1
|
López-Begines S, Borjini N, Lavado-Roldán Á, Mesa-Cruz C, Mavillard F, Wiersma VI, Rubio-Pastor F, Tumini E, Paradela-Leal C, Chiclana-Valcárcel ML, Aguado C, Luján R, Scheper W, Nieto-González JL, Fernández-Chacón R. Neuronal lipofuscinosis caused by Kufs disease/CLN4 DNAJC5 mutations but not by a CSPα/DNAJC5 deficiency. SCIENCE ADVANCES 2025; 11:eads3393. [PMID: 40397740 DOI: 10.1126/sciadv.ads3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Kufs disease/CLN4 is an autosomal dominant neurodegenerative disorder caused by unknown mechanisms through Leu115Arg and Leu116Δ mutations in the DNAJC5 gene that encodes the synaptic vesicle co-chaperone cysteine string protein α (CSPα/DNAJC5). To investigate the disease mechanisms in vivo, we generated three independent mouse lines overexpressing different versions of CSPα/DNAJC5 under the neuron-specific Thy1 promoter: wild-type (WT), Leu115Arg, and Leu116Δ. Mice expressing mutant Leu115Arg CSPα/DNAJC5 are viable but develop motor deficits. As described in patients with Kufs disease, we observed the pathological lipofuscinosis and intracellular structures resembling granular osmiophilic deposits (GRODs) in the mutant but not in the WT transgenic lines. Microglia engulf lipofuscin and lipofuscin-containing neurons. Notably, conventional or conditional knockout mice lacking CSPα/DNAJC5 did not exhibit any signs of increased lipofuscinosis or GRODs. Our novel mouse models provide a valuable tool to investigate the molecular mechanisms underlying Kufs disease/CLN4. DNAJC5 mutations cause neuronal lipofuscinosis through a cell-autonomous gain of a pathological function of CSPα/DNAJC5.
Collapse
Affiliation(s)
- Santiago López-Begines
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Nozha Borjini
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Ángela Lavado-Roldán
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Cristina Mesa-Cruz
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Fabiola Mavillard
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Vera I Wiersma
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Fátima Rubio-Pastor
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Emanuela Tumini
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Carmen Paradela-Leal
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - María L Chiclana-Valcárcel
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Wiep Scheper
- Amsterdam University Medical Centers-location Vrije Univeristeit, Department of Human Genetics; Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Vrije Universiteit and Amsterdam Neuroscience Neurodegeneration, Amsterdam, Netherlands
| | - José L Nieto-González
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| | - Rafael Fernández-Chacón
- Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, and CIBERNED ISCIII, Seville, Spain
| |
Collapse
|
2
|
Ziółkowska EA, Jablonka-Shariff A, Williams LL, Jansen MJ, Wang SH, Eultgen EM, Wood MD, Hunter DA, Sharma J, Sardiello M, Bradley RP, Whiteman IT, Reese R, Pestronk A, Sands MS, Heuckeroth RO, Snyder-Warwick AK, Cooper JD. Identifying and treating CLN3 disease outside the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635518. [PMID: 39975385 PMCID: PMC11838464 DOI: 10.1101/2025.01.29.635518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
CLN3 disease causes profound neurological deficits in affected children, but less well recognized are a variety of peripheral neuromuscular and gastrointestinal problems. We hypothesized that in addition to central nervous system (CNS) degeneration, CLN3 deficiency may also directly affect neuronal and/or glial cell populations in the rest of the body. Therefore, we examined the neuromuscular and enteric nervous system in Cln3 Δex7/8 mice. There was no overt sciatic nerve axon loss or demyelination in Cln3 Δex7/8 mice, but significant loss of terminal Schwann cells (tSCs) at lower limb neuromuscular junctions (NMJ), and progressive NMJ denervation. This was accompanied by pronounced myofiber atrophy, with fewer and displaced myofibril nuclei, with similar pathology seen in a human CLN3 muscle biopsy. Atrophy was also evident in bowel smooth muscle with Cln3 Δex7/8 mice displaying slow bowel transit, and significant loss of both enteric neurons and glial cells throughout the bowel. Similar enteric pathology was evident at autopsy in the small intestine and colon of a human CLN3 case. Neonatal administration of intravenous gene therapy to Cln3 Δex7/8 mice using an AAV9-hCLN3 vector completely prevented tSCs and NMJ pathology, atrophy of both skeletal and smooth muscle, positively impacted bowel transit and largely prevented the loss of enteric neurons and glia. These findings reveal an underappreciated, but profound, impact of CLN3 disease outside the CNS and suggest these novel aspects of disease may be treatable using gene therapy. Graphical abstract
Collapse
|
3
|
Zhang Y, Du B, Zou M, Peng B, Rao Y. Neuronal Ceroid Lipofuscinosis-Concepts, Classification, and Avenues for Therapy. CNS Neurosci Ther 2025; 31:e70261. [PMID: 39925015 PMCID: PMC11808193 DOI: 10.1111/cns.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bingying Du
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
- Department of NeurologyThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Miaozhan Zou
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bo Peng
