1
|
Ni C, Wang L, Bai Y, Huang F, Shi H, Wu H, Wu X, Huang J. Taurochenodeoxycholic acid activates autophagy and suppresses inflammatory responses in microglia of MPTP-induced Parkinson's disease mice via AMPK/mTOR, AKT/NFκB and Pink1/Parkin signaling pathways mediated by Takeda G protein-coupled receptor 5. Free Radic Biol Med 2025; 235:347-363. [PMID: 40324640 DOI: 10.1016/j.freeradbiomed.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration and necrosis of dopaminergic neurons in the substantia nigra and decreased dopamine secretion in the striatum. Bile acids are important components of animal bile. In recent years, a variety of hydrophilic bile acids have been reported to have ameliorative effects in neurodegenerative diseases. Taurochenodeoxycholic acid (TCDCA) is one of the components of bile acids. However, whether TCDCA can treat PD and its specific mechanism is unclear. In this study, 1-methyl-4-phenylpyridine (MPTP)-induced PD model mice were established to investigate the effects of TCDCA on PD model mice and the impact of microglia-mediated neuroinflammation. Concurrently, in vitro cell experiments utilized the lipopolysaccharide (LPS)-induced BV-2 microglial inflammation model to further investigate the effect and mechanism of TCDCA in inhibiting neuroinflammation. TCDCA effectively improved dyskinesia, attenuated dopaminergic neuronal damage in the substantia nigra and striatum, and inhibited α-Synuclein (α-Syn) expression in the substantia nigra of PD mice. TCDCA significantly inhibited microglia and astrocyte activation in the substantia nigra of PD mice, and decreased the messenger ribonucleic acid (mRNA) and protein expressions of inflammatory factors. In addition, TCDCA was found to inhibit nitric oxide release and reactive oxygen species production in LPS-stimulated BV2 microglia. Furthermore, TCDCA suppressed the production of inflammatory factors, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α), both in vivo and in vitro. Meanwhile, TCDCA significantly promoted Takeda G protein-coupled receptor 5 (TGR5) protein expression and inhibited the phosphorylation of serine/threonine kinase B (AKT), nuclear factor κB (NFκB) and inhibitor of NFκB (IκBα). TCDCA promoted autophagy in vivo and in vitro by increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation, inhibiting mammalian target of rapamycin (mTOR) phosphorylation, increasing LC3II/LC3I and Beclin1 expression, and decreasing P62 expression. Furthermore, TCDCA demonstrated mitochondrial protection by enhancing the expression of PTEN induced putative kinase 1 (Pink1) and Parkin. However, knockdown of TGR5 expression partially counteracted the inhibitory effect of TCDCA on LPS-treated BV-2 cells. Our results manifested that TCDCA activated autophagy and inhibited microglia-mediated neuroinflammation in experimental PD models probably through regulation of AKT/NFκB, AMPK/mTOR and Pink1/Parkin signaling pathways via activation of TGR5.
