1
|
Qu X, Lai X, He M, Zhang J, Xiang B, Liu C, Huang R, Shi Y, Qiao J. Investigation of epilepsy-related genes in a Drosophila model. Neural Regen Res 2026; 21:195-211. [PMID: 39688550 PMCID: PMC12094548 DOI: 10.4103/nrr.nrr-d-24-00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Complex genetic architecture is the major cause of heterogeneity in epilepsy, which poses challenges for accurate diagnosis and precise treatment. A large number of epilepsy candidate genes have been identified from clinical studies, particularly with the widespread use of next-generation sequencing. Validating these candidate genes is emerging as a valuable yet challenging task. Drosophila serves as an ideal animal model for validating candidate genes associated with neurogenetic disorders such as epilepsy, due to its rapid reproduction rate, powerful genetic tools, and efficient use of ethological and electrophysiological assays. Here, we systematically summarize the advantageous techniques of the Drosophila model used to investigate epilepsy genes, including genetic tools for manipulating target gene expression, ethological assays for seizure-like behaviors, electrophysiological techniques, and functional imaging for recording neural activity. We then introduce several typical strategies for identifying epilepsy genes and provide new insights into gene‒gene interactions in epilepsy with polygenic causes. We summarize well-established precision medicine strategies for epilepsy and discuss prospective treatment options, including drug therapy and gene therapy for genetic epilepsy based on the Drosophila model. Finally, we also address genetic counseling and assisted reproductive technology as potential approaches for the prevention of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaochong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaodan Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingfeng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinyuan Zhang
- School of Health Management, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Binbin Xiang
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuqiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ruina Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiwu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jingda Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Samanta D, Bhatia S, Hunter SE, Rao CK, Xiong K, Karakas C, Reeders PC, Erdemir G, Sattar S, Axeen E, Sandoval Karamian AG, Fine AL, Keator CG, Nolan D, Schreiber JM. Current and Emerging Precision Therapies for Developmental and Epileptic Encephalopathies. Pediatr Neurol 2025; 168:67-81. [PMID: 40381457 DOI: 10.1016/j.pediatrneurol.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/20/2025]
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe neurological disorders characterized by childhood-onset seizures and significant developmental impairments. Seizures are often refractory to treatment with traditional antiseizure medications, which fail to address the underlying genetic and molecular mechanisms. This comprehensive review explores the evolving landscape of precision therapeutics for DEEs, focusing on mechanism-driven interventions across key pathophysiologic categories. Targeted approaches for channelopathies include antisense oligonucleotides and gene therapies, such as zorevunersen and ETX101 for SCN1A-related Dravet syndrome, alongside novel small molecules for other ion channel disorders. Advances in targeting neurotransmitter receptor dysfunctions, including γ-aminobutyric acid and glutamate receptor variants, highlight the use of modulators such as gaboxadol, radiprodil, and l-serine, alongside emerging gene therapies. For synaptic dysfunctions, innovative treatments such as chemical chaperones for STXBP1-related disorders and Ras-Raf-MEK-ERK inhibitors for SYNGAP1 pathologies are discussed. The review also examines precision interventions targeting cellular signaling pathways in tuberous sclerosis complex, epigenetic regulation in Rett syndrome, and metabolic interventions like ketogenic diets and targeted supplementation for specific genetic etiologies. Additionally, the importance of enhancing access to genetic testing, conducting robust natural history studies, and employing innovative clinical trial designs is emphasized. Future directions focus on addressing the challenges in developing and implementing gene-based therapies, integrating systems biology, leveraging artificial intelligence for data analysis, and fostering collaboration among stakeholders. The rapidly advancing field of precision therapeutics for DEEs holds promise to improve outcomes through tailored, equitable, and patient-centered care.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Sonal Bhatia
- Division of Pediatric Neurology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Senyene E Hunter
- Division of Child Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chethan K Rao
- Division of Pediatric Neurology, Department of Pediatrics, University of Maryland, Baltimore, Maryland
| | - Katherine Xiong
- Division of Pediatric Neurology, Department of Neurology, Stanford School of Medicine, Palo Alto, California
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, Florida
| | - Gozde Erdemir
- Division of Child Neurology, Department of Pediatrics, Penn State Health Children's Hospital, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shifteh Sattar
- Division of Child Neurology, Department of Neurosciences, Rady Children's Hospital & University of California, San Diego, California
