1
|
Shi S, Meng J, Wu X, Wang J, Wang H, Li P, Qie S. The relationship between fractional amplitude of low-frequency fluctuations (fALFF) and the severity of neglect in patients with unilateral spatial neglect (USN) after stroke: A functional near-infrared spectroscopy study. IBRO Neurosci Rep 2025; 18:31-38. [PMID: 39811428 PMCID: PMC11732227 DOI: 10.1016/j.ibneur.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Unilateral spatial neglect (USN) following right hemisphere stroke is more pronounced, severe, and persistent than in the left hemisphere. However, the pathophysiological mechanisms underlying USN remain largely unknown. This study aims to investigate the relationship between the fractional amplitude of low-frequency fluctuations (fALFF) in the right hemisphere of patients with post-stroke USN and the severity of neglect using resting-state functional near-infrared spectroscopy (fNIRS) technology. This could provide new theoretical insights into the subtle changes in the pathophysiology of spontaneous neural activity in brain regions of patients with USN. Methods Seventeen patients with post-stroke USN (USN group) and twenty-four control subjects (control group) were selected. A 22-channel fNIRS system was used to test the hemodynamic signals of the right hemisphere at rest for all subjects. Data preprocessing and analysis were performed using the NIRS-KIT toolbox. Patients in the USN group were assessed using the Behavioral Inattention Test-Conventional (BIT-C) and the Catherine Bergego Scale (CBS). Differences in fALFF values across channels between the two groups were compared, and the fALFF values from channels showing significant differences in the USN group were correlated with scores on scales evaluating the severity of USN. Results (1) Significant differences in fALFF values were observed between the USN and control groups in specific channels, with channels CH6 and CH11 showing significantly lower fALFF values in the USN group compared to the control group (p < 0.05), while channels CH12, CH16, and CH21 exhibited significantly higher fALFF values in the USN group (p < 0.05). (2) In patients with USN, fALFF values in CH12 were significantly negatively correlated with BIT-C scores (r = -0.4966, p = 0.0443), and fALFF values in CH21 were also significantly negatively correlated with BIT-C scores (r = -0.5270, p = 0.0318). (3) Only the fALFF values in CH21 were significantly positively correlated with CBS scores in patients with USN (r = 0.5512, p = 0.0236). Conclusions The severity of symptoms of neglect towards the left side in patients with USN may be related to compensatory neural functional activity in the right dorsolateral prefrontal cortex area.
Collapse
Affiliation(s)
- Shanshan Shi
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jiaxing Meng
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Wu
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jie Wang
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hujun Wang
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Pengfei Li
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuyan Qie
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Martzoukou M, Nousia A, Nasios G. Undetected language deficits in left or right hemisphere post-stroke patients. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:606-614. [PMID: 36997164 DOI: 10.1080/23279095.2023.2195111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Previous studies have reported that widely used tests for aphasia identification are unable to detect the subtle language deficits of left hemisphere brain damaged (LHBD) individuals. Similarly, the language disorders of individuals with right hemisphere brain damage (RHBD) usually remain undetected, due to the lack of any specialized test for the evaluation of their language processing skills. The aim of the present study was to evaluate the language deficits of 80 individuals suffering from the effects of either a LHBD or RHBD stroke, who were diagnosed as having no aphasia or language deficits based on the application of Boston Diagnostic Aphasia Examination. Their language abilities were examined with the use of the Adults' Language Abilities Test, which explores morpho-syntactic and semantic phenomena of the Greek language in both the comprehension and production modalities. Results revealed that both groups of stroke survivors performed significantly worse compared to the group of healthy participants. Thus, it appears that the latent aphasia of LHBD and the language deficits of RHBD patients are likely to remain undetected and that patients are at risk of not receiving appropriate treatment if their language abilities are not evaluated by an effective and efficient battery of language tests.
Collapse
Affiliation(s)
- Maria Martzoukou
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Ramírez-Guerrero JJ, Narganes-Pineda C, Martín-Signes M, Chica AB. Exploring the causal involvement of the rIPL and white matter interindividual variability in spatial orienting and consciousness. Neuroimage 2025; 310:121137. [PMID: 40089220 DOI: 10.1016/j.neuroimage.2025.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Spatial attention enables the selection of relevant over irrelevant stimuli through dorsal and ventral fronto-parietal networks. These networks are connected through long white matter tracts, such as the superior longitudinal fasciculus (SLF) and the Inferior Fronto-Occipital fasciculus (IFOF). OBJECTIVE/HYPOTHESIS The main purpose of this study was to explore, in healthy participants, the causal role of the right Inferior Parietal Lobe (rIPL) in spatial orienting and conscious perception. We also explored how interindividual differences in the microstructural properties of white matter were related to the effects of transcranial magnetic stimulation (TMS) and, secondarily, to attentional orienting effects in the control stimulation condition. METHODS Participants (n=51) performed a behavioural task involving the detection of a visual stimulus at the threshold of consciousness, preceded by either central (endogenous) or peripheral (exogenous) cues. After cue onset, a burst of TMS pulses was applied over the rIPL or a control active region (vertex). White matter properties were explored through diffusion-weighted imaging tractography and whole-brain NODDI analysis. RESULTS TMS over the rIPL (compared to the control condition) did not modulate spatial attention nor conscious perception, but it decreased accuracy when attention was endogenously oriented (compared to the exogenous condition) and speeded up reaction times when targets were presented in the attended right hemifield (compared to the left hemifield). Part of the variability in the TMS and attentional orienting effects were explained by the integrity of the SLF and the IFOF. CONCLUSIONS Individual variability in attentional orienting effects was associated with the anatomical links between attentional networks. Negative correlations between TMS effects and relevant white matter tracts were interpreted as compensatory mechanisms, while positive correlations with tracts innervating the stimulated area could reflect a TMS signal propagation effect. These results will contribute to the understanding of the role of white matter variability in the susceptibility to neuromodulation, with potential implications for research and clinical treatment.
Collapse
Affiliation(s)
- Joaquín J Ramírez-Guerrero
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| | - Cristina Narganes-Pineda
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| | - Mar Martín-Signes
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain.
| | - Ana B Chica
- Mind, Brain and Behavior Research Centre (CIMCYC), and Experimental Psychology Department, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Coll SY, Marti E, Doganci N, Ptak R. The disengagement deficit after right-hemisphere damage: Distinct roles of lateral frontal and parietal damage. Brain Res Bull 2024; 214:111003. [PMID: 38852652 DOI: 10.1016/j.brainresbull.2024.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
An influential model of spatial attention postulates three main attention-orienting mechanisms: disengagement, shifting, and engagement. Early research linked disengagement deficits with superior parietal damage, regardless of hemisphere or presence of spatial neglect. Subsequent studies supported the involvement of more ventral parietal regions, especially in the right hemisphere, and linked spatial neglect to deficient disengagement from ipsilateral cues. However, previous lesion studies faced serious limitations, such as small sample sizes and the lack of brain-injured controls without neglect. Additionally, some studies employed symbolic cues or used long cue-target intervals, which may fail to reveal impaired disengagement. We here used a machine-learning approach to conduct lesion-symptom mapping (LSM) on 89 patients with focal cerebral lesions to the left (LH) or right (RH) cerebral hemisphere. A group of 54 healthy participants served as controls. The paradigm used to uncover disengagement deficits employed non-predictive cues presented in the visual periphery and at short cue-target intervals, targeting exogenous attention. The main factors of interest were group (healthy participants, LH, RH), target position (left, right hemifield) and cue validity (valid, invalid). LSM-analyses were performed on two indices: the validity effect, computed as the absolute difference between reaction times (RTs) following invalid compared to valid cues, and the disengagement deficit, determined by the difference between contralesional and ipsilesional validity effects. While LH patients showed general slowing of RTs to contralesional targets, only RH patients exhibited a disengagement deficit from ipsilesional cues. LSM associated the validity effect with a right lateral frontal cluster, which additionally affected subcortical white matter of the right arcuate fasciculus, the corticothalamic pathway, and the superior longitudinal fasciculus. In contrast, the disengagement deficit was related to damage involving the right temporoparietal junction. Thus, our results support the crucial role of right inferior parietal and posterior temporal regions for attentional disengagement, but also emphasize the importance of lateral frontal regions, for the reorienting of attention.
Collapse
Affiliation(s)
- Sélim Yahia Coll
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Geneva, Switzerland.
| | - Emilie Marti
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Geneva, Switzerland
| | - Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Serrano-Sponton L, Lange F, Dauth A, Krenzlin H, Perez A, Januschek E, Schumann S, Jussen D, Czabanka M, Ringel F, Keric N, Gonzalez-Escamilla G. Harnessing the frontal aslant tract's structure to assess its involvement in cognitive functions: new insights from 7-T diffusion imaging. Sci Rep 2024; 14:17455. [PMID: 39075100 PMCID: PMC11286763 DOI: 10.1038/s41598-024-67013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The first therapeutical goal followed by neurooncological surgeons dealing with prefrontal gliomas is attempting supramarginal tumor resection preserving relevant neurological function. Therefore, advanced knowledge of the frontal aslant tract (FAT) functional neuroanatomy in high-order cognitive domains beyond language and speech processing would help refine neurosurgeries, predicting possible relevant cognitive adverse events and maximizing the surgical efficacy. To this aim we performed the recently developed correlational tractography analyses to evaluate the possible relationship between FAT's microstructural properties and cognitive functions in 27 healthy subjects having ultra-high-field (7-Tesla) diffusion MRI. We independently assessed FAT segments innervating the dorsolateral prefrontal cortices (dlPFC-FAT) and the supplementary motor area (SMA-FAT). FAT microstructural robustness, measured by the tract's quantitative anisotropy (QA), was associated with a better performance in episodic memory, visuospatial orientation, cognitive processing speed and fluid intelligence but not sustained selective attention tests. Overall, the percentual tract volume showing an association between QA-index and improved cognitive scores (pQACV) was higher in the SMA-FAT compared to the dlPFC-FAT segment. This effect was right-lateralized for verbal episodic memory and fluid intelligence and bilateralized for visuospatial orientation and cognitive processing speed. Our results provide novel evidence for a functional specialization of the FAT beyond the known in language and speech processing, particularly its involvement in several higher-order cognitive domains. In light of these findings, further research should be encouraged to focus on neurocognitive deficits and their impact on patient outcomes after FAT damage, especially in the context of glioma surgery.