Collapse
Affiliation(s)
- Chenyang Ni
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jin Huang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ostrakhovitch EA, Ono K, Yamasaki TR. Metabolomics in Parkinson's Disease and Correlation with Disease State. Metabolites 2025; 15:208. [PMID: 40137172 PMCID: PMC11944848 DOI: 10.3390/metabo15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Changes in the level of metabolites, small molecules that are intermediates produced by metabolism or catabolism, are associated with developing diseases. Metabolite signatures in body fluids such as plasma, cerebrospinal fluid, urine, and saliva are associated with Parkinson's disease. Here, we discuss alteration of metabolites in the TCA cycle, pentose phosphate pathway, kynurenic network, and redox system. We also summarize the efforts of many research groups to differentiate between metabolite profiles that characterize PD motor progression and dyskinesia, gait and balance, and non-motor symptoms such as depression and cognitive decline. Understanding how changes in metabolites lead to progression in PD may allow for the identification of individuals at the earliest stage of the disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena A. Ostrakhovitch
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan;
| | - Tritia R. Yamasaki
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
- Lexington VA Medical Center, Department of Neurology, Lexington, KY 40502, USA
| |
Collapse
|
3
|
Mikkelsen ACD, Kjærgaard K, Schapira AHV, Mookerjee RP, Thomsen KL. The liver-brain axis in metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 2025; 10:248-258. [PMID: 39701123 DOI: 10.1016/s2468-1253(24)00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 12/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects around 30% of the global population. Studies suggest that MASLD is associated with compromised brain health and cognitive dysfunction, initiating a growing interest in exploring the liver-brain axis mechanistically within MASLD pathophysiology. With the prevalence of MASLD increasing at an alarming rate, leaving a large proportion of people potentially at risk, cognitive dysfunction in MASLD is a health challenge that requires careful consideration and awareness. This Review summarises the current literature on cognitive function in people with MASLD and discusses plausible causes for its impairment. It is likely that a multifaceted spectrum of factors works collectively to affect cognition in patients with MASLD. We describe the role of inflammation, vascular disease, and brain ageing and neurodegeneration as possible key players. This Review also highlights the need for future studies to identify the optimal test for diagnosing cognitive dysfunction in patients with MASLD, to examine the correlation between MASLD progression and the severity of cognitive dysfunction, and to evaluate whether new MASLD-targeted therapies also improve brain dysfunction.
Collapse
Affiliation(s)
- Anne Catrine Daugaard Mikkelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Rajeshwar P Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Institute for Liver and Digestive Health, University College London, London, UK
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
4
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Kaur H, Swadia D, Sinha S. Bile Acids as Modulators of α-Synuclein Aggregation: Implications for Parkinson's Therapy. ACS Chem Neurosci 2024; 15:4055-4065. [PMID: 39404233 DOI: 10.1021/acschemneuro.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein into toxic amyloid fibrils. Recent research suggests that bile acids altered in PD may influence their aggregation. This study investigates the effects of lithocholic acid (LCA) and deoxycholic acid (DCA) on α-synuclein aggregation and toxicity. LCA significantly accelerates aggregation, reducing the lag phase by 75%, while DCA has a milder impact, decreasing the lag phase by 30%. Binding studies show that LCA interacts with the NAC region and DCA with the N-terminal region of α-synuclein. Aggregation assays and electrophoresis reveal that LCA promotes the formation of toxic, SDS-resistant oligomers more effectively than DCA. Cytotoxicity assays confirm a lower cell viability in LCA-treated samples. Additionally, combined LCA and DCA treatment results in enhanced aggregation and toxicity, indicating a synergistic effect. These findings highlight the role of bile acids in α-synuclein aggregation and PD pathogenesis, suggesting that targeting bile acid metabolism could be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Harpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India
| | - Devansh Swadia
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
6
|
Akbar M, Toppo P, Nazir A. Ageing, proteostasis, and the gut: Insights into neurological health and disease. Ageing Res Rev 2024; 101:102504. [PMID: 39284418 DOI: 10.1016/j.arr.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Collapse
Affiliation(s)