| | - Erika Axeen
- Division of Child Neurology, Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amanda G Sandoval Karamian
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine and Primary Children's Hospital, Salt Lake City, Utah
| | - Anthony L Fine
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Cynthia G Keator
- Department of Neurology, Jane and John Institute of Mind Health, Cook Children's Hospital, Fort Worth, Texas
| | - Danielle Nolan
- Division of Pediatric Neurology, Corewell Health East Beaumont Children's, Royal Oak, Michigan
| | - John M Schreiber
- Division of Epilepsy, Clinical Neurophysiology, and Critical Care Neurology, Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
3
|
Wang S, Perucca E, Berkovic SF, Perucca P. Precision therapies for genetic epilepsies in 2025: Promises and pitfalls. Epilepsia Open 2025. [PMID: 40411479 DOI: 10.1002/epi4.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025] Open
Abstract
By targeting the underlying etiology, precision therapies offer an exciting paradigm shift to improve the stagnant outcomes of drug-resistant epilepsies, including developmental and epileptic encephalopathies. Unlike conventional antiseizure medications (ASMs) which only treat the symptoms (seizures) but have no effect on the underlying disease, precision therapies have the potential to suppress not only the seizures but also disabling comorbidities, including cognitive and behavioral abnormalities, which share the same causative mechanisms. Monogenic epilepsies are an attractive target for precision therapies because of their well-defined molecular mechanisms which can be tested in vitro and can be counteracted by specific drugs. Unfortunately, however, for the vast majority of proposed precision therapies, the evidence for their clinical efficacy is either non-existent or limited to uncontrolled observational accounts. Everolimus is the sole precision therapy with a seizure-related indication with class I evidence of efficacy, highlighting the practical and ethical challenges in obtaining high-level evidence. Here, we review the evidence landscape for candidate precision therapies, including repurposed and innovative treatments currently in development, discuss lessons learned from their use, and highlight strategies to improve their application and evaluation in the clinical setting. PLAIN LANGUAGE SUMMARY: Precision therapies offer a new approach to treat drug-resistant monogenic epilepsies, that is, epilepsies caused by a defect in a single gene. Unlike traditional antiseizure medications, precision therapies target the cause of the disease and have the potential to improve not only seizure control but also concomitant conditions such as cognitive and behavioral disorders. To date, the evidence derived from the clinical use of most proposed precision therapies is limited. This review explores current evidence and strategies to advance their development.
Collapse
Affiliation(s)
- Shuyu Wang
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Lenz S, Sivaloganathan A, Goodman SJ, Cytrynbaum C, Rapley J, Canning E, Baribeau D. Psychopharmacology in children with genetic disorders of epigenetic and chromatin regulation. J Neurodev Disord 2025; 17:21. [PMID: 40275179 PMCID: PMC12023381 DOI: 10.1186/s11689-025-09605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVE Hundreds of rare genetic variants associated with autism or intellectual disability have been identified, and many impact genes known to have a primary epigenetic/chromatin regulatory function. The objective of this study was to examine and compare behavioural profiles and longitudinal psychotropic treatment patterns in children with epigenetic/chromatin variants, other rare variants impacting neurodevelopment, or no known genetic condition. METHODS Using electronic medical records from a pediatric psychopharmacology program for children with autism or intellectual disability, we compared clinical characteristics, longitudinal psychotropic medication profiles and side effects between those with and without a rare genetic variant, and by variant subtype [epigenetic/chromatin regulation or other variant]. RESULTS A total of 331 children attended 2724 unique medical visits between 2019 and 2022, with a mean of 8 follow-up visits over 3.4 years. Nine children (3%) had variants in epigenetic/chromatin regulatory genes (EC), twenty-three children (7%) had other rare genetic variants (OTH), and the rest had no reported variant (NR, n = 299, 90%). Those with a rare genetic variant (EC or OTH) were more likely to have an intellectual disability and had a greater number of co-occurring physical health conditions (p < 0.01). Overall, 66% of psychotropic medications were continued for ≥ 3 visits, while 26% were discontinued. Rates of psychotropic polypharmacy, medication patterns, behavioural challenges, and co-occurring developmental diagnoses were similar between genetic groups. Analyses uncorrected for multiple comparisons suggested those with genetic variants were more likely to experience drowsiness/sedation as a side effect (EC 33%, OTH 35%, NR 16%, p < 0.05); weight gain as a side effect was also higher in the epigenetic/chromatin group (EC 50% vs OTH 11%). CONCLUSION Genetic classification of neurodevelopmental disorders (NDDs) may help anticipate treatment tolerability; additional prescribing considerations may be needed for those with rare variants. Current psychotropic prescribing practices do not differ across rare genetic NDD subgroups.