Collapse
Affiliation(s)
- Lucas Serrano-Sponton
- Department of Neurosurgery, Sana Clinic Offenbach, Johann Wolfgang Goethe University Frankfurt am Main Academic Hospitals, Starkenburgring 66, 63069, Offenbach am Main, Germany
| | - Felipa Lange
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany
| | - Alice Dauth
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany
| | - Ana Perez
- Department of Neurology, Oslo University Hospital HF, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Elke Januschek
- Department of Neurosurgery, Sana Clinic Offenbach, Johann Wolfgang Goethe University Frankfurt am Main Academic Hospitals, Starkenburgring 66, 63069, Offenbach am Main, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Medical Center of the Johann Wolfgang Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Medical Center of the Johann Wolfgang Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck Str. 1, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
7
|
Gouret A, Le Bars S, Porssut T, Waszak F, Chokron S. Advancements in brain-computer interfaces for the rehabilitation of unilateral spatial neglect: a concise review. Front Neurosci 2024; 18:1373377. [PMID: 38784094 PMCID: PMC11111994 DOI: 10.3389/fnins.2024.1373377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This short review examines recent advancements in neurotechnologies within the context of managing unilateral spatial neglect (USN), a common condition following stroke. Despite the success of brain-computer interfaces (BCIs) in restoring motor function, there is a notable absence of effective BCI devices for treating cerebral visual impairments, a prevalent consequence of brain lesions that significantly hinders rehabilitation. This review analyzes current non-invasive BCIs and technological solutions dedicated to cognitive rehabilitation, with a focus on visuo-attentional disorders. We emphasize the need for further research into the use of BCIs for managing cognitive impairments and propose a new potential solution for USN rehabilitation, by combining the clinical subtleties of this syndrome with the technological advancements made in the field of neurotechnologies.
Collapse
Affiliation(s)
- Alix Gouret
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Solène Le Bars
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Thibault Porssut
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Florian Waszak
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| |
Collapse
|
8
|
Ptak R, Bourgeois A. Disengagement of attention with spatial neglect: A systematic review of behavioral and anatomical findings. Neurosci Biobehav Rev 2024; 160:105622. [PMID: 38490498 DOI: 10.1016/j.neubiorev.2024.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The present review examined the consequences of focal brain injury on spatial attention studied with cueing paradigms, with a particular focus on the disengagement deficit, which refers to the abnormal slowing of reactions following an ipsilesional cue. Our review supports the established notion that the disengagement deficit is a functional marker of spatial neglect and is particularly pronounced when elicited by peripheral cues. Recent research has revealed that this deficit critically depends on cues that have task-relevant characteristics or are associated with negative reinforcement. Attentional capture by task-relevant cues is contingent on damage to the right temporo-parietal junction (TPJ) and is modulated by functional connections between the TPJ and the right insular cortex. Furthermore, damage to the dorsal premotor or prefrontal cortex (dPMC/dPFC) reduces the effect of task-relevant cues. These findings support an interactive model of the disengagement deficit, involving the right TPJ, the insula, and the dPMC/dPFC. These interconnected regions play a crucial role in regulating and adapting spatial attention to changing intrinsic values of stimuli in the environment.
Collapse
Affiliation(s)
- Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; University of Applied Sciences and Arts of Western Switzerland, School of Health Sciences, Avenue de Champel 47, Geneva 1206, Switzerland
| |
Collapse
|
9
|
Seidel Malkinson T, Bayle DJ, Kaufmann BC, Liu J, Bourgeois A, Lehongre K, Fernandez-Vidal S, Navarro V, Lambrecq V, Adam C, Margulies DS, Sitt JD, Bartolomeo P. Intracortical recordings reveal vision-to-action cortical gradients driving human exogenous attention. Nat Commun 2024; 15:2586. [PMID: 38531880 DOI: 10.1038/s41467-024-46013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.
Collapse
Affiliation(s)
- Tal Seidel Malkinson
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| | - Dimitri J Bayle
- Licae Lab, Université Paris Ouest-La Défense, 92000, Nanterre, France
| | - Brigitte C Kaufmann
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Dassault Systèmes, Vélizy-Villacoublay, France
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Katia Lehongre
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Sara Fernandez-Vidal
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Claude Adam
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- AP-HP, Epilepsy and EEG Units, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Reference center of rare epilepsies, EpiCare, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Daniel S Margulies
- Laboratoire INCC, équipe Perception, Action, Cognition, Université de Paris, 75005, Paris, France
| | - Jacobo D Sitt
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm UMRS 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
10
|
Diana L, Casati C, Melzi L, Bianchi Marzoli S, Bolognini N. The effects of occipital and parietal tDCS on chronic visual field defects after brain injury. Front Neurol 2024; 15:1340365. [PMID: 38419713 PMCID: PMC10899507 DOI: 10.3389/fneur.2024.1340365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Homonymous visual field defects (HVFDs) following acquired brain lesions affect independent living by hampering several activities of everyday life. Available treatments are intensive and week- or month-long. Transcranial Direct current stimulation (tDCS), a plasticity-modulating non-invasive brain stimulation technique, could be combined with behavioral trainings to boost their efficacy or reduce treatment duration. Some promising attempts have been made pairing occipital tDCS with visual restitution training, however less is knows about which area/network should be best stimulated in association with compensatory approaches, aimed at improving exploratory abilities, such as multisensory trainings. Methods In a proof-of-principle, sham-controlled, single-blind study, 15 participants with chronic HVFDs underwent four one-shot sessions of active or sham anodal tDCS applied over the ipsilesional occipital cortex, the ipsilesional or contralesional posterior parietal cortex. tDCS was delivered during a compensatory multisensory (audiovisual) training. Before and immediately after each tDCS session, participants carried out a visual detection task, and two visual search tasks (EF and Triangles search tests). Accuracy (ACC) and response times (RTs) were analyzed with generalized mixed models. We investigated differences in baseline performance, clinical-demographic and lesion factors between tDCS responders and non-responders, based on post-tDCS behavioral improvements. Lastly, we conducted exploratory analyses to compare left and right brain-damaged participants. Results RTs improved after active ipsilesional occipital and parietal tDCS in the visual search tasks, while no changes in ACC were detected. Responders to ipsilesional occipital tDCS (Triangle task) had shorter disease duration and smaller lesions of the parietal cortex and the superior longitudinal fasciculus. On the other end, on the EF test, those participants with larger damage of the temporo-parietal cortex or the fronto-occipital white matter tracts showed a larger benefit from contralesional parietal tDCS. Overall, the visual search RTs improvements were larger in participants with right-sided hemispheric lesions. Conclusion The present result shows the facilitatory effects of occipital and parietal tDCS combined with compensatory multisensory training on visual field exploration in HVFDs, suggesting a potential for the development of new neuromodulation treatments to improve visual scanning behavior in brain-injured patients.
Collapse
Affiliation(s)
- Lorenzo Diana
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carlotta Casati
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nadia Bolognini
- Laboratory of Neuropsychology, Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Psychology, University of Milano-Bicocca and NeuroMI, Milan, Italy
| |
Collapse
|
11
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
12
|
de Pasquale F, Chiacchiaretta P, Pavone L, Sparano A, Capotosto P, Grillea G, Committeri G, Baldassarre A. Brain Topological Reorganization Associated with Visual Neglect After Stroke. Brain Connect 2023; 13:473-486. [PMID: 34269620 PMCID: PMC10618825 DOI: 10.1089/brain.2020.0969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.
Collapse
Affiliation(s)
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- IRCCS NEUROMED, Pozzilli, Italy
| |
Collapse
|
13
|
Ott J, Oh-Park M, Boukrina O. Association of delirium and spatial neglect in patients with right-hemisphere stroke. PM R 2023; 15:1075-1082. [PMID: 36377594 PMCID: PMC11299501 DOI: 10.1002/pmrj.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Delirium, an acute and fluctuating decline in cognitive functioning, increases mortality and length of hospital stays (LOS) and adversely affects functional outcomes. Previous studies suggested that the incidence of delirium may be increased in right-hemisphere strokes. Similarly, spatial neglect, a disabling deficit in unilateral spatial processing, is more common and more severe following a right-sided stroke. Spatial neglect has been established as a risk factor for delirium. OBJECTIVE It was hypothesized that functionally relevant spatial neglect and delirium are associated in patients with right-hemisphere stroke during acute inpatient rehabilitation. Data were examined from consecutive unilateral stroke patients evaluated with the 3-minute diagnostic interview for confusion assessment method (3D-CAM) and the Catherine Bergego Scale (CBS) via the Kessler Foundation Neglect Assessment Process (KF-NAP). DESIGN A retrospective, cohort study. SETTING Data collected in an acute inpatient rehabilitation facility. PARTICIPANTS Six hundred twenty six patients with stroke were included. MAIN OUTCOME MEASURES The measures were the relative risk of patients with right-hemisphere stroke having delirium when also positive for spatial neglect compared to patients with right-hemisphere stroke without spatial neglect, the incidence of 3D-CAM positive results by stroke hemisphere, and the effect of spatial neglect and delirium on functional outcomes for patients with right-brain stroke patients. RESULTS There was a significantly higher risk of delirium in patients with right-hemisphere stroke with spatial neglect compared to patients with right-hemisphere stroke without spatial neglect. The rates of 3D-CAM positive results were not statistically different for left- compared to right-hemisphere strokes. Both delirium and spatial neglect had significant adverse effects on right-hemisphere stroke patients' functional independence. CONCLUSIONS The results demonstrate an association between spatial neglect and delirium in patients with right hemisphere stroke in the acute inpatient rehabilitation setting. Because of the negative effect of these impairments on functional outcomes after stroke, prevention, early detection, and targeted treatments should be prioritized for these patients.