- Mahmood Akbar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pranoy Toppo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
7
|
Santos W, Katchborian-Neto A, Viana GS, Ferreira MS, Martins LC, Vale TC, Murgu M, Dias DF, Soares MG, Chagas-Paula DA, Paula ACC. Metabolomics Unveils Disrupted Pathways in Parkinson's Disease: Toward Biomarker-Based Diagnosis. ACS Chem Neurosci 2024; 15:3168-3180. [PMID: 39177430 PMCID: PMC11378289 DOI: 10.1021/acschemneuro.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by diverse symptoms, where accurate diagnosis remains challenging. Traditional clinical observation methods often result in misdiagnosis, highlighting the need for biomarker-based diagnostic approaches. This study utilizes ultraperformance liquid chromatography coupled to an electrospray ionization source and quadrupole time-of-flight untargeted metabolomics combined with biochemometrics to identify novel serum biomarkers for PD. Analyzing a Brazilian cohort of serum samples from 39 PD patients and 15 healthy controls, we identified 15 metabolites significantly associated with PD, with 11 reported as potential biomarkers for the first time. Key disrupted metabolic pathways include caffeine metabolism, arachidonic acid metabolism, and primary bile acid biosynthesis. Our machine learning model demonstrated high accuracy, with the Rotation Forest boosting model achieving 94.1% accuracy in distinguishing PD patients from controls. It is based on three new PD biomarkers (downregulated: 1-lyso-2-arachidonoyl-phosphatidate and hypoxanthine and upregulated: ferulic acid) and surpasses the general 80% diagnostic accuracy obtained from initial clinical evaluations conducted by specialists. Besides, this machine learning model based on a decision tree allowed for visual and easy interpretability of affected metabolites in PD patients. These findings could improve the detection and monitoring of PD, paving the way for more precise diagnostics and therapeutic interventions. Our research emphasizes the critical role of metabolomics and machine learning in advancing our understanding of the chemical profile of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wanderleya
T. Santos
- Department
of Pharmaceutical Sciences, Federal University
of Juiz de Fora, Juiz de
Fora 36036-900, Brazil
| | | | - Gabriel S. Viana
- Chemistry
Institute, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Miller S. Ferreira
- Chemistry
Institute, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Luiza C. Martins
- Department
of Pharmaceutical Sciences, Federal University
of Juiz de Fora, Juiz de
Fora 36036-900, Brazil
- Faculty
of Medicine, Federal University of Juiz
de Fora, Juiz de
Fora 36036-900, Brazil
| | - Thiago C. Vale
- Faculty
of Medicine, Federal University of Juiz
de Fora, Juiz de
Fora 36036-900, Brazil
| | | | - Danielle F. Dias
- Chemistry
Institute, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Marisi G. Soares
- Chemistry
Institute, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Ana C. C. Paula
- Department
of Pharmaceutical Sciences, Federal University
of Juiz de Fora, Juiz de
Fora 36036-900, Brazil
| |
Collapse
|
8
|
Chiang PI, Chang KH, Tang HY, Wu YR, Cheng ML, Chen CM. Diagnostic Potential of Alternations of Bile Acid Profiles in the Plasma of Patients with Huntington's Disease. Metabolites 2024; 14:394. [PMID: 39057717 PMCID: PMC11278952 DOI: 10.3390/metabo14070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Huntington's disease (HD) is characterized by progressive involuntary chorea movements and cognitive decline. Recent research indicates that metabolic disturbance may play a role in its pathogenesis. Bile acids, produced during cholesterol metabolism in the liver, have been linked to neurodegenerative conditions. This study investigated variations in plasma bile acid profiles among individuals with HD. Plasma levels of 16 primary and secondary bile acids and their conjugates were analyzed in 20 healthy controls and 33 HD patients, including 24 with symptoms (symHD) and 9 carriers in the presymptomatic stage (preHD). HD patients exhibited significantly higher levels of glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA) compared to healthy controls. Conversely, isolithocholic acid levels were notably lower in the HD group. Neurotoxic bile acids (glycocholic acid (GCA) + glycodeoxycholic acid (GDCA) + GCDCA) were elevated in symHD patients, while levels of neuroprotective bile acids (ursodeoxycholic acid (UDCA) + GUDCA + tauroursodeoxycholic acid (TUDCA)) were higher in preHD carriers, indicating a compensatory response to early neuronal damage. These results underscore the importance of changes in plasma bile acid profiles in HD and their potential involvement in disease mechanisms. The identified bile acids (GCDCA, GUDCA, and isolithocholic acid) could potentially serve as markers to distinguish between HD stages and healthy individuals. Nonetheless, further research is warranted to fully understand the clinical implications of these findings and their potential as diagnostic or therapeutic tools for HD.