Collapse
Affiliation(s)
- Sophia Lenz
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Ajilan Sivaloganathan
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Cheryl Cytrynbaum
- The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jesiqua Rapley
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | | | - Danielle Baribeau
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, ON, M4G 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Samanta D. Precision Therapeutics in Lennox-Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2025; 12:481. [PMID: 40310132 PMCID: PMC12025602 DOI: 10.3390/children12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Current treatments primarily focus on symptom management through antiseizure medications (ASMs), dietary therapy, epilepsy surgery, and neuromodulation, but often fail to address the underlying pathophysiology or improve cognitive outcomes. As genetic causes are identified in 30-40% of LGS cases, precision therapeutics targeting specific molecular mechanisms are emerging as promising disease-modifying approaches. This narrative review explores precision therapeutic strategies for LGS based on molecular pathophysiology, including channelopathies (SCN2A, SCN8A, KCNQ2, KCNA2, KCNT1, CACNA1A), receptor and ligand dysfunction (GABA/glutamate systems), cell signaling abnormalities (mTOR pathway), synaptopathies (STXBP1, IQSEC2, DNM1), epigenetic dysregulation (CHD2), and CDKL5 deficiency disorder. Treatment modalities discussed include traditional ASMs, dietary therapy, targeted pharmacotherapy, antisense oligonucleotides, gene therapy, and the repurposing of existing medications with mechanism-specific effects. Early intervention with precision therapeutics may not only improve seizure control but could also potentially prevent progression to LGS in susceptible populations. Future directions include developing computable phenotypes for accurate diagnosis, refining molecular subgrouping, enhancing drug development, advancing gene-based therapies, personalizing neuromodulation, implementing adaptive clinical trial designs, and ensuring equitable access to precision therapeutic approaches. While significant challenges remain, integrating biological insights with innovative clinical strategies offers new hope for transforming LGS treatment from symptomatic management to targeted disease modification.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
6
|
Yan HJ, Liu WH, Xu MX, Wang PY, Gu YJ, Li H, Guo J, Luo S. De novo KCNK4 variant caused epilepsy with febrile seizures plus, neurodevelopmental abnormalities, and hypertrichosis. Front Genet 2025; 16:1499716. [PMID: 40230348 PMCID: PMC11994672 DOI: 10.3389/fgene.2025.1499716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/20/2025] [Indexed: 04/16/2025] Open
Abstract
Background Epilepsy with febrile seizures plus (EFS+) is a syndrome with a strong genetic component. Previously, variants in several genes encoding ion channels have been associated with EFS+. However, the etiology in the majority of patients remains undetermined. Methods Trio-based whole-exome sequencing was performed on a patient with EFS+. Previously reported KCNK4 variants were systemically reviewed to analyze the phenotypic spectrum and core phenotypes. Results A novel de novo KCNK4 variant (c.415G>A/p.Gly139Arg) was identified in a patient with EFS+, neurodevelopmental abnormalities, and hypertrichosis. The identified variant was absent in normal populations, indicated to alter hydrogen bonds with surrounding residues by various protein modeling, predicted to be damaging for protein function by twenty algorithms, located in residues of high conservation across species, and classified as pathogenic by the ACMG guidelines. Protein modeling analyses of the variant suggested a possible gain-of-function effect. Analysis of other eight cases with KCNK4 variants outlined the phenotypic spectrums of KCNK4, ranging from mild benign epilepsy, EFS+ with neurodevelopmental abnormalities, to syndromic neurodevelopmental disorders and revealed neurodevelopmental abnormalities and epilepsy as its core phenotypes. Integrated analysis suggested that minor allele frequency and in silico meta-predictors effectively distinguish pathogenic variants. Conclusion This study suggested the KCNK4 gene as a novel candidate causative gene of EFS+, which would be helpful for the genetic diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Wen-Hui Liu
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Xing Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu-Jie Gu
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Li
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Jing Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China
| | - Sheng Luo
