1
|
Du X, Wang Y, Wang X, Tian X, Jing W. Neural circuit mechanisms of epilepsy: Maintenance of homeostasis at the cellular, synaptic, and neurotransmitter levels. Neural Regen Res 2026; 21:455-465. [PMID: 40326979 DOI: 10.4103/nrr.nrr-d-24-00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/19/2024] [Indexed: 05/07/2025] Open
Abstract
Epilepsy, a common neurological disorder, is characterized by recurrent seizures that can lead to cognitive, psychological, and neurobiological consequences. The pathogenesis of epilepsy involves neuronal dysfunction at the molecular, cellular, and neural circuit levels. Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits. The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy. Therefore, this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies, including electroencephalography, magnetic resonance imaging, optogenetics, chemogenetics, deep brain stimulation, and brain-computer interfaces. Additionally, this review discusses these mechanisms from three perspectives: structural, synaptic, and transmitter circuits. The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures, interactions within the same structure, and the maintenance of homeostasis at the cellular, synaptic, and neurotransmitter levels. These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xueqing Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
Langhammer F, Gregor A, Ntamati NR, Ekici AB, Winner B, Nevian T, Zweier C. Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy. Hum Mol Genet 2025; 34:639-650. [PMID: 39849855 PMCID: PMC11924187 DOI: 10.1093/hmg/ddae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB. Subsequent genetic interaction experiments confirmed a functional link between RhoBTB and paralytic, the orthologue of human sodium channels, including epilepsy associated SCN1A, in vivo. We then performed patch-clamp recordings on mature neurons differentiated from human induced pluripotent stem cells with either homozygous frameshifts or patient-specific heterozygous missense variants in the GTPase or the BTB domains. This revealed significantly altered neuronal activity and excitability resulting from BTB domain variants but not from GTPase domain variants or upon complete loss of RHOBTB2. Our study indicates a role of deregulated ion channels in the pathogenesis of RHOBTB2-related developmental and epileptic encephalopathy and points to specific pathomechanisms underlying the observed genotype-phenotype correlations regarding variant zygosity, location and nature.
Collapse
Affiliation(s)
- Franziska Langhammer
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Kussmaulallee 4, Erlangen 91054, Germany
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland
| |
Collapse
|
3
|
Knox AT, Thompson CH, Scott D, Abramova TV, Stieve B, Freeman A, George AL. Genotype-function-phenotype correlations for SCN1A variants identified by clinical genetic testing. Ann Clin Transl Neurol 2025; 12:499-511. [PMID: 39838578 PMCID: PMC11920720 DOI: 10.1002/acn3.52297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/21/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE Interpretation of clinical genetic testing, which identifies a potential genetic etiology in 25% of children with epilepsy, is limited by variants of uncertain significance. Understanding functional consequences of variants can help distinguish pathogenic from benign alleles. We combined automated patch clamp recording with neurophysiological simulations to discern genotype-function-phenotype correlations in a real-world cohort of children with SCN1A-associated epilepsy. METHODS Clinical data were extracted for children with SCN1A variants identified by clinical genetic testing. Functional properties of non-truncating NaV1.1 variant channels were determined using automated patch clamp recording. Functional data were incorporated into a parvalbumin-positive (PV+) interneuron computer model to predict variant effects on neuron firing and were compared with longitudinal clinical data describing epilepsy types, neurocognitive outcomes, and medication response. RESULTS Twelve SCN1A variants were identified (nine non-truncating). Six non-truncating variants exhibited no measurable sodium current in heterologous cells consistent with complete loss of function (LoF). Two variants caused either partial LoF (L479P) or a mixture of gain and loss of function (I1356M). The remaining non-truncating variant (T1250M) exhibited normal function. Functional data changed classification of pathogenicity for six variants. Complete LoF variants were universally associated with seizure onset before one year of age and febrile seizures, and were often associated with drug resistant epilepsy and below average cognitive outcomes. Simulations demonstrated abnormal firing in heterozygous model neurons containing dysfunctional variants. INTERPRETATION In SCN1A-associated epilepsy, functional analysis and neuron simulation studies resolved variants of uncertain significance and correlated with aspects of phenotype and medication response.