Collapse
Affiliation(s)
- Jamie Ott
- Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Mooyeon Oh-Park
- Burke Rehabilitation Hospital, Department of Rehabilitation Medicine, Albert Einstein College of Medicine, Montefiore Health System, White Plains, New York, USA
| | - Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, New Jersey, USA
| |
Collapse
|
14
|
Liu J, Bayle DJ, Spagna A, Sitt JD, Bourgeois A, Lehongre K, Fernandez-Vidal S, Adam C, Lambrecq V, Navarro V, Seidel Malkinson T, Bartolomeo P. Fronto-parietal networks shape human conscious report through attention gain and reorienting. Commun Biol 2023; 6:730. [PMID: 37454150 PMCID: PMC10349830 DOI: 10.1038/s42003-023-05108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.
Collapse
Affiliation(s)
- Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- Dassault Systèmes, Vélizy-Villacoublay, France.
| | | | - Alfredo Spagna
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Department of Psychology, Columbia University in the City of New York, New York, NY, 10027, USA
| | - Jacobo D Sitt
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Katia Lehongre
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Sara Fernandez-Vidal
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Claude Adam
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Clinical Neurophysiology Department, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Clinical Neurophysiology Department, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Tal Seidel Malkinson
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- CNRS, CRAN, Université de Lorraine, F-54000, Nancy, France.
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
| |
Collapse
|
15
|
Kaufmann BC, Cazzoli D, Pastore-Wapp M, Vanbellingen T, Pflugshaupt T, Bauer D, Müri RM, Nef T, Bartolomeo P, Nyffeler T. Joint impact on attention, alertness and inhibition of lesions at a frontal white matter crossroad. Brain 2023; 146:1467-1482. [PMID: 36200399 PMCID: PMC10115237 DOI: 10.1093/brain/awac359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday life, information from different cognitive domains-such as visuospatial attention, alertness and inhibition-needs to be integrated between different brain regions. Early models suggested that completely segregated brain networks control these three cognitive domains. However, more recent accounts, mainly based on neuroimaging data in healthy participants, indicate that different tasks lead to specific patterns of activation within the same, higher-order and 'multiple-demand' network. If so, then a lesion to critical substrates of this common network should determine a concomitant impairment in all three cognitive domains. The aim of the present study was to critically investigate this hypothesis, i.e. to identify focal stroke lesions within the network that can concomitantly affect visuospatial attention, alertness and inhibition. We studied an unselected sample of 60 first-ever right-hemispheric, subacute stroke patients using a data-driven, bottom-up approach. Patients performed 12 standardized neuropsychological and oculomotor tests, four per cognitive domain. A principal component analysis revealed a strong relationship between all three cognitive domains: 10 of 12 tests loaded on a first, common component. Analysis of the neuroanatomical lesion correlates using different approaches (i.e. voxel-based and tractwise lesion-symptom mapping, disconnectome maps) provided convergent evidence on the association between severe impairment of this common component and lesions at the intersection of superior longitudinal fasciculus II and III, frontal aslant tract and, to a lesser extent, the putamen and inferior fronto-occipital fasciculus. Moreover, patients with a lesion involving this region were significantly more impaired in daily living cognition, which provides an ecological validation of our results. A probabilistic functional atlas of the multiple-demand network was performed to confirm the potential relationship between patients' lesion substrates and observed cognitive impairments as a function of the multiple-demand network connectivity disruption. These findings show, for the first time, that a lesion to a specific white matter crossroad can determine a concurrent breakdown in all three considered cognitive domains. Our results support the multiple-demand network model, proposing that different cognitive operations depend on specific collaborators and their interaction, within the same underlying neural network. Our findings also extend this hypothesis by showing (i) the contribution of superior longitudinal fasciculus and frontal aslant tract to the multiple-demand network; and (ii) a critical neuroanatomical intersection, crossed by a vast amount of long-range white matter tracts, many of which interconnect cortical areas of the multiple-demand network. The vulnerability of this crossroad to stroke has specific cognitive and clinical consequences; this has the potential to influence future rehabilitative approaches.
Collapse
Affiliation(s)
- Brigitte C Kaufmann
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | | | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - René M Müri
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
| | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
16
|
Di Gregorio F, Petrone V, Casanova E, Lullini G, Romei V, Piperno R, La Porta F. Hierarchical psychophysiological pathways subtend perceptual asymmetries in Neglect. Neuroimage 2023; 270:119942. [PMID: 36796529 DOI: 10.1016/j.neuroimage.2023.119942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Stroke patients with left Hemispatial Neglect (LHN) show deficits in perceiving left contralesional stimuli with biased visuospatial perception towards the right hemifield. However, very little is known about the functional organization of the visuospatial perceptual neural network and how this can account for the profound reorganization of space representation in LHN. In the present work, we aimed at (1) identifying EEG measures that discriminate LHN patients against controls and (2) devise a causative neurophysiological model between the discriminative EEG measures. To these aims, EEG was recorded during exposure to lateralized visual stimuli which allowed for pre-and post-stimulus activity investigation across three groups: LHN patients, lesioned controls, and healthy individuals. Moreover, all participants performed a standard behavioral test assessing the perceptual asymmetry index in detecting lateralized stimuli. The between-groups discriminative EEG patterns were entered into a Structural Equation Model for the identification of causative hierarchical associations (i.e., pathways) between EEG measures and the perceptual asymmetry index. The model identified two pathways. A first pathway showed that the combined contribution of pre-stimulus frontoparietal connectivity and individual-alpha-frequency predicts post-stimulus processing, as measured by visual-evoked N100, which, in turn, predicts the perceptual asymmetry index. A second pathway directly links the inter-hemispheric distribution of alpha-amplitude with the perceptual asymmetry index. The two pathways can collectively explain 83.1% of the variance in the perceptual asymmetry index. Using causative modeling, the present study identified how psychophysiological correlates of visuospatial perception are organized and predict the degree of behavioral asymmetry in LHN patients and controls.
Collapse
Affiliation(s)
- Francesco Di Gregorio
- UOC Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, Bologna 40133, Italy
| | - Valeria Petrone
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Emanuela Casanova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giada Lullini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Romei
- Dipartimento di Psicologia, Centro Studi E Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena 47521, Italy
| | - Roberto Piperno
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio La Porta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Zhang X, Li Y, Guan Q, Dong D, Zhang J, Meng X, Chen F, Luo Y, Zhang H. Distance-dependent reconfiguration of hubs in Alzheimer's disease: a cross-tissue functional network study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.532772. [PMID: 36993290 PMCID: PMC10055319 DOI: 10.1101/2023.03.24.532772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance and susceptible to neuropathological damage. However, few studies examined the hubs of cross-tissue distance-dependent networks and their changes in Alzheimer's disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older adults (NC), we constructed the cross-tissue networks based on functional connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and distance-dependent networks (characterized by gradually increased Euclidean distances between GM and WM voxels), their hubs were identified with weight degree metrics (frWD and ddWD). We compared these WD metrics between AD and NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC analysis. With increasing distance, the GM hubs of distance-dependent networks moved from the medial to lateral cortices, and the WM hubs spread from the projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were primarily located in the hubs of distance-dependent networks around 20-100mm. Decreased ddWDs were located in the left corona radiation (CR), which had decreased FCs with the executive network's GM regions in AD. Increased ddWDs were located in the posterior thalamic radiation (PTR) and the temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the salience network's GM regions in AD. The reconfiguration of cross-tissue distance-dependent networks possibly reflected the disruption in the neural circuit of executive function and the compensatory changes in the neural circuits of visuospatial and social-emotional functions in AD.
Collapse
Affiliation(s)
- Xingxing Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yingjia Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Yuejia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Haobo Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | | |
Collapse
|
18
|
Ortiz-Zuñiga AM, Rojano Toimil A, Rahnama K, Lainez E, Raguer N, Simó-Servat O, Hernández C, Simó R, Ciudin A. Retinal sensitivity and gaze fixation evaluated by microperimetry in subjects with type 2 diabetes: two independent parameters that explore different neuronal circuits. J Endocrinol Invest 2023:10.1007/s40618-023-02046-y. [PMID: 36870015 PMCID: PMC10371889 DOI: 10.1007/s40618-023-02046-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND AIMS Retinal sensitivity (RS) and gaze fixation (GF) assessed by retinal microperimetry are useful and complementary tools for identifying mild cognitive impairment (MCI) in patients with type 2 diabetes (T2D). The hypothesis is that RS and GF examine different neural circuits: RS depends only on the visual pathway while GF reflects white matter complex connectivity networks. The aim of the study is to shed light to this issue by examining the relationship of these two parameters with visual evoked potentials (VEP), the current gold standard to examine the visual pathway. MATERIALS AND METHODS Consecutive T2D patients > 65 years were recruited from the outpatient clinic. Retinal microperimetry (MAIA 3rd generation) and visual evoked potentials (VEP) (Nicolet Viking ED). RS (dB), GF (BCEA63%, BCEA95%) (MAIA) and VEP (Latency P100ms, Amplitude75-100 uV) were analyzed. RESULTS Thirty three patients (45% women, 72.1 ± 4.6 years) were included. VEP parameters significantly correlated with RS but not with GF. CONCLUSIONS These results confirm that RS but not GF depends on the visual pathway, reinforcing the concept that they are complementary diagnostic tools. Used together can further increase the value of microperimetry as screening test for identifying T2D population with cognitive impairment.
