1
|
Bigler ED, Allder S, Victoroff J. What traditional neuropsychological assessment got wrong about mild traumatic brain injury. II: limitations in test development, research design, statistical and psychometric issues. Brain Inj 2024; 38:1053-1074. [PMID: 39066740 DOI: 10.1080/02699052.2024.2376261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PRIMARY OBJECTIVE This is Part II of a four-part opinion review on traditional neuropsychological assessment methods and findings associated with mild traumatic brain injury (mTBI). This Part II review focuses on historical, psychometric and statistical issues involving traditional neuropsychological methods that have been used in neuropsychological outcome studies of mTBI, but demonstrates the critical limitations of traditional methods. RESEARCH DESIGN This is an opinion review. METHODS AND PROCEDURES Traditional neuropsychological tests are dated and lack specificity in evaluating such a heterogenous and complex injury as occurs with mTBI. MAIN OUTCOME AND RESULTS In this review, we demonstrate traditional neuropsychological methods were never developed as standalone measures for detecting subtle changes in neurocognitive or neurobehavioral functioning and likewise, never designed to address the multifaceted issues related to underlying mTBI neuropathology symptom burden from having sustained a concussive brain injury. CONCLUSIONS For neuropsychological assessment to continue to contribute to clinical practice and outcome literature involving mTBI, major innovative changes are needed that will likely require technological advances of novel assessment techniques more specifically directed to evaluating the mTBI patient. These will be discussed in Part IV.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah, USA
- Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Steven Allder
- Consultant Neurologist and Clinical Director, Re: Cognition Health, London, UK
| | - Jeff Victoroff
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Rao Y, Ge L, Wu J. A systematic review and coordinate-based meta-analysis of fMRI studies on acupuncture at LR 3. Front Neurosci 2024; 18:1341567. [PMID: 38348133 PMCID: PMC10859399 DOI: 10.3389/fnins.2024.1341567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Objectives The acupoint LR3 (Taichong) is frequently utilized in clinical acupuncture. However, its underlying neural mechanisms remain not fully elucidated, with speculations suggesting its close association