Collapse
Affiliation(s)
- Andrew T. Knox
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Christopher H. Thompson
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Dillon Scott
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tatiana V. Abramova
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bethany Stieve
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Abigail Freeman
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alfred L. George
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
5
|
Griflyuk AV, Postnikova TY, Zaitsev AV. Animal Models of Febrile Seizures: Limitations and Recent Advances in the Field. Cells 2024; 13:1895. [PMID: 39594643 PMCID: PMC11592604 DOI: 10.3390/cells13221895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Febrile seizures (FSs) are defined as seizures occurring in children aged 6 months to 5 years with a background of elevated body temperature. It is one of the most common neurological disorders of childhood, emphasizing the importance of understanding the causes of FSs and their impact on the developing nervous system. However, there are significant limitations to the technologies currently available for studying the etiology and pathophysiology of seizures in humans. It is currently not possible to adequately capture the subtle molecular and structural rearrangements of the nervous system that can occur after seizures in humans. The use of animal models can be invaluable for these purposes. The most commonly used models in modern research are hyperthermic models in rats and mice aged 10-12 days. While these models can reproduce many of the characteristics of FSs, they have certain limitations. This review outlines the key considerations when working with models of FSs, provides an overview of current approaches to producing seizures in different model subjects, and presents a summary of key findings regarding morphological and functional changes in the brain and behavioral alterations that have been identified in studies using animal models of FSs.
Collapse
Affiliation(s)
| | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.V.G.); (T.Y.P.)
| |
Collapse
|
6
|
Zhang M, Guo J, Li B, Liu K, Zhao J, Zhang J, Lin X, Tang B, Wang J, Liao W, He N. Characteristic spatial and frequency distribution of mutations in SCN1A. ACTA EPILEPTOLOGICA 2024; 6:37. [PMID: 40217529 PMCID: PMC11960241 DOI: 10.1186/s42494-024-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND SCN1A is the most well-recognized and commonly mutated gene related to epilepsy. This study analyzed the characteristic spatial and frequency distributions of SCN1A mutations, aiming to provide important insight into the mutagenesis etiopathology of SCN1A-associated epilepsy. METHODS Epilepsy-associated SCN1A variants were retrieved from the SCN1A mutation database, the HGMD database, and literature reviews. The base substitutions, mutation frequencies in CpG dinucleotides, and spatial distributions of mutations in terms of exons and structural domains were analyzed. RESULTS A total of 2621 SCN1A variants were identified in 5106 unrelated cases. The most common type was missense mutation, followed by frameshift mutations and splice site mutations. Among the missense mutations, transitions within CpG dinucleotides were much more recurrently identified than transitions within non-CpG dinucleotides, and the most common type was the G > A transition. Among the nonsense mutations, the most predominant type of single-base substitution was the C > T transition, among which 75.3% (235/312) were within CpG sites. The most common "hotspot" codons for missense mutations were codons 101, 946, and 1783; while for nonsense mutations it was codon 712. One-base deletion or insertion was the most common type of frameshift mutation, causing protein truncation. The three most common frameshift mutations were c.5536_5539delAAAC, c.4554dupA, and c.5010_5013delGTTT. Splice mutations were the most frequently identified in exon 4 with a hotspot site c.602 + 1G > A. The spatial distribution of missense mutations showed that exons 22 and 4 had the highest mutation density (111 and 84 mutations per 100 bp, respectively), and exon 12 had the lowest mutation density, with 4 mutations per 100 bp. Further distribution analysis of the protein domains revealed that missense mutations were more common in the pore region and voltage sensor (231 mutations per 100 amino acids, respectively), and the protein truncation mutations were distributed evenly among the domains. CONCLUSIONS SCN1A mutations tend to cluster at distinct sites, depending on the characteristic CpG dinucleotides, exons, and functional domains. Higher mutation density in particular regions, such as exon 22 and exon 4, offers promising targets for therapeutic genetic interventions.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jing Guo
- Department of Neurology, The Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Kang Liu
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayuan Zhao
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayuan Zhang
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuqing Lin
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
7
|
Dinoi G, Conte E, Palumbo O, Benvenuto M, Coppola MA, Palumbo P, Lastella P, Boccanegra B, Di Muro E, Castori M, Carella M, Sciruicchio V, de Tommaso M, Liantonio A, De Luca A, La Neve A, Imbrici P. The Biallelic Inheritance of Two Novel SCN1A Variants Results in Developmental and Epileptic Encephalopathy Responsive to Levetiracetam. Biomedicines 2024; 12:1698. [PMID: 39200163 PMCID: PMC11351414 DOI: 10.3390/biomedicines12081698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Loss-, gain-of-function and mixed variants in SCN1A (Nav1.1 voltage-gated sodium channel) have been associated with a spectrum of neurologic disorders with different severity and drug-responsiveness. Most SCN1A variants are heterozygous changes occurring de novo or dominantly inherited; recessive inheritance has been reported in a few cases. Here, we report a family in which the biallelic inheritance of two novel SCN1A variants, N935Y and H1393Q, occurs in two siblings presenting with drug-responsive developmental and epileptic encephalopathy and born to heterozygous asymptomatic parents. To assess the genotype-phenotype correlation and support the treatment choice, HEK 293 cells were transfected with different combinations of the SCN1A WT and mutant cDNAs, and the resulting sodium currents were recorded through whole-cell patch-clamp. Functional studies showed that the N935Y and H1393Q channels and their combinations with the WT (WT + N935Y and WT + H1393Q) had current densities and biophysical properties comparable with those of their respective control conditions. This explains the asymptomatic condition of the probands' parents. The co-expression of the N935Y + H1393Q channels, mimicking the recessive inheritance of the two variants in siblings, showed ~20% reduced current amplitude compared with WT and with parental channels. This mild loss of Nav1.1 function may contribute in part to the disease pathogenesis, although other mechanisms may be involved.