Collapse
Affiliation(s)
- A M Ortiz-Zuñiga
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Pg Vall Hebron 119-129, 08035, Barcelona, Spain
| | - A Rojano Toimil
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
| | - K Rahnama
- Department of Clinical Neurophysiology, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
| | - E Lainez
- Department of Clinical Neurophysiology, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
| | - N Raguer
- Department of Clinical Neurophysiology, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
| | - O Simó-Servat
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Pg Vall Hebron 119-129, 08035, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5.Pabellón 11, 28029, Madrid, Spain
| | - C Hernández
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Pg Vall Hebron 119-129, 08035, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5.Pabellón 11, 28029, Madrid, Spain
| | - R Simó
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain.
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Pg Vall Hebron 119-129, 08035, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5.Pabellón 11, 28029, Madrid, Spain.
| | - A Ciudin
- Department of Endocrinology and Nutrition, Hospital Universitari Vall Hebron, Pg Vall Hebron 119-129, 08035, Barcelona, Spain.
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Pg Vall Hebron 119-129, 08035, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5.Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Spagna A, Bayle DJ, Romeo Z, Seidel-Malkinson T, Liu J, Yahia-Cherif L, Chica AB, Bartolomeo P. The cost of attentional reorienting on conscious visual perception: an MEG study. Cereb Cortex 2023; 33:2048-2060. [PMID: 35609335 DOI: 10.1093/cercor/bhac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, New York, NY 10027, USA.,Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Dimitri J Bayle
- Licae Lab, Université Paris Nanterre, 92001 Nanterre, France
| | - Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Tal Seidel-Malkinson
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Ana B Chica
- Department of Experimental Psychology; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, 18071 Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
20
|
Lafitte R, Jeager M, Piscicelli C, Dai S, Lemaire C, Chrispin A, Davoine P, Dupierrix E, Pérennou D. Spatial neglect encompasses impaired verticality representation after right hemisphere stroke. Ann N Y Acad Sci 2023; 1520:140-152. [PMID: 36478572 DOI: 10.1111/nyas.14938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spatial neglect after right hemisphere stroke (RHS) was recently found to encompass lateropulsion, a deficit in body orientation with respect to gravity caused by altered brain processing of graviception. By analogy, we hypothesized that spatial neglect after RHS might encompass an altered representation of verticality. We also assumed a strong relation between body neglect and impaired postural vertical, both referring to the body. To tackle these issues, we performed contingency and correlation analyses between two domains of spatial neglect (body, extra-body) and two modalities of verticality perception (postural, visual) in 77 individuals (median age = 67) with a first-ever subacute RHS (1-3 months). All individuals with a transmodal (postural and visual) tilt in verticality perception (n = 26) had spatial neglect, but the reverse was not found. Correlation and multivariate analyses revealed that spatial neglect (and notably body neglect) was associated more with postural than visual vertical tilts. These findings indicate that after RHS, an impaired verticality representation results from a kind of graviceptive neglect, bearing first on somaesthetic graviception and second on vestibular graviception. They also suggest that the human brain uses not only a mosaic of 2D representations but also 3D maps involving a transmodal representation of verticality.
Collapse
Affiliation(s)
- Rémi Lafitte
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Marie Jeager
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Céline Piscicelli
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Shenhao Dai
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Camille Lemaire
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Anne Chrispin
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Patrice Davoine
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Eve Dupierrix
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| | - Dominic Pérennou
- Department of Neurorehabilitation, Univ. Grenoble Alpes, UMR CNRS 5105 Neuropsychology and Neurocognition, CHU Grenoble Alpes, South Hospital, Grenoble, France
| |
Collapse
|
21
|
Spadone S, de Pasquale F, Digiovanni A, Grande E, Pavone L, Sensi SL, Committeri G, Baldassarre A. Dynamic brain states in spatial neglect after stroke. Front Syst Neurosci 2023; 17:1163147. [PMID: 37205053 PMCID: PMC10185806 DOI: 10.3389/fnsys.2023.1163147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Previous studies indicated that spatial neglect is characterized by widespread alteration of resting-state functional connectivity and changes in the functional topology of large-scale brain systems. However, whether such network modulations exhibit temporal fluctuations related to spatial neglect is still largely unknown. This study investigated the association between brain states and spatial neglect after the onset of focal brain lesions. A cohort of right-hemisphere stroke patients (n = 20) underwent neuropsychological assessment of neglect as well as structural and resting-state functional MRI sessions within 2 weeks from stroke onset. Brain states were identified using dynamic functional connectivity as estimated by the sliding window approach followed by clustering of seven resting state networks. The networks included visual, dorsal attention, sensorimotor, cingulo-opercular, language, fronto-parietal, and default mode networks. The analyses on the whole cohort of patients, i.e., with and without neglect, identified two distinct brain states characterized by different degrees of brain modularity and system segregation. Compared to non-neglect patients, neglect subjects spent more time in less modular and segregated state characterized by weak intra-network coupling and sparse inter-network interactions. By contrast, patients without neglect dwelt mainly in more modular and segregated states, which displayed robust intra-network connectivity and anti-correlations among task-positive and task-negative systems. Notably, correlational analyses indicated that patients exhibiting more severe neglect spent more time and dwelt more often in the state featuring low brain modularity and system segregation and vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients yielded two distinct brain states for each sub-cohort. A state featuring widespread strong connections within and between networks and low modularity and system segregation was detected only in the neglect group. Such a connectivity profile blurred the distinction among functional systems. Finally, a state exhibiting a clear separation among modules with strong positive intra-network and negative inter-network connectivity was found only in the non-neglect group. Overall, our results indicate that stroke yielding spatial attention deficits affects the time-varying properties of functional interactions among large-scale networks. These findings provide further insights into the pathophysiology of spatial neglect and its treatment.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- *Correspondence: Antonello Baldassarre
| |
Collapse
|
22
|
Bagattini C, Esposito M, Ferrari C, Mazza V, Brignani D. Connectivity alterations underlying the breakdown of pseudoneglect: New insights from healthy and pathological aging. Front Aging Neurosci 2022; 14:930877. [PMID: 36118681 PMCID: PMC9475001 DOI: 10.3389/fnagi.2022.930877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
A right-hemisphere dominance for visuospatial attention has been invoked as the most prominent neural feature of pseudoneglect (i.e., the leftward visuospatial bias exhibited in neurologically healthy individuals) but the neurophysiological underpinnings of such advantage are still controversial. Previous studies investigating visuospatial bias in multiple-objects visual enumeration reported that pseudoneglect is maintained in healthy elderly and amnesic mild cognitive impairment (aMCI), but not in Alzheimer’s disease (AD). In this study, we aimed at investigating the neurophysiological correlates sustaining the rearrangements of the visuospatial bias along the progression from normal to pathological aging. To this aim, we recorded EEG activity during an enumeration task and analyzed intra-hemispheric fronto-parietal and inter-hemispheric effective connectivity adopting indexes from graph theory in patients with mild AD, patients with aMCI, and healthy elderly controls (HC). Results revealed that HC showed the leftward bias and stronger fronto-parietal effective connectivity in the right as compared to the left hemisphere. A breakdown of pseudoneglect in patients with AD was associated with both the loss of the fronto-parietal asymmetry and the reduction of inter-hemispheric parietal interactions. In aMCI, initial alterations of the attentional bias were associated with a reduction of parietal inter-hemispheric communication, but not with modulations of the right fronto-parietal connectivity advantage, which remained intact. These data provide support to the involvement of fronto-parietal and inter-parietal pathways in the leftward spatial bias, extending these notions to the complex neurophysiological alterations characterizing pathological aging.
Collapse
Affiliation(s)
- Chiara Bagattini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- *Correspondence: Chiara Bagattini,
| | - Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Right-side spatial neglect and white matter disconnection after left-hemisphere strokes. Brain Struct Funct 2022; 227:2991-3000. [PMID: 35925419 DOI: 10.1007/s00429-022-02541-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
Spatial neglect usually concerns left-sided events after right-hemisphere damage. Its anatomical correlates are debated, with evidence suggesting an important role for fronto-parietal white matter disconnections in the right hemisphere. Here, we describe the less frequent occurrence of neglect for right-sided events, observed in three right-handed patients after a focal stroke in the left hemisphere. Patients were tested 1 month and 3 months after stroke. They performed a standardized paper-and-pencil neglect battery and underwent brain MRI with both structural and diffusion tensor (DT) sequences, in order to assess both grey matter and white matter tracts metrics. Lesions were manually reconstructed for each patient. Patients presented signs of mild right-sided neglect during visual search and line bisection. One patient also showed pathological performance in everyday life. Structural MRI demonstrated left parietal strokes in two patients, in the region extending from the postcentral gyrus to the temporo-parietal junction. One of these two patients also had had a previous occipital stroke. The remaining patient had a left frontal stroke, affecting the precentral, the postcentral gyri and the basal ganglia. DT MRI tractography showed disconnections in the fronto-parietal regions, concerning principally the superior longitudinal fasciculus (SLF). These results suggest an important role for left SLF disconnection in right-side neglect, which complements analogous evidence for right SLF disconnection in left-side neglect.
