In particular, the engineering of neurons and other components of the nervous system is at the forefront of this field. The methods used to engineer neural cells can be largely divided into systems that undergo directed differentiation through exogenous stimulation (i.e., via small molecules, arguably following developmental pathways) and those that undergo induced differentiation via protein overexpression (i.e., genetically induced and activated; arguably bypassing developmental pathways). Here, we highlight the differences between directed differentiation and induced differentiation strategies, how they can complement one another to generate specific cell phenotypes, and impacts of each strategy on downstream applications. Continued research in this nascent field will lead to the development of improved models of neurological circuits and novel treatments for those living with neurological injury and disease.
Collapse
Affiliation(s)
- Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Sana Biotechnology, Inc., South San Francisco, CA, United States
| | - Lyandysha V. Zholudeva
- Gladstone Institutes, San Francisco, CA, United States
- *Correspondence: Lyandysha V. Zholudeva,
| |
Collapse
|