Collapse
Affiliation(s)
- Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Elena Conte
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Mario Benvenuto
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Maria Antonietta Coppola
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Patrizia Lastella
- Centro Sovraziendale Malattie Rare, UOC Medicina Interna Universitaria “C. Frugoni”, AOU Policlinico Consorziale di Bari, 70124 Bari, Italy;
| | - Brigida Boccanegra
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Ester Di Muro
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.B.); (P.P.); (E.D.M.); (M.C.); (M.C.)
| | - Vittorio Sciruicchio
- Children Epilepsy and EEG Center, Ospedale San Paolo di Bari, 70123 Bari, Italy;
| | - Marina de Tommaso
- DiBraiN Department, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Annamaria De Luca
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| | - Angela La Neve
- DiBraiN Department, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.D.); (E.C.); (M.A.C.); (B.B.); (A.L.); (A.D.L.)
| |
Collapse
|
8
|
Muthaffar OY, Alazhary NW, Alyazidi AS, Alsubaie MA, Bahowarth SY, Odeh NB, Bamaga AK. Clinical description and evaluation of 30 pediatric patients with ultra-rare diseases: A multicenter study with real-world data from Saudi Arabia. PLoS One 2024; 19:e0307454. [PMID: 39024300 PMCID: PMC11257271 DOI: 10.1371/journal.pone.0307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND With the advancement of next-generation sequencing, clinicians are now able to detect ultra-rare mutations that are barely encountered by the majority of physicians. Ultra-rare and rare diseases cumulatively acquire a prevalence equivalent to type 2 diabetes with 80% being genetic in origin and more prevalent among high consanguinity communities including Saudi Arabia. The challenge of these diseases is the ability to predict their prevalence and define clear phenotypic features. METHODS This is a non-interventional retrospective multicenter study. We included pediatric patients with a pathogenic variant designated as ultra-rare according to the National Institute for Clinical Excellence's criteria. Demographic, clinical, laboratory, and radiological data of all patients were collected and analyzed using multinomial regression models. RESULTS We included 30 patients. Their mean age of diagnosis was 16.77 months (range 3-96 months) and their current age was 8.83 years (range = 2-15 years). Eleven patients were females and 19 were males. The majority were of Arab ethnicity (96.77%). Twelve patients were West-Saudis and 8 patients were South-Saudis. SCN1A mutation was reported among 19 patients. Other mutations included SZT2, ROGDI, PRF1, ATP1A3, and SHANK3. The heterozygous mutation was reported among 67.86%. Twenty-nine patients experienced seizures with GTC being the most frequently reported semiology. The mean response to ASMs was 45.50% (range 0-100%). CONCLUSION The results suggest that ultra-rare diseases must be viewed as a distinct category from rare diseases with potential demographic and clinical hallmarks. Additional objective and descriptive criteria to detect such cases are needed.
Collapse
Affiliation(s)
- Osama Y Muthaffar
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura W Alazhary
- Department of General Pediatric, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Anas S Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sarah Y Bahowarth
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nour B Odeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Stawicka E, Zielińska A, Górka-Skoczylas P, Kanabus K, Tataj R, Mazurczak T, Hoffman-Zacharska D. SCN1A-Characterization of the Gene's Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience. Curr Issues Mol Biol 2024; 46:4437-4451. [PMID: 38785537 PMCID: PMC11119865 DOI: 10.3390/cimb46050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study was to characterize the genotype and phenotype heterogeneity of patients with SCN1A gene mutations in the Polish population, fulfilling the criteria for the diagnosis of Dravet syndrome (DRVT). Particularly important was the analysis of the clinical course, the type of epileptic seizures and the co-occurrence of additional features such as intellectual disability, autism or neurological symptoms such as ataxia or gait disturbances. Based on their results and the available literature, the authors discuss potential predictors for DRVT. Identifying these early symptoms has important clinical significance, affecting the course and disease prognosis. 50 patients of the Pediatric Neurology Clinic of the Institute of Mother and Child in Warsaw clinically diagnosed with DRVT and carriers of SCN1A pathogenic variants were included. Clinical data were retrospectively collected from caregivers and available medical records. Patients in the study group did not differ significantly in parameters such as type of first seizure and typical epileptic seizures from those described in other studies. The age of onset of the first epileptic seizure was 2-9 months. The co-occurrence of intellectual disability was confirmed in 71% of patients and autism in 18%. The study did not show a correlation between genotype and phenotype, considering the severity of the disease course, clinical symptoms, response to treatment, the presence of intellectual disability, autism symptoms or ataxia. From the clinical course, a significant problem was the differentiation between complex febrile convulsions and symptoms of DRVT. The authors suggest that parameters such as the age of the first seizure, less than one year of age, the onset of a seizure up to 72 h after vaccination and the presence of more than two features of complex febrile seizures are more typical of DRVT, which should translate into adequate diagnostic and clinical management. The substantial decrease in the age of genetic verification of the diagnosis, as well as the decline in the use of sodium channel inhibitors, underscores the growing attention of pediatric neurologists in Poland to the diagnosis of DRVT.