Collapse
|
24
|
Franceschiello B, Noto TD, Bourgeois A, Murray MM, Minier A, Pouget P, Richiardi J, Bartolomeo P, Anselmi F. Machine learning algorithms on eye tracking trajectories to classify patients with spatial neglect. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106929. [PMID: 35675721 DOI: 10.1016/j.cmpb.2022.106929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task. METHODS We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements. We use traditional machine learning algorithms together with deep convolutional networks (both 1D and 2D) to automatically analyze eye trajectories. RESULTS Our top-performing machine learning models classified neglect patients vs. healthy individuals with an Area Under the ROC curve (AUC) ranging from 0.83 to 0.86. Moreover, the 1D convolutional neural network scores correlated with the degree of severity of neglect behavior as estimated with standardized paper-and-pencil tests and with the integrity of white matter tracts measured from Diffusion Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation with the third branch of the superior longitudinal fasciculus (SLF), especially damaged in neglect. CONCLUSIONS The study introduces new methods for both the pre-processing and the classification of eye-movement trajectories in patients with neglect syndrome. The proposed methods can likely be applied to other types of neurological diseases opening the possibility of new computer-aided, precise, sensitive and non-invasive diagnostic tools.
Collapse
Affiliation(s)
- Benedetta Franceschiello
- The LINE (Laboratory for Investigative Neurophysiology), Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland; School of Engineering, Institute of Systems Engineering, HES-SO Valais-Wallis, Route de L'industrie 23, Sion, Switzerland
| | - Tommaso Di Noto
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.; Department of Ophthalmology, Fondation Asile des Aveugles and University of Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Astrid Minier
- The LINE (Laboratory for Investigative Neurophysiology), Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.; Department of Ophthalmology, Fondation Asile des Aveugles and University of Lausanne, Lausanne, Switzerland
| | - Pierre Pouget
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Paolo Bartolomeo
- Sorbonne Universite, Inserm, CNRS, Institut du Cerveau - Paris Brain Institute, ICM, Hopital de la Pitie-Salpetriere, Paris, France
| | - Fabio Anselmi
- Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Brains, Minds, and Machines, McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.
| |
Collapse
|
25
|
Concurrent frontal and parietal network TMS for modulating attention. iScience 2022; 25:103962. [PMID: 35295814 PMCID: PMC8919227 DOI: 10.1016/j.isci.2022.103962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/17/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.
Collapse
|
26
|
Saccani MS, Contemori G, Corolli C, Bonato M. Transforming a Concept in a Tool: Diagnostic and Prognostic Value of Tasks Depleting Cognitive Resources. Front Psychol 2022; 12:787374. [PMID: 35153909 PMCID: PMC8828570 DOI: 10.3389/fpsyg.2021.787374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Silvia Saccani
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Giulio Contemori
- Department of General Psychology, University of Padua, Padua, Italy
| | - Chiara Corolli
- Department of General Psychology, University of Padua, Padua, Italy
| | - Mario Bonato
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Herbet G, Duffau H. Contribution of the medial eye field network to the voluntary deployment of visuospatial attention. Nat Commun 2022; 13:328. [PMID: 35039507 PMCID: PMC8763913 DOI: 10.1038/s41467-022-28030-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/02/2022] [Indexed: 11/09/2022] Open
Abstract
Historically, the study of patients with spatial neglect has provided fundamental insights into the neural basis of spatial attention. However, lesion mapping studies have been unsuccessful in establishing the potential role of associative networks spreading on the dorsal-medial axis, mainly because they are uncommonly targeted by vascular injuries. Here we combine machine learning-based lesion-symptom mapping, disconnection analyses and the longitudinal behavioral data of 128 patients with well-delineated surgical resections. The analyses show that surgical resections in a location compatible with both the supplementary and the cingulate eye fields, and disrupting the dorsal-medial fiber network, are specifically associated with severely diminished performance on a visual search task (i.e., visuo-motor exploratory neglect) with intact performance on a task probing the perceptual component of neglect. This general finding provides causal evidence for a role of the frontal-medial network in the voluntary deployment of visuo-spatial attention.
Collapse
Affiliation(s)
- Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, INSERM U1191, CNRS UMR 5203, 141, rue de la Cardonille, 34094, Montpellier, France.
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, 80, Boulevard Augustin Fliche, 34095, Montpellier, France.
| | - Hugues Duffau
- Institute of Functional Genomics, University of Montpellier, INSERM U1191, CNRS UMR 5203, 141, rue de la Cardonille, 34094, Montpellier, France
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, 80, Boulevard Augustin Fliche, 34095, Montpellier, France
| |
Collapse
|
28
|
A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: what is the evidence so far? Acta Neurochir (Wien) 2022; 164:177-191. [PMID: 34674026 PMCID: PMC8761150 DOI: 10.1007/s00701-021-05012-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Over the past decade, the functional importance of white matter pathways has been increasingly acknowledged in neurosurgical planning. A method to directly study anatomo-functional correlations is direct electrical stimulation (DES). DES has been widely accepted by neurosurgeons as a reliable tool to minimize the occurrence of permanent postoperative motor, vision, and language deficits. In recent years, DES has also been used for stimulation mapping of other cognitive functions, such as executive functions and visuospatial awareness. METHODS The aim of this review is to summarize the evidence so far from DES studies on subcortical pathways that are involved in visuospatial awareness and in the following three executive functions: (1) inhibitory control, (2) working memory, and (3) cognitive flexibility. RESULTS Eleven articles reported on intraoperative electrical stimulation of white matter pathways to map the cognitive functions and explicitly clarified which subcortical tract was stimulated. The results indicate that the right SLF-II is involved in visuospatial awareness, the left SLF-III and possibly the right SLF-I are involved in working memory, and the cingulum is involved in cognitive flexibility. CONCLUSIONS We were unable to draw any more specific conclusions, nor unequivocally establish the critical involvement of pathways in executive functions or visuospatial awareness due to the heterogeneity of the study types and methods, and the limited number of studies that assessed these relationships. Possible approaches for future research to obtain converging and more definite evidence for the involvement of pathways in specific cognitive functions are discussed.
Collapse
|
29
|
Bartolomeo P. From competition to cooperation: Visual neglect across the hemispheres. Rev Neurol (Paris) 2021; 177:1104-1111. [PMID: 34561121 DOI: 10.1016/j.neurol.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Visuospatial neglect is a frequent and disabling consequence of injuries to the right hemisphere. Patients with neglect show signs of impaired attention for left-sided events, which depends on dysfunction of fronto-parietal networks. After unilateral injury, such as stroke, these networks and their contralateral homologs can reorganize following multiple potential trajectories, which can be either adaptive or maladaptive. This article presents possible factors influencing the profile of evolution of neglect towards recovery or chronicity, and highlights potential mechanisms that may constrain these processes in time and space. The integrity of white matter pathways within and between the hemisphere appears to pose crucial connectivity constraints for compensatory brain plasticity from remote brain regions. Specifically, the availability of a sufficient degree of inter-hemispheric connectivity might be critical to shift the role of the undamaged left hemisphere in spatial neglect, from exerting maladaptive effects, to promoting compensatory activity.
Collapse
Affiliation(s)
- P Bartolomeo
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| |
Collapse
|
30
|
Ortiz-Zúñiga ÁM, Simó-Servat O, Rojano-Toimil A, Vázquez-de Sebastian J, Castellano-Tejedor C, Hernández C, Simó R, Ciudin A. The Gaze Fixation Assessed by Microperimetry: A Useful Tool for the Monitoring of the Cognitive Function in Patients with Type 2 Diabetes. J Pers Med 2021; 11:jpm11080698. [PMID: 34442342 PMCID: PMC8398405 DOI: 10.3390/jpm11080698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Current guidelines recommend annual screening for cognitive impairment in patients > 65 years with type 2 diabetes (T2D). The most used tool is the mini-mental state evaluation (MMSE). Retinal microperimetry is useful for detecting cognitive impairment in these patients, but there is no information regarding its usefulness as a monitoring tool. We aimed to explore the role of retinal microperimetry in the annual follow-up of the cognitive function of patients with T2D older than 65 years. Materials and Methods: Prospective observational study, comprising patients > 65 years with T2D, attended at our center between March–October 2019. A complete neuropsychological evaluation assessed the baseline cognitive status (mild cognitive impairment, MCI, or normal, NC). Retinal microperimetry (sensitivity, gaze fixation) and MMSE were performed at baseline and after 12 months. Results: Fifty-nine patients with MCI and 22 NC were identified. A significant decline in the MMSE score was observed after 12 months in the MCI group (25.74 ± 0.9 vs. 24.71 ± 1.4; p = 0.001). While no significant changes in retinal sensitivity were seen, all gaze-fixation parameters worsened at 12 months and significantly correlated with a decrease in the MMSE scores. Conclusion: Retinal microperimetry is useful for the monitoring of cognitive decline in patients > 65 years with T2D. Gaze fixation seems a more sensitive parameter for follow-up after 12 months than retinal sensitivity.