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Ziółkowska EA, Jansen MJ, Williams LL, Wang SH, Eultgen EM, Takahashi K, Le SQ, Nelvagal HR, Sharma J, Sardiello M, DeBosch BJ, Dickson PI, Anderson JB, Sax SE, Wright CM, Bradley RP, Whiteman IT, Makita T, Grider JR, Sands MS, Heuckeroth RO, Cooper JD. Gene therapy ameliorates bowel dysmotility and enteric neuron degeneration and extends survival in lysosomal storage disorder mouse models. Sci Transl Med 2025; 17:eadj1445. [PMID: 39813314 DOI: 10.1126/scitranslmed.adj1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively. Both mouse lines displayed slow bowel transit in vivo that worsened with age. Although the ENS appeared to develop normally in these mice, there was a progressive and profound loss of myenteric plexus neurons accompanied by changes in enteric glia in adult mice. Similar pathology was evident in colon autopsy material from a child with CLN1 disease. Neonatal administration of adeno-associated virus-mediated gene therapy prevented bowel transit defects, ameliorated loss of enteric neurons, and extended survival in mice. Treatment after weaning was less effective than treating neonatally but still extended the lifespan of CLN1 disease mice. These data provide proof-of-principle evidence of ENS degeneration in two lysosomal storage diseases and suggest that gene therapy can ameliorate ENS disease, also improving survival.
Collapse
Affiliation(s)
- Ewa A Ziółkowska
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Jansen
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Letitia L Williams
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Sophie H Wang
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth M Eultgen
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Keigo Takahashi
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Steven Q Le
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Marco Sardiello
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Patricia I Dickson
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jessica B Anderson
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie E Sax
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina M Wright
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca P Bradley
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ineka T Whiteman
- Batten Disease Support, Research and Advocacy Foundation (US), P.O. Box 30049, Gahanna, OH 43230, USA
- Batten Disease Support and Research Association (Australia), 74 McLachlan Avenue, Shelly Beach, NSW 2261, Australia
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John R Grider
- Department of Physiology and Biophysics, Division of Gastroenterology, VCU Program in Enteric Neuromuscular Sciences (VPENS), Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark S Sands
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Robert O Heuckeroth
- Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Della Vecchia S, Gammaldi N, Ricca I, Mero S, Doccini S, Ardissone A, Bagnoli S, Battini R, Colombi E, Favaro J, Furlan R, Giordano L, Ingannato A, Mandelli A, Manzoni FMP, Milito G, Moroni I, Nacmias B, Nardocci N, Parmeggiani L, Pezzini F, Pietrafusa N, Sartori S, Specchio N, Trivisano M, Ets ANCL, Simonati A, Santorelli FM. Open-label evaluation of oral trehalose in patients with neuronal ceroid lipofuscinoses. J Neurol 2025; 272:94. [PMID: 39775944 DOI: 10.1007/s00415-024-12790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are incurable pediatric neurodegenerative diseases characterized by accumulation of lysosomal material and dysregulation of autophagy. Given the promising results of treatment with trehalose, an autophagy inducer, in cell and animal models of NCL, we conducted an open-label, non-placebo-controlled, non-randomized 12-month prospective study in NCL patients receiving oral trehalose (4 g/day). All were treated with a commercially available formulation for 6 months, followed by a 6-month washout. The primary endpoint was the presence of severe adverse reactions during treatment; secondary endpoints were clinical changes documented using the validated Unified Batten Disease Rating Scale and the Hamburg scale. Leveraging on our recent multiomic studies identifying convergent biomarkers in NCLs, fluid biomarker changes were taken as additional secondary endpoints. Of the 17 patients enrolled, 11 completed the study. Oral intake of trehalose in NCL patients with different genetic forms and at different disease stages was found to be well tolerated over 6 months. Oral trehalose is associated with subjective benefits reported by caregivers, but not with improvement or worsening on clinical scales. Analysis of potential biomarkers demonstrated significant differences between patients and controls at baseline, but we observed no modifications over time, or correlations with clinical scales and treatment. In our pilot experience in a heterogeneous disease group of NCL, oral trehalose seemed safe for patients. While subjective improvements were reported by caregivers, larger multicenter randomized placebo-controlled studies, and perhaps additional clinical tools covering multiple functions affected by the disease, will be needed to identify possible improvements in clinical scale scores and biomarkers.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Ivana Ricca
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Serena Mero
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Stefano Doccini
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Anna Ardissone
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Silvia Bagnoli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Elisa Colombi