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Boggess SC, Gandhi V, Tsai MC, Marzette E, Teyssier N, Chou JYY, Hu X, Cramer A, Yadanar L, Shroff K, Jeong CG, Eidenschenk C, Hanson JE, Tian R, Kampmann M. A Massively Parallel CRISPR-Based Screening Platform for Modifiers of Neuronal Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.28.582546. [PMID: 39990495 PMCID: PMC11844385 DOI: 10.1101/2024.02.28.582546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Understanding the complex interplay between gene expression and neuronal activity is crucial for unraveling the molecular mechanisms underlying cognitive function and neurological disorders. Here, we developed pooled screens for neuronal activity, using CRISPR interference (CRISPRi) and the fluorescent calcium integrator CaMPARI2. Using this screening method, we evaluated 1343 genes for their effect on excitability in human iPSC-derived neurons, revealing potential links to neurodegenerative and neurodevelopmental disorders. These genes include known regulators of neuronal excitability, such as TARPs and ion channels, as well as genes associated with autism spectrum disorder and Alzheimer's disease not previously described to affect neuronal excitability. This CRISPRi-based screening platform offers a versatile tool to uncover molecular mechanisms controlling neuronal activity in health and disease.
Collapse
|
8
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
9
|
Richardson JC, Higgins GA, Upton N, Massey P, Cunningham M, Wilson S, Holenz J, Taylor C, Lavrov A, Lin H, Matsuoka Y, Brown AJ. The hydroxycarboxylic acid receptor HCA2 is required for the protective effect of ketogenic diet in epilepsy. Pharmacol Res Perspect 2024; 12:e70026. [PMID: 39439218 PMCID: PMC11496569 DOI: 10.1002/prp2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One third of epilepsy patients are resistant to treatment with current anti-seizure medications. The ketogenic diet is used to treat some forms of refractory epilepsy, but the mechanism of its action has not yet been elucidated. In this study, we aimed to investigate whether the hydroxycarboxylic acid receptor 2 (HCA2), a known immunomodulatory receptor, plays a role in mediating the protective effect of this diet. We demonstrate for the first time that selective agonists at this receptor can directly reduce seizures in animal models. Agonists also reduce network activity in rodent and human brain slices. Ketogenic diet is known to increase circulating levels of endogenous HCA2 agonists, and we show that the effect of ketogenic diet in reducing seizures in the 6 Hz seizure model is negated in HCA2-deficient mice. Our data support the potential of HCA2 as a target for the treatment of epilepsy and potentially for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Peter Massey
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
| | - Mark Cunningham
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
- Discipline of Physiology, School of MedicineTrinity College DublinDublin 2Ireland
| | - Steve Wilson
- In vitro and in vivo TranslationGlaxoSmithKline R&D LtdStevenageUK
| | - Joerg Holenz
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | | - Arseniy Lavrov
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdStockley ParkUK
| | - Hong Lin
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | - Yasuji Matsuoka
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | |
Collapse
|
10
|
Castellotti B, Ragona F, Freri E, Messina G, Magri S, Previtali R, Solazzi R, Franceschetti S, Taroni F, Canafoglia L, Gellera C, Granata T, DiFrancesco JC. Next-generation sequencing in pediatric-onset epilepsies: Analysis with target panels and personalized therapeutic approach. Epilepsia Open 2024; 9:1922-1930. [PMID: 39215763 PMCID: PMC11450606 DOI: 10.1002/epi4.13039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The objective of this study is to report the results of the genetic analysis in a large and well-characterized population with pediatric-onset epilepsies and to identify those who could benefit from precision medicine treatments. METHODS In this retrospective observational study, we consecutively recruited patients with pediatric-onset epilepsy observed at a tertiary neurological center over a time span of 7 years, collecting clinical and laboratory findings. Following in-depth diagnostic process to exclude possible structural and metabolic causes of the disease, patients with a suspected genetically determined etiology underwent next-generation sequencing (NGS) screening with panels for the analysis of target genes causative of epilepsy. RESULTS We detected likely pathogenic or pathogenic variants (classes IV and V) in 24% of the 562 patients who underwent genetic investigations. By the evaluation of