Collapse
Affiliation(s)
- Ping-I Chiang
- Department of Medical Education, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan-333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Song H, Liu J, Wang L, Hu X, Li J, Zhu L, Pang R, Zhang A. Tauroursodeoxycholic acid: a bile acid that may be used for the prevention and treatment of Alzheimer's disease. Front Neurosci 2024; 18:1348844. [PMID: 38440398 PMCID: PMC10909943 DOI: 10.3389/fnins.2024.1348844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease that has become one of the main factors affecting human health. It has serious impacts on individuals, families, and society. With the development of population aging, the incidence of AD will further increase worldwide. Emerging evidence suggests that many physiological metabolic processes, such as lipid metabolism, are implicated in the pathogenesis of AD. Bile acids, as the main undertakers of lipid metabolism, play an important role in the occurrence and development of Alzheimer's disease. Tauroursodeoxycholic acid, an endogenous bile acid, has been proven to possess therapeutic effects in different neurodegenerative diseases, including Alzheimer's disease. This review tries to find the relationship between bile acid metabolism and AD, as well as explore the therapeutic potential of bile acid taurocursodeoxycholic acid for this disease. The potential mechanisms of taurocursodeoxycholic acid may include reducing the deposition of Amyloid-β protein, regulating apoptotic pathways, preventing tau hyperphosphorylation and aggregation, protecting neuronal synapses, exhibiting anti-inflammatory properties, and improving metabolic disorders. The objective of this study is to shed light on the use of tauroursodeoxycholic acid preparations in the prevention and treatment of AD, with the aim of identifying effective treatment targets and clarifying various treatment mechanisms involved in this disease.
Collapse
Affiliation(s)
- Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
10
|
Munir MU, Ali SA, Chung KHK, Kakinen A, Javed I, Davis TP. Reverse engineering the Gut-Brain Axis and microbiome-metabolomics for symbiotic/pathogenic balance in neurodegenerative diseases. Gut Microbes 2024; 16:2422468. [PMID: 39523450 PMCID: PMC11556280 DOI: 10.1080/19490976.2024.2422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the molecular communications along the gut-brain axis can help in understanding the pathophysiology of neurodegenerative diseases and exploiting the gut microbiome for therapeutics. However, gut microbes and their metabolites have a multifaceted role in mediating both brain physiology and neurodegenerative pathology. There is a lack of understanding of how and when this role is tipped in neurodegenerative diseases and what are those contributing factors, both at local (gut) and distal (neuronal) levels, that drive this imbalance. Here we have reviewed the gut microbiome and its metabolites in the context of the gut-brain axis and summarized how different factors such as gut-microbial diversity, their metabolites, the role of the native immune system and the integrity of gut epithelial and blood-brain barriers are interconnected and collectively define the involvement of gut-microbiome in neurodegenerative pathologies. It also underlines the need for multidisciplinary tools and animal models to simultaneously reflect on many of these factors and to better correlate with clinical observations and data obtained from human biopsies and fecal samples. Harnessing the gut-brain axis will herald a paradigm shift in medicine for neurodegenerative diseases and aging, emphasizing the significance of the microbiome in the broader spectrum of health and disease.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Syed Aoun Ali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
- Clinical and Health Sciences,University of South Australia, Adelaide, SA, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
11
|
Guo M, Wang X, Li Y, Luo A, Zhao Y, Luo X, Li S. Intermittent Fasting on Neurologic Diseases: Potential Role of Gut Microbiota. Nutrients 2023; 15:4915. [PMID: 38068773 PMCID: PMC10707790 DOI: 10.3390/nu15234915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
As the global population ages, the prevalence of neurodegenerative diseases is surging. These disorders have a multifaceted pathogenesis, entwined with genetic and environmental factors. Emerging research underscores the profound influence of diet on the development and progression of health conditions. Intermittent fasting (IF), a dietary pattern that is increasingly embraced and recommended, has demonstrated potential in improving neurophysiological functions and mitigating pathological injuries with few adverse effects. Although the precise mechanisms of IF's beneficial impact are not yet completely understood, gut microbiota and their metabolites are believed to be pivotal in mediating these effects. This review endeavors to thoroughly examine current studies on the shifts in gut microbiota and metabolite profiles prompted by IF, and their possible consequences for neural health. It also highlights the significance of dietary strategies as a clinical consideration for those with neurological conditions.