Collapse
Affiliation(s)
- Ángel Michael Ortiz-Zúñiga
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
| | - Olga Simó-Servat
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Disease, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rojano-Toimil
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
| | - Julia Vázquez-de Sebastian
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- RE-FiT Barcelona Research Group, Vall d’Hebrón Institute of Research & Parc Sanitari Pere Virgili, 08023 Barcelona, Spain;
| | - Carmina Castellano-Tejedor
- RE-FiT Barcelona Research Group, Vall d’Hebrón Institute of Research & Parc Sanitari Pere Virgili, 08023 Barcelona, Spain;
- GIES Research Group, Basic Psychology Department, Autonomous University of Barcelona, Bellaterra, 08192 Barcelona, Spain
| | - Cristina Hernández
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Disease, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Simó
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Disease, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.S.); (A.C.); Tel.: +34-934-894-172 (R.S.); +34-932-746-591 (A.C.)
| | - Andreea Ciudin
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain; (Á.M.O.-Z.); (O.S.-S.); (J.V.-d.S.); (C.H.)
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, 08035 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Disease, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.S.); (A.C.); Tel.: +34-934-894-172 (R.S.); +34-932-746-591 (A.C.)
| |
Collapse
|
31
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Parr T, Sajid N, Da Costa L, Mirza MB, Friston KJ. Generative Models for Active Vision. Front Neurorobot 2021; 15:651432. [PMID: 33927605 PMCID: PMC8076554 DOI: 10.3389/fnbot.2021.651432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The active visual system comprises the visual cortices, cerebral attention networks, and oculomotor system. While fascinating in its own right, it is also an important model for sensorimotor networks in general. A prominent approach to studying this system is active inference-which assumes the brain makes use of an internal (generative) model to predict proprioceptive and visual input. This approach treats action as ensuring sensations conform to predictions (i.e., by moving the eyes) and posits that visual percepts are the consequence of updating predictions to conform to sensations. Under active inference, the challenge is to identify the form of the generative model that makes these predictions-and thus directs behavior. In this paper, we provide an overview of the generative models that the brain must employ to engage in active vision. This means specifying the processes that explain retinal cell activity and proprioceptive information from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these processes include our choices about where to move our eyes. These decisions rest upon beliefs about salient locations, or the potential for information gain and belief-updating. A key theme of this paper is the relationship between "looking" and "seeing" under the brain's implicit generative model of the visual world.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Lancelot Da Costa
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - M. Berk Mirza
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
33
|
Zorzi G, Thiebaut de Schotten M, Manara R, Bussè C, Corbetta M, Cagnin A. White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. Cortex 2021; 139:86-98. [PMID: 33848693 DOI: 10.1016/j.cortex.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Functional alterations of the visual attention networks in a setting of impaired visual information processing have a role in the genesis of visual hallucinations (VH) in dementia with Lewy bodies (DLB). This multimodal MRI study aims at exploring structural and functional basis of VH. METHODS 23 DLB patients (10 with and 13 without VH) and 13 healthy controls were studied. They underwent MRI with T1-w sequences to measure cortical thickness, DTI for whole-brain and single tract microstructural properties and rs-fMRI of the default mode, dorsal and ventral attention, and visual networks. RESULTS In DLB with VH, whole-brain DTI revealed a lower fractional anisotropy and a greater mean diffusivity in the right frontal and temporo-parietal white matter tracts. Tracts dissection showed lower fractional anisotropy in the right inferior and superior (ventral part) longitudinal fasciculi (ILF and SLF) (p < .05, corrected), and greater mean diffusivity (p < .05). The extent of white matter microstructural alterations involving the right ILF and SLF correlated with the severity of VH (r = .55, p < .01; r = .42, p < .05, respectively), and with performance in the visual attention task (r = -.56 and r = -.61; p < .01, respectively). Cortical thickness in the projection areas of the right SLF was significantly reduced (p < .05). Patients with VH also showed an altered functional connectivity in the ventral attention network, connected by the ventral portion of the SLF (p < .05). CONCLUSIONS Our findings suggest that a combination of microstructural and functional alterations involving the attention networks in the right hemisphere may be important in the genesis of VH.
Collapse
Affiliation(s)
- Giovanni Zorzi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Michel Thiebaut de Schotten
- Padova Neuroscience Center, University of Padova, Padova, Italy; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Renzo Manara
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Cinzia Bussè
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neurology, Radiology, Neuroscience, Washington University School of Medicine, St.Louis, MO, USA
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Takamura Y, Fujii S, Ohmatsu S, Morioka S, Kawashima N. Pathological structure of visuospatial neglect: A comprehensive multivariate analysis of spatial and non-spatial aspects. iScience 2021; 24:102316. [PMID: 33870133 PMCID: PMC8042346 DOI: 10.1016/j.isci.2021.102316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Visuospatial neglect (VSN) is a neurological syndrome of higher brain functions in which an individual fails to detect stimuli on a space that is contralateral to a hemispheric lesion. We performed a comprehensive multivariate analysis based on the principal component analysis (PCA) and cluster analysis in patients with right hemisphere stroke and then performed a determination of different elements of VSN. PCA-based cluster analysis detected distinct aspects of VSN as follows: cluster 1: low arousal and attention state, cluster 2: exogenous neglect, cluster 3: spatial working memory (SWM) deficit. Lesion analysis revealed neural correlates for each cluster and highlighted “disturbance of the ventral attention network” for the stagnation of exogenous attention and “parietal damage” for SWM deficit. Our results reveal a pathological structure of VSN as multiple components of an attention network deficit, and they contribute to the understanding of the mechanisms underlying VSN. This study attempted to establish the pathological structure of visuospatial neglect PCA revealed four distinct fundamental components underlying visuospatial neglect GMM-based clustering detected six subtypes of visuospatial attention network deficit
Collapse
Affiliation(s)
- Yusaku Takamura
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| | - Shintaro Fujii
- Graduate School of Health Science, Kio University, Nara, Japan.,Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Satoko Ohmatsu
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University, Nara, Japan.,Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama, Japan
| |
Collapse
|
35
|
Dai S, Piscicelli C, Clarac E, Baciu M, Hommel M, Pérennou D. Lateropulsion After Hemispheric Stroke: A Form of Spatial Neglect Involving Graviception. Neurology 2021; 96:e2160-e2171. [PMID: 33722996 DOI: 10.1212/wnl.0000000000011826] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that lateropulsion is an entity expressing an impaired body orientation with respect to gravity in relation to a biased graviception and spatial neglect. METHODS Data from the DOBRAS cohort (ClinicalTrials.gov: NCT03203109) were collected 30 days after a first hemisphere stroke. Lateral body tilt, pushing, and resistance were assessed with the Scale for Contraversive Pushing. RESULTS Among 220 individuals, 72% were upright and 28% showed lateropulsion (tilters [14%] less severe than pushers [14%]). The 3 signs had very high factor loadings (>0.90) on a same dimension, demonstrating that lateropulsion was effectively an entity comprising body tilt (cardinal sign), pushing, and resistance. The factorial analyses also showed that lateropulsion was inseparable from the visual vertical (VV), a criterion referring to vertical orientation (graviception). Contralesional VV biases were frequent (44%), with a magnitude related to lateropulsion severity: upright -0.6° (-2.9; 2.4), tilters -2.9° (-7; 0.8), and pushers -12.3° (-15.4; -8.5). Ipsilesional VV biases were less frequent and milder (p < 0.001). They did not deal with graviception, 84% being found in upright individuals. Multivariate, factorial, contingency, and prediction analyses congruently showed strong similarities between lateropulsion and spatial neglect, the latter encompassing the former. CONCLUSIONS Lateropulsion (pusher syndrome) is a trinity constituted by body tilt, pushing, and resistance. It is a way to adjust the body orientation in the roll plane to a wrong reference of verticality. Referring to straight above, lateropulsion might correspond to a form of spatial neglect (referring to straight ahead), which would advocate for 3D maps in the human brain involving the internal model of verticality.
Collapse
Affiliation(s)
- Shenhao Dai
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Céline Piscicelli
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Emmanuelle Clarac
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Marc Hommel
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Dominic Pérennou
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
36
|
Yordanova J, Kolev V, Nicolardi V, Simione L, Mauro F, Garberi P, Raffone A, Malinowski P. Attentional and cognitive monitoring brain networks in long-term meditators depend on meditation states and expertise. Sci Rep 2021; 11:4909. [PMID: 33649378 PMCID: PMC7921394 DOI: 10.1038/s41598-021-84325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/15/2021] [Indexed: 01/23/2023] Open
Abstract
Meditation practice is suggested to engage training of cognitive control systems in the brain. To evaluate the functional involvement of attentional and cognitive monitoring processes during meditation, the present study analysed the electroencephalographic synchronization of fronto-parietal (FP) and medial-frontal (MF) brain networks in highly experienced meditators during different meditation states (focused attention, open monitoring and loving kindness meditation). The aim was to assess whether and how the connectivity patterns of FP and MF networks are modulated by meditation style and expertise. Compared to novice meditators, (1) highly experienced meditators exhibited a strong theta synchronization of both FP and MF networks in left parietal regions in all mediation styles, and (2) only the connectivity of lateralized beta MF networks differentiated meditation styles. The connectivity of intra-hemispheric theta FP networks depended non-linearly on meditation expertise, with opposite expertise-dependent patterns found in the left and the right hemisphere. In contrast, inter-hemispheric FP connectivity in faster frequency bands (fast alpha and beta) increased linearly as a function of expertise. The results confirm that executive control systems play a major role in maintaining states of meditation. The distinctive lateralized involvement of FP and MF networks appears to represent a major functional mechanism that supports both generic and style-specific meditation states. The observed expertise-dependent effects suggest that functional plasticity within executive control networks may underpin the emergence of unique meditation states in expert meditators.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria.
| | - Valentina Nicolardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Social and Cognitive Neurosciences Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Federica Mauro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Garberi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| |
Collapse
|
37
|
Possible clinical anatomical features of right Alzheimer's disease (RAD). Aging Clin Exp Res 2021; 33:669-671. [PMID: 32358731 DOI: 10.1007/s40520-020-01564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
38
|
Adam R, Schaeffer DJ, Johnston K, Menon RS, Everling S. Structural alterations in cortical and thalamocortical white matter tracts after recovery from prefrontal cortex lesions in macaques. Neuroimage 2021; 232:117919. [PMID: 33652141 DOI: 10.1016/j.neuroimage.2021.117919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.