patients' data, we observed that some features (onset of epilepsy before one year old, presence of neurological deficits, psychomotor delay/cognitive disability, and malformative aspects at brain MRI) were significantly associated with class IV or V variants. Moreover, statistical analysis showed that the diagnostic yield resulted higher for patients affected by Progressive Myoclonic Epilepsy (PME) and with early onset developmental and epileptic encephalopathies (DEE), compared with focal epilepsies, genetic generalized epilepsies, DEE with onset at/after 1 y.o., and unclassified epileptic syndromes. According to the results of the genetic screening, up to 33% of patients carrying class IV or V variants resulted potentially eligible for precision medicine treatments. SIGNIFICANCE The large-scale application of NGS multigene panels of analysis is a useful tool for the molecular diagnosis of patients with pediatric-onset epilepsies, allowing the identification of those who could benefit from a personalized therapeutic approach. PLAIN LANGUAGE SUMMARY The analysis of patients with pediatric-onset epilepsy using advanced technologies for the screening of all the implicated genes allows the identification of the cause of diseases in an ever-increasing number of cases. Understanding the pathogenic mechanisms could, in some cases, guide the selection and optimization of appropriate treatment approaches for patients.
Collapse
Affiliation(s)
- Barbara Castellotti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesca Ragona
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Elena Freri
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Giuliana Messina
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stefania Magri
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Roberto Previtali
- Pediatric Neurology, Department of Biomedical and Clinical Sciences, Buzzi Children's HospitalUniversity of MilanMilanItaly
| | - Roberta Solazzi
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Silvana Franceschetti
- Integrated Diagnostics for EpilepsyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Laura Canafoglia
- Integrated Diagnostics for EpilepsyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Cinzia Gellera
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Tiziana Granata
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | |
Collapse
|
11
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
12
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Carmody LC, Gargano MA, Toro S, Vasilevsky NA, Adam MP, Blau H, Chan LE, Gomez-Andres D, Horvath R, Kraus ML, Ladewig MS, Lewis-Smith D, Lochmüller H, Matentzoglu NA, Munoz-Torres MC, Schuetz C, Seitz B, Similuk MN, Sparks TN, Strauss T, Swietlik EM, Thompson R, Zhang XA, Mungall CJ, Haendel MA, Robinson PN. The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease. MED 2023; 4:913-927.e3. [PMID: 37963467 PMCID: PMC10842845 DOI: 10.1016/j.medj.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Sabrina Toro
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Margaret P Adam
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - David Gomez-Andres
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Megan L Kraus
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Markus S Ladewig
- Department of Ophthalmology, Klinikum Saarbrücken, Saarbrücken, Germany
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottowa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico, Barcelona, Spain
| | | | | | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| | - Morgan N Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timmy Strauss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge CB2 0BB, UK
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottowa, Canada
| | | | | | | | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
14
|
Rastin C, Schenkel LC, Sadikovic B. Complexity in Genetic Epilepsies: A Comprehensive Review. Int J Mol Sci 2023; 24:14606. [PMID: 37834053 PMCID: PMC10572646 DOI: 10.3390/ijms241914606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a highly prevalent neurological disorder, affecting between 5-8 per 1000 individuals and is associated with a lifetime risk of up to 3%. In addition to high incidence, epilepsy is a highly heterogeneous disorder, with variation including, but not limited to the following: severity, age of onset, type of seizure, developmental delay, drug responsiveness, and other comorbidities. Variable phenotypes are reflected in a range of etiologies including genetic, infectious, metabolic, immune, acquired/structural (resulting from, for example, a severe head injury or stroke), or idiopathic. This review will focus specifically on epilepsies with a genetic cause, genetic testing, and biomarkers in epilepsy.