- Child Neuropsychiatric Unit, ASL CN2 Alba-Bra, Alba, Italy
| | - Jacopo Favaro
- Neurology and Neurophysiology Unit, Department of Women's and Children's Health, Padua University Hospital, 35128, Padua, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita E Salute San Raffaele University, Milan, Italy
| | - Lucio Giordano
- Paediatric Neurology and Psychiatry Unit, Spedali Civili Children's Hospital, University of Brescia, Brescia, Italy
| | - Assunta Ingannato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Milito
- Paediatric Neurology and Psychiatry Unit, Spedali Civili Children's Hospital, University of Brescia, Brescia, Italy
| | - Isabella Moroni
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Benedetta Nacmias
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nardo Nardocci
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Lucio Parmeggiani
- Child Neurology and Rehabilitation Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134, Verona, Italy
| | - Nicola Pietrafusa
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Sartori
- Neurology and Neurophysiology Unit, Department of Women's and Children's Health, Padua University Hospital, 35128, Padua, Italy
| | - Nicola Specchio
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A-N C L Ets
- Associazione Nazionale CeroidoLipofuscinosi Onlus, Via Oberdan 3, 76015, Trinitapoli, Italy
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134, Verona, Italy
| | | |
Collapse
|
6
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, Biomarker, and Behavioral Characterization of the Grn R493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol 2024; 61:9708-9722. [PMID: 38696065 PMCID: PMC11496013 DOI: 10.1007/s12035-024-04190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Spencer A Jones
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Subhashis Banerjee
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA.
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA.
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA.
| |
Collapse
|
7
|
Takahashi K, Rensing NR, Eultgen EM, Wang SH, Nelvagal HR, Le SQ, Roberts MS, Doray B, Han EB, Dickson PI, Wong M, Sands MS, Cooper JD. GABAergic interneurons contribute to the fatal seizure phenotype of CLN2 disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587276. [PMID: 38585903 PMCID: PMC10996664 DOI: 10.1101/2024.03.29.587276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.
Collapse
|
8
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, biomarker, and behavioral characterization of the GrnR493X mouse model of frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542495. [PMID: 37398305 PMCID: PMC10312473 DOI: 10.1101/2023.05.27.542495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M. Smith
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Geetika Aggarwal
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Michael L. Niehoff
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Spencer A. Jones
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Subhashis Banerjee
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Susan A. Farr
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Andrew D. Nguyen
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| |
Collapse
|
9
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
10
|
Mitsui S, Yamaguchi J, Suzuki C, Uchiyama Y, Tanida I. TUNEL-positive structures in activated microglia and SQSTM1/p62-positive structures in activated astrocytes in the neurodegenerative brain of a CLN10 mouse model. Glia 2023; 71:2753-2769. [PMID: 37571859 DOI: 10.1002/glia.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Neuronal ceroid lipofuscinosis is a group of pediatric neurodegenerative diseases. One of their causative genes, CLN10/CtsD, encodes cathepsin D, a major lysosomal protease. Central nervous system (CNS)-specific CtsD-deficient mice exhibit a neurodegenerative disease phenotype with accumulation of ceroid lipofuscins, granular osmiophilic deposits, and SQSTM1/p62. We focused on activated astrocytes and microglia in this neurodegenerative mouse brain, since there are few studies on the relationship between these accumulators and lysosomes in these glial cells. Activated microglia and astrocytes in this mouse thalamus at p24 were increased by approximately 2.5- and 4.6-fold compared with the control, while neurons were decreased by approximately half. Granular osmiophilic deposits were detected in microglial cell bodies and extended their processes in the thalamus. LAMP1-positive lysosomes, but not SQSTM1/p62 aggregates, accumulated in microglia of this mouse thalamus, whereas both lysosomes and SQSTM1/p62 aggregates accumulated in its astrocytes. TUNEL-positive signals were observed mainly in microglia, but few were observed in neurons and astrocytes. These signals were fragmented DNA from degenerated neurons engulfed by microglia or in the lysosomes of microglia. Abnormal autophagic vacuoles also accumulated in the lysosomes of microglia. Granular osmiophilic deposit-like structures localized to LAMP1-positive lysosomes in CtsD-deficient astrocytes. SQSTM1/p62-positive but LAMP1-negative membranous structures also accumulated in the astrocytes and were less condensed than typical granular osmiophilic deposits. These results suggest that CtsD deficiency leads to intracellular abnormalities in activated microglia and astrocytes in addition to neuronal degeneration.