Collapse
Affiliation(s)
- Ramina Adam
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, PA, United States
| | - Kevin Johnston
- The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
| |
Collapse
|
39
|
Somma F, Bartolomeo P, Vallone F, Argiuolo A, Cerrato A, Miglino O, Mandolesi L, Zurlo MC, Gigliotta O. Further to the Left: Stress-Induced Increase of Spatial Pseudoneglect During the COVID-19 Lockdown. Front Psychol 2021; 12:573846. [PMID: 33746815 PMCID: PMC7977289 DOI: 10.3389/fpsyg.2021.573846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The measures taken to contain the coronavirus disease 2019 (COVID-19) pandemic, such as the lockdown in Italy, do impact psychological health; yet, less is known about their effect on cognitive functioning. The transactional theory of stress predicts reciprocal influences between perceived stress and cognitive performance. However, the effects of a period of stress due to social isolation on spatial cognition and exploration have been little examined. The aim of the present study was to investigate the possible effects and impact of the COVID-19 pandemic on spatial cognition tasks, particularly those concerning spatial exploration, and the physiological leftward bias known as pseudoneglect. A right-hemisphere asymmetry for spatial attention processes crucially contributes to pseudoneglect. Other evidence indicates a predominantly right-hemisphere activity in stressful situations. We also analyzed the effects of lockdown on coping strategies, which typically show an opposite pattern of hemispheric asymmetry, favoring the left hemisphere. If so, then pseudoneglect should increase during the lockdown and be negatively correlated with the efficacy of coping strategies. METHODS One week before the start of the lockdown due to COVID-19 in Italy (T1), we had collected data from a battery of behavioral tests including tasks of peri-personal spatial cognition. During the quarantine period, from late April to early May 2020 (T2), we repeated the testing sessions with a subgroup of the same participants (47 right-handed students, mean age = 20, SD = 1.33). At both testing sessions, participants performed digitized neuropsychological tests, including a Cancellation task, Radial Arm Maze task, and Raven's Advanced Progressive Matrices. Participants also completed a newly developed COVID-19 Student Stress Scale, based on transactional models of stress, and the Coping Orientation to Problems Experienced-New Italian Version (COPE-NIV) to assess coping orientation. RESULTS The tendency to start cancelation from a left-sided item, to explore first a left-sided arm of the maze, and to choose erroneous response items on the left side of the page on Raven's matrices increased from T1 to T2. The degree of pseudoneglect increment positively correlated with perceived stress and negatively correlated with Positive Attitude and Problem-Solving COPE-NIV subscales. CONCLUSION Lockdown-related stress may have contributed to increase leftward bias during quarantine through a greater activation of the right hemisphere. On the other hand, pseudoneglect was decreased for better coping participants, perhaps as a consequence of a more balanced hemispheric activity in these individuals.
Collapse
Affiliation(s)
- Federica Somma
- Natural and Artificial Cognition Laboratory, Department of Humanities, University of Naples Federico II, Naples, Italy
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Federica Vallone
- Dynamic Psychology Laboratory, Department of Political Sciences, University of Naples Federico II, Naples, Italy
- Department of Humanities, University of Naples Federico II, Naples, Italy
| | - Antonietta Argiuolo
- Natural and Artificial Cognition Laboratory, Department of Humanities, University of Naples Federico II, Naples, Italy
| | - Antonio Cerrato
- Natural and Artificial Cognition Laboratory, Department of Humanities, University of Naples Federico II, Naples, Italy
| | - Orazio Miglino
- Natural and Artificial Cognition Laboratory, Department of Humanities, University of Naples Federico II, Naples, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Laura Mandolesi
- Department of Humanities, University of Naples Federico II, Naples, Italy
| | - Maria Clelia Zurlo
- Dynamic Psychology Laboratory, Department of Political Sciences, University of Naples Federico II, Naples, Italy
| | - Onofrio Gigliotta
- Natural and Artificial Cognition Laboratory, Department of Humanities, University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
Bartolomeo P. Visual and motor neglect: Clinical and neurocognitive aspects. Rev Neurol (Paris) 2021; 177:619-626. [PMID: 33455830 DOI: 10.1016/j.neurol.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
Attention allows us to prioritize the processing of external information according to our goals, but also to cope with sudden, unforeseen events. Attention processes rely on the coordinated activity of large-scale brain networks. At the cortical level, these systems are mainly organized in fronto-parietal networks, with functional and anatomical asymmetries in favor of the right hemisphere. Dysfunction of these right-lateralized networks often produce severe deficit of spatial attention, such as visual neglect. Other brain-damaged patients avoid moving the limbs contralateral to their brain lesion, even in the absence of sensorimotor deficits (motor neglect). This paper first summarizes past and current evidence on brain networks of attention; then, it presents clinical and experimental findings on visual and motor neglect, and on the possible mechanisms of clinical recovery.
Collapse
Affiliation(s)
- P Bartolomeo
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| |
Collapse
|
41
|
Upper-Extremity Perceptual-Motor Training Improves Whole-Body Reactive Agility Among Elite Athletes With History of Sport-Related Concussion. J Sport Rehabil 2021; 30:844-849. [PMID: 33418536 DOI: 10.1123/jsr.2020-0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Sport-related concussion (SRC) elevates risk for subsequent injury, which may relate to impaired perceptual-motor processes that are potentially modifiable. OBJECTIVE To assess a possible upper-extremity (UE) training effect on whole-body (WB) reactive agility performance among elite athletes with history of SRC (HxSRC) and without such history of SRC. DESIGN Cohort study. SETTING Residential training center. PARTICIPANTS Elite athletes (12 males and 8 females), including 10 HxSRC and 10 without such history of SRC. INTERVENTION One-minute training sessions completed 2 to 3 times per week over a 3-week period involved verbal identification of center arrow direction for 10 incongruent and 10 congruent flanker test trials with simultaneous reaching responses to deactivate illuminated buttons. MAIN OUTCOME MEASURES Pretraining and posttraining assessments of UE and WB reactive responses included flanker test conflict effect (incongruent minus congruent reaction time) and WB lateral average asymmetry derived from reaction time, speed, acceleration, and deceleration in opposite directions. Discrimination was assessed by receiver operating characteristic analysis, and training effect was assessed by repeated-measures analysis of variance. RESULTS Pretraining discrimination between HxSRC and without such history of SRC was greatest for conflict effect ≥80 milliseconds and WB lateral average asymmetry ≥18%. Each athlete completed 6 training sessions, which improved UE mean reaction time from 767 to 646 milliseconds (P < .001) and reduced mean conflict effect from 96 to 53 milliseconds (P = .039). A significant group × trial interaction was evident for WB lateral average asymmetry (P = .004), which was reduced from 24.3% to 12.5% among those with HxSRC. CONCLUSIONS Suboptimal perceptual-motor performance may represent a subtle long-term effect of concussion that is modifiable through UE training, which appears to improve WB reactive capabilities.
Collapse
|
42
|
Ishii D, Osaki H, Yozu A, Ishibashi K, Kawamura K, Yamamoto S, Miyata M, Kohno Y. Ipsilesional spatial bias after a focal cerebral infarction in the medial agranular cortex: A mouse model of unilateral spatial neglect. Behav Brain Res 2020; 401:113097. [PMID: 33385423 DOI: 10.1016/j.bbr.2020.113097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Unilateral spatial neglect is a disorder of higher brain function that occurs after a brain injury, such as stroke, traumatic brain injury, brain tumor, and surgical procedures etc., and leads to failure to attend or respond to stimuli presented to the side contralateral to the lesioned cerebral hemisphere. Because patients with this condition often have other symptoms due to the presence of several brain lesions, it is difficult to evaluate the recovery mechanisms and effect of training on unilateral spatial neglect. In this study, a mouse model of unilateral spatial neglect was created to investigate whether the size of the lesion is related to the severity of ipsilesional spatial bias and the recovery process. Focal infarction was induced in the right medial agranular cortex (AGm) of mice via photothrombosis. After induction of cerebral infarction, ipsilesional spatial bias was evaluated for 9 consecutive days. The major findings were as follows: (1) unilateral local infarction of the AGm resulted in ipsilateral bias during internally guided decision-making; (2) the lesion size was correlated with the degree of impairment rather than slight differences in the lesion site; and (3) mice with anterior AGm lesions experienced lower recovery rates. These findings suggest that recovery from ipsilesional spatial bias requires neural plasticity within the anterior AGm. This conditional mouse model of ipsilesional spatial bias may be used to develop effective treatments for unilateral spatial neglect in humans.