Collapse
Affiliation(s)
- Cassandra Rastin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Laila C. Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
15
|
Bayanova M, Bolatov AK, Bazenova A, Nazarova L, Nauryzbayeva A, Tanko NM, Rakhimova S, Satvaldina N, Samatkyzy D, Kozhamkulov U, Kairov U, Akilzhanova A, Sarbassov D. Whole-Genome Sequencing Among Kazakhstani Children with Early-Onset Epilepsy Revealed New Gene Variants and Phenotypic Variability. Mol Neurobiol 2023; 60:4324-4335. [PMID: 37095367 PMCID: PMC10293429 DOI: 10.1007/s12035-023-03346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and no established cause of the disease during the July-December, 2021. The average age at enrolment was 34.5 months, with a mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of pediatric epilepsy in Kazakhstan is very broad and requires further research.
Collapse
Affiliation(s)
- Mirgul Bayanova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Aidos K Bolatov
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan.
- Astana Medical University, Beybitshilik St. 49A, Z10K9D9, Astana, Kazakhstan.
| | - Assiya Bazenova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Lyazzat Nazarova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Alissa Nauryzbayeva
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Naanlep Matthew Tanko
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan, 010000
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Nazerke Satvaldina
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Diana Samatkyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Dos Sarbassov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
- School of Sciences and Humanities, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| |
Collapse
|
16
|
Carmody LC, Gargano MA, Toro S, Vasilevsky NA, Adam MP, Blau H, Chan LE, Gomez-Andres D, Horvath R, Kraus ML, Ladewig MS, Lewis-Smith D, Lochmüller H, Matentzoglu NA, Munoz-Torres MC, Schuetz C, Seitz B, Similuk MN, Sparks TN, Strauss T, Swietlik EM, Thompson R, Zhang XA, Mungall CJ, Haendel MA, Robinson PN. The Medical Action Ontology: A Tool for Annotating and Analyzing Treatments and Clinical Management of Human Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292612. [PMID: 37503136 PMCID: PMC10370244 DOI: 10.1101/2023.07.13.23292612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine,Farmington,CT,United States
| | - Michael A Gargano
- The Jackson Laboratory for Genomic Medicine,Farmington,CT,United States
| | - Sabrina Toro
- University of Colorado Anschutz Medical Campus,Aurora,CO,United States
| | | | - Margaret P Adam
- University of Washington School of Medicine, Seattle, WA, United States
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine,Farmington,CT,United States
| | | | - David Gomez-Andres
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus., Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way CB2 0PY, Cambridge UK
| | - Megan L Kraus
- University of Colorado Anschutz Medical Campus,Aurora,CO,United States
| | - Markus S Ladewig
- Department of Ophthalmology,Klinikum Saarbrücken,Saarbrücken,Germany
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Berthold Seitz
- Department of Ophthalmology,Saarland University Hospital UKS,Homburg/Saar Germany
| | - Morgan N Similuk
- National Institute of Allergy and Infectious Diseases,National Institutes of Health,Bethesda,MD,United States
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Timmy Strauss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute, CB2 0BB, Cambridge, UK
| | | | | | | | - Melissa A Haendel
- University of Colorado Anschutz Medical Campus,Aurora,CO,United States
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine,Farmington,CT,United States
| |
Collapse
|
17
|