Collapse
Affiliation(s)
- Elżbieta Stawicka
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland;
| | - Anita Zielińska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (P.G.-S.); (K.K.); (R.T.); (D.H.-Z.)
| | - Paulina Górka-Skoczylas
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (P.G.-S.); (K.K.); (R.T.); (D.H.-Z.)
| | - Karolina Kanabus
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (P.G.-S.); (K.K.); (R.T.); (D.H.-Z.)
| | - Renata Tataj
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (P.G.-S.); (K.K.); (R.T.); (D.H.-Z.)
| | - Tomasz Mazurczak
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland;
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (P.G.-S.); (K.K.); (R.T.); (D.H.-Z.)
| |
Collapse
|
10
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
11
|
Khan MA, Dev S, Kumari M, Mahak F, Umair A, Rasool M, Kumari A, Payal F, Panta U, Deepa F, Varrassi G, Khatri M, Kumar S. Respiratory Dysfunction in Epileptic Encephalopathies: Insights and Challenges. Cureus 2023; 15:e46216. [PMID: 37905295 PMCID: PMC10613478 DOI: 10.7759/cureus.46216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Epileptic encephalopathies constitute a group of severe epileptic disorders characterized by intractable seizures and cognitive regression. Beyond the hallmark neurological manifestations, these disorders frequently exhibit associated respiratory dysfunction, which is increasingly recognized as a critical aspect of their pathophysiology. Respiratory abnormalities in epileptic encephalopathies encompass a spectrum of manifestations, ranging from subtle alterations in breathing patterns to life-threatening events such as apneas and hypoventilation. These respiratory disturbances often occur during seizures, the interictal period, or even persist chronically, leading to significant morbidity and mortality. We explore the varied clinical presentations and their implications on patient outcomes, emphasizing the need for heightened awareness among clinicians. This review unravels the intricate mechanisms linking epilepsy and respiratory dysfunction. GABAergic and glutamatergic imbalances, alterations in central respiratory centers, and abnormal autonomic control are among the key factors contributing to respiratory disturbances in these patients. We elucidate the neurobiological intricacies that underlie these processes and their relevance to therapeutic interventions. Accurate diagnosis of respiratory dysfunction in epileptic encephalopathies is often hindered by its diverse clinical phenotypes and the absence of routine screening protocols. We scrutinize the diagnostic hurdles, highlighting the necessity of comprehensive respiratory assessments in managing these patients. Timely recognition of respiratory issues may guide treatment decisions and mitigate complications. Management of respiratory dysfunction in epileptic encephalopathies is complex and necessitates a multidisciplinary approach. We explore various therapeutic modalities, including antiepileptic drugs (AEDs), ventilatory support, and novel interventions like neuromodulation techniques. The review emphasizes the individualized nature of treatment strategies tailored to each patient's specific needs. In conclusion, this narrative review offers a comprehensive overview of respiratory dysfunction in epileptic encephalopathies, shedding light on its clinical importance, underlying mechanisms, diagnostic challenges, and therapeutic considerations. By addressing these insights and challenges, we hope to inspire further research and innovation to enhance the care and outcomes of patients with epileptic encephalopathies.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, PAK
| | - Shah Dev
- Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maneesha Kumari
- Medicine, Peoples University of Medical and Health Sciences for Women, Shaheed Benazirabad, PAK
| | - Fnu Mahak
- Medicine, Jinnah Postgraduate Medical Center, Karachi, PAK
| | - Ahmed Umair
- Medicine, Fatima Memorial College of Medicine and Dentistry, Lahore, PAK
| | - Maham Rasool
- Medicine, King Edward Medical University (KEMU), Lahore, PAK
| | - Aneesha Kumari
- Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | - Fnu Payal
- Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | - Uttam Panta
- Medicine, Chitwan Medical College, Bharatpur, NPL
| | - Fnu Deepa
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| |
Collapse
|