Collapse
Affiliation(s)
- Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Hironobu Osaki
- Department of Physiology (Neurophysiology), School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan; Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Kenta Kawamura
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Mariko Miyata
- Department of Physiology (Neurophysiology), School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
43
|
Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic Modulation of the Default Mode Like Network in Rats. iScience 2020; 23:101455. [PMID: 32846343 PMCID: PMC7452182 DOI: 10.1016/j.isci.2020.101455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of the default mode network (DMN), a large-scale brain network that is suppressed during attention-demanding tasks, had major impact in neuroscience. This network exhibits an antagonistic relationship with attention-related networks. A better understanding of the processes underlying modulation of DMN is imperative, as this network is compromised in several neurological diseases. Cholinergic neuromodulation is one of the major regulatory networks for attention, and studies suggest a role in regulation of the DMN. In this study, we unilaterally activated the right basal forebrain cholinergic neurons and observed decreased right intra-hemispheric and interhemispheric FC in the default mode like network (DMLN). Our findings provide critical insights into the interplay between cholinergic neuromodulation and DMLN, demonstrate that differential effects can be exerted between the two hemispheres by unilateral stimulation, and open windows for further studies involving directed modulations of DMN in treatments for diseases demonstrating compromised DMN activity.
Collapse
Affiliation(s)
- Lore M. Peeters
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
44
|
Abdolalizadeh A, Ostadrahimi H, Mohajer B, Darvishi A, Sattarian M, Bayani Ershadi AS, Abbasi N. White Matter Microstructural Properties Associated with Impaired Attention in Chronic Schizophrenia: A Multi-Center Study. Psychiatry Res Neuroimaging 2020; 302:111105. [PMID: 32498000 DOI: 10.1016/j.pscychresns.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Attention as a key cognitive function is impaired in schizophrenia, interfering with the normal daily life of the patients. Previous studies on the microstructural correlates of attention in schizophrenia were limited to single fibers, did not include a control group, or did not adjust for drug dosage. In the current study, we investigated the association between microstructural properties of the white matter fibers and attention tests in 81 patients and 79 healthy controls from the Mind Clinical Imaging Consortium database. Integrity measures of superior longitudinal fasciculus, cingulum, genu, and splenium were extracted after tractography. Using an interaction model between diagnosis and microstructural properties, and adjusting for age, gender, acquisition site, education, and cumulative drug usage dose, and after correcting for family-wise error, we showed decreased integrity in the patients and a significant negative association between fractional anisotropy of the tracts and trail making test part A with a greater expected decrease in the attention per unit of decrease of integrity in the patients compared to the healthy controls. Our findings suggest that decreased integrity of the bilateral cingulum, and splenium, are independent of the cumulative drug dosage, age, gender, and site, and may underlie the impaired attention in the schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Darvishi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Sattarian
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Aminihajibashi S, Hagen T, Laeng B, Espeseth T. Pupillary and behavioral markers of alerting and orienting: An individual difference approach. Brain Cogn 2020; 143:105597. [PMID: 32673900 DOI: 10.1016/j.bandc.2020.105597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Measuring task-evoked pupillary (TEP) responses as an index of phasic activity in the locus coeruleus (LC), we examined two competing hypotheses regarding the alerting and orienting mechanisms of attention. According to a dual mechanism account (Fernandez-Duque & Posner, 1997), two separate noradrenergic and cholinergic mechanisms modulate, respectively, the alerting and orienting effects. However, Corbetta and colleagues (2008) proposed that LC phasic activity may also be involved in orienting effect through its functional relationship with the ventral attentional network. We recruited seventy-five healthy Norwegian participants to perform a Posner cueing task. Both behavioral and pupillary responses revealed the alerting effect. Also, both behavioral and pupillary responses indicated that cued attention is affected by age. Behavioral responses also revealed orienting effect However, we found no TEP differences between valid, invalid, and neutral conditions, suggesting that TEP effects were driven by the alerting effect of cue presentation. Moreover, both behavioral and pupillary estimates of alertness and orienting were uncorrelated. Finally, individual differences in general cognitive abilities did not appear to affect the orienting and alerting mechanisms. This pattern of results is consistent with the dual mechanism account of attention. However, the LC involvement in the (re)orienting attention may be driven by state-specific factors.
Collapse
Affiliation(s)
| | - Thomas Hagen
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | | |
Collapse
|
46
|
Maldonado IL, Parente de Matos V, Castro Cuesta TA, Herbet G, Destrieux C. The human cingulum: From the limbic tract to the connectionist paradigm. Neuropsychologia 2020; 144:107487. [PMID: 32470344 DOI: 10.1016/j.neuropsychologia.2020.107487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The cingulum is a core component of the limbic lobe and part of the circuit that was described by Papez where environmental experiences become endowed with emotional awareness. Recent techniques for the study of cerebral connectivity have updated this fasciculus' morphology and led to the acknowledgment that its involvement in superior functions goes far beyond emotion processing. Long and robust, the cingulum is a long association fasciculus with terminations in all cerebral lobes. These observations plead for a pivotal rethinking of its role in the human brain and lead to the conclusion that to merely consider it as the main fasciculus of the limbic system was actually a reductionism. This paper summarizes the key facts regarding why the cingulum is now perceived as a primary interconnecting apparatus in the medial aspect of the cerebral hemisphere.
Collapse
Affiliation(s)
- Igor Lima Maldonado
- UMR Inserm U1253, IBrain, Université de Tours, Tours, France; Le Studium Loire Valley Institute for Advanced Studies, Orleans, France; CHRU de Tours, Tours, France; Departamento de Biomorfologia - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação Em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil.
| | | | - Taryn Ariadna Castro Cuesta
- Programa de Pós-Graduação Em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; University of Montpellier, Institute of Functional Genomics, INSERM, 1191, Montpellier, France
| | - Christophe Destrieux
- UMR Inserm U1253, IBrain, Université de Tours, Tours, France; CHRU de Tours, Tours, France; Laboratory of Anatomy, Faculté de Médecine, 10 Bd Tonnellé, 37032, Tours, France
| |
Collapse
|
47
|
Parr T. Inferring What to Do (And What Not to). ENTROPY (BASEL, SWITZERLAND) 2020; 22:E536. [PMID: 33286308 PMCID: PMC7517030 DOI: 10.3390/e22050536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
In recent years, the "planning as inference" paradigm has become central to the study of behaviour. The advance offered by this is the formalisation of motivation as a prior belief about "how I am going to act". This paper provides an overview of the factors that contribute to this prior. These are rooted in optimal experimental design, information theory, and statistical decision making. We unpack how these factors imply a functional architecture for motivated behaviour. This raises an important question: how can we put this architecture to work in the service of understanding observed neurobiological structure? To answer this question, we draw from established techniques in experimental studies of behaviour. Typically, these examine the influence of perturbations of the nervous system-which include pathological insults or optogenetic manipulations-to see their influence on behaviour. Here, we argue that the message passing that emerges from inferring what to do can be similarly perturbed. If a given perturbation elicits the same behaviours as a focal brain lesion, this provides a functional interpretation of empirical findings and an anatomical grounding for theoretical results. We highlight examples of this approach that influence different sorts of goal-directed behaviour, active learning, and decision making. Finally, we summarise their implications for the neuroanatomy of inferring what to do (and what not to).
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| |
Collapse
|
48
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
49
|
Hawe RL, Kuczynski AM, Kirton A, Dukelow SP. Assessment of bilateral motor skills and visuospatial attention in children with perinatal stroke using a robotic object hitting task. J Neuroeng Rehabil 2020; 17:18. [PMID: 32054511 PMCID: PMC7020362 DOI: 10.1186/s12984-020-0654-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background While motor deficits are the hallmark of hemiparetic cerebral palsy, children may also experience impairments in visuospatial attention that interfere with participation in complex activities, including sports or driving. In this study, we used a robotic object hitting task to assess bilateral sensorimotor control and visuospatial skills in children with hemiparesis due to perinatal arterial ischemic stroke (AIS) or periventricular venous infarct (PVI). We hypothesized that performance would be impaired bilaterally and be related to motor behavior and clinical assessment of visuospatial attention. Methods Forty-nine children with perinatal stroke and hemiparetic cerebral palsy and 155 typically developing (TD) children participated in the study. Participants performed a bilateral object hitting task using the KINARM Exoskeleton Robot, in which they used virtual paddles at their fingertips to hit balls that fell from the top of the screen with increasing speed and frequency over 2.3 min. We quantified performance across 13 parameters including number of balls hit with each hand, movement speed and area, biases between hands, and spatial biases. We determined normative ranges of performance accounting for age by fitting 95% prediction bands to the TD children. We compared parameters between TD, AIS, and PVI groups using ANCOVAs accounting for age effects. Lastly, we performed regression analysis between robotic and clinical measures. Results The majority of children with perinatal stroke hit fewer balls with their affected arm compared to their typically developing peers. We also found deficits with the ipsilesional (“unaffected”) arm. Children with AIS had greater impairments than PVI. Despite hitting fewer balls, we only identified 18% of children as impaired in hand speed or movement area. Performance on the Behavioral Inattention Test accounted for 21–32% of the variance in number of balls hit with the unaffected hand. Conclusions Children with perinatal stroke-induced hemiparetic cerebral palsy may have complex bilateral deficits reflecting a combination of impairments in motor skill and visuospatial attention. Clinical assessments and interventions should address the interplay between motor and visuospatial skills.
Collapse
Affiliation(s)
- Rachel L Hawe
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Andrea M Kuczynski
- Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Adam Kirton
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Department of Pediatrics, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, T3B 6A8, Canada.,Alberta Children's Hospital Research Institute, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, T3B 6A8, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
50
|
Adam R, Johnston K, Menon RS, Everling S. Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys. Neuroimage 2020; 207:116339. [DOI: 10.1016/j.neuroimage.2019.116339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
|