Asadi-Pooya AA. Precision Medicine in Epilepsy Management; GET Application (Gene, Epilepsy, Treatment). Clin Neuropharmacol 2023; 46:95-97. [PMID: 37191562 DOI: 10.1097/wnf.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVES The aim was to develop a prototype of an application (app) that identifies the significance of discovered genes for further consideration in the treatment plan of patients with epilepsy (precision medicine). METHODS MEDLINE was systematically searched for related publications from inception to April 1, 2022. The following search strategy was implemented (title/abstract): "epilepsy" AND "precision" AND "medicine." The following data were extracted: genes, phenotypes associated with those genes, and the recommended treatments. Two other databases were searched to cross-check the retrieved data and add to the data: https://www.genecards.org and https://medlineplus.gov/genetics. Also, the original articles of the identified genes were retrieved. Genes with specific treatment strategies (ie, any specific drug to be selected or to be avoided and also any other specific therapies [eg, diets, supplements, etc]) were selected. RESULTS A database of 93 genes, which are associated with various epilepsy syndromes and for which specific treatment strategies have been suggested, was developed. CONCLUSIONS A Web-based app (a search engine) was developed accordingly that is freely available at http://get.yektaparnian.ir/, GET (Gene, Epilepsy, Treatment). When a patient comes to the clinic with a genetic diagnosis and a specific gene is identified, the physician enters the gene name into the search box, and the app shows whether this genetic epilepsy needs a specific treatment. This endeavor would benefit from input by experts in the field, and the Web site should be developed more comprehensively.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Shiraz University of Medical Sciences, Shiraz, Iran; and Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
18
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
19
|
Papadopoulou E, Pepe G, Konitsiotis S, Chondrogiorgi M, Grigoriadis N, Kimiskidis VK, Tsivgoulis G, Mitsikostas DD, Chroni E, Domouzoglou E, Tsaousis G, Nasioulas G. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J Neurol Sci 2023; 447:120609. [PMID: 36905813 DOI: 10.1016/j.jns.2023.120609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.
Collapse
Affiliation(s)
| | - Georgia Pepe
- GeneKor Medical SA, Spaton 52, Gerakas 15344, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Maria Chondrogiorgi
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Vasilios K Kimiskidis
- First Department of Neurology, "AHEPA" University hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Eleni Domouzoglou
- Department of Pediatrics, University Hospital of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | | | | |
Collapse
|
20
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
21
|
Zimmern V, Korff C. Updates on the diagnostic evaluation, genotype-phenotype correlation, and treatments of genetic epilepsies. Curr Opin Pediatr 2022; 34:538-543. [PMID: 36081356 PMCID: PMC9640276 DOI: 10.1097/mop.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW This article reviews the latest publications in genetic epilepsies, with an eye on publications that have had a translational impact. This review is both timely and relevant as translational discoveries in genetic epilepsies are becoming so frequent that it is difficult for the general pediatrician and even the general child neurologist to keep up. RECENT FINDINGS We divide these publications from 2021 and 2022 into three categories: diagnostic testing, genotype-phenotype correlation, and therapies. We also summarize ongoing and upcoming clinical trials. SUMMARY Two meta-analyses and systematic reviews suggest that exome and genome sequencing offer higher diagnostic yield than gene panels. Genotype-phenotype correlation studies continue to increase our knowledge of the clinical evolution of genetic epilepsy syndromes, particularly with regards to sudden death, auditory dysfunction, neonatal presentation, and magnetoencephalographic manifestations. Pyridoxine supplementation may be helpful in seizure management for various genetic epilepsies. There has been interest in using the neurosteroid ganaxolone for various genetic epilepsy syndromes, with clear efficacy in certain trials. Triheptanoin for epilepsy secondary to glucose transporter 1 ( GLUT1 ) deficiency syndrome is not clearly effective but further studies will be needed.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
22
|
Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022; 101:197-204. [DOI: 10.1016/j.seizure.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
|