Collapse
Affiliation(s)
- Shun Mitsui
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Leppert HG, Anderson JT, Timm KJ, Davoli C, Pratt MA, Booth CD, White KA, Rechtzigel MJ, Meyerink BL, Johnson TB, Brudvig JJ, Weimer JM. Sortilin inhibition treats multiple neurodegenerative lysosomal storage disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559064. [PMID: 37790379 PMCID: PMC10543011 DOI: 10.1101/2023.09.22.559064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models. Live-cell imaging and comparative transcriptomics demonstrates that the transcription factor EB (TFEB), an upstream regulator of lysosomal biogenesis, is activated upon treatment with AF38469. Utilizing CLN2 and CLN3 Batten disease mouse models, we performed a short-term efficacy study and show that treatment with AF38469 prevents the accumulation of lysosomal storage material and the development of neuroinflammation, key disease associated pathologies. Tremor phenotypes, an early behavioral phenotype in the CLN2 disease model, were also completely rescued. These findings reveal sortilin inhibition as a novel and highly efficacious therapeutic modality for the treatment of multiple forms of Batten disease.
Collapse
Affiliation(s)
- Hannah G. Leppert
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | - Kaylie J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Cristina Davoli
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | | | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
12
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
13
|
Takahashi K, Eultgen EM, Wang SH, Rensing NR, Nelvagal HR, Dearborn JT, Danos O, Buss N, Sands MS, Wong M, Cooper JD. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J Clin Invest 2023; 133:e165908. [PMID: 37104037 PMCID: PMC10266778 DOI: 10.1172/jci165908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua T. Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jonathan D. Cooper
- Department of Pediatrics
- Department of Neurology, and
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Holmes AD, White KA, Pratt MA, Johnson TB, Likhite S, Meyer K, Weimer JM. Sex-split analysis of pathology and motor-behavioral outcomes in a mouse model of CLN8-Batten disease reveals an increased disease burden and trajectory in female Cln8 mnd mice. Orphanet J Rare Dis 2022; 17:411. [PMID: 36369162 PMCID: PMC9652919 DOI: 10.1186/s13023-022-02564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND CLN8-Batten disease (CLN8 disease) is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 results in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subforms of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype. To determine the impact of sex on CLN8 disease burden and progression, we utilized a Cln8mnd mouse model to measure the impact and progression of histopathological and behavioral outcomes between sexes. RESULTS Several notable sex differences were observed in the presentation of brain pathology, including Cln8mnd female mice consistently presenting with greater GFAP+ astrocytosis and CD68+ microgliosis in the somatosensory cortex, ventral posteromedial/ventral posterolateral nuclei of the thalamus, striatum, and hippocampus when compared to Cln8mnd male mice. Furthermore, sex differences in motor-behavioral assessments revealed Cln8mnd female mice experience poorer motor performance and earlier death than their male counterparts. Cln8mnd mice treated with an AAV9-mediated gene therapy were also examined to assess sex differences on therapeutics outcomes, which revealed no appreciable differences between the sexes when responding to the therapy. CONCLUSIONS Taken together, our results provide further evidence of biologic sex as a modifier of Batten disease progression and outcome, thus warranting consideration when conducting investigations and monitoring therapeutic impact.
Collapse
Affiliation(s)
- Andrew D. Holmes
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Katherine A. White
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Melissa A. Pratt
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Tyler B. Johnson
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Shibi Likhite
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Kathrin Meyer
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University, Columbus, OH USA
| | - Jill M. Weimer
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|