Collapse
Affiliation(s)
- Mingke Guo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Ailin Luo
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Yilin Zhao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyong Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.W.); (Y.L.); (A.L.); (Y.Z.)
| |
Collapse
|
12
|
Degirmenci Y, Angelopoulou E, Georgakopoulou VE, Bougea A. Cognitive Impairment in Parkinson's Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1756. [PMID: 37893474 PMCID: PMC10608778 DOI: 10.3390/medicina59101756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Cognitive impairment in patients with Parkinson's disease (PD) is one of the commonest and most disabling non-motor manifestations during the course of the disease. The clinical spectrum of PD-related cognitive impairment includes subjective cognitive decline (SCD), mild cognitive impairment (MCI) and PD dementia (PDD). As the disease progresses, cognitive decline creates a significant burden for the family members and/or caregivers of patients with PD, and has a great impact on quality of life. Current pharmacological treatments have demonstrated partial efficacy and failed to halt disease progression, and novel, effective, and safe therapeutic strategies are required. Accumulating preclinical and clinical evidence shows that several agents may provide beneficial effects on patients with PD and cognitive impairment, including ceftriaxone, ambroxol, intranasal insulin, nilotinib, atomoxetine, mevidalen, blarcamesine, prasinezumab, SYN120, ENT-01, NYX-458, GRF6021, fosgonimeton, INT-777, Neuropeptide S, silibinin, osmotin, cordycepin, huperzine A, fibroblast growth factor 21, Poloxamer 188, ginsenoside Rb1, thioredoxin-1, tangeretin, istradefylline and Eugenia uniflora. Potential underlying mechanisms include the inhibition of a-synuclein aggregation, the improvement of mitochondrial function, the regulation of synaptic plasticity, an impact on the gut-brain axis, the modulation of neuroinflammation and the upregulation of neurotrophic factors, as well as cholinergic, dopaminergic, serotoninergic and norepinephrine neurotransmission. In this updated overview, we aim to cover the clinical aspects of the spectrum of PD-related cognitive impairment and discuss recent evidence on emerging treatment approaches that are under investigation at a preclinical and clinical level. Finally, we aim to provide additional insights and propose new ideas for investigation that may be feasible and effective for the spectrum of PD-related cognitive impairment.
Collapse
Affiliation(s)
- Yildiz Degirmenci
- Department of Neurology, School of Medicine, Istanbul Health and Technology University, 34093 Istanbul, Turkey;
- Parkinson’s Disease and Movement Disorders Unit, Neurology Clinic, Sisli Kolan International Hospital, 34384 Istanbul, Turkey
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece;
| | | | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece;
| |
Collapse
|
13
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
14
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Capriglia F, Burgess T, Bandmann O, Mortiboys H. Clinical Trial Highlights: Modulators of Mitochondrial Function. JOURNAL OF PARKINSON'S DISEASE 2023; 13:851-864. [PMID: 37694310 PMCID: PMC10578225 DOI: 10.3233/jpd-239003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Francesco Capriglia
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
3α,7-Dihydroxy-14(13→12) abeo-5β,12α(H),13β(H)-cholan-24-oic Acids Display Neuroprotective Properties in Common Forms of Parkinson's Disease. Biomolecules 2022; 13:biom13010076. [PMID: 36671460 PMCID: PMC9855844 DOI: 10.3390/biom13010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.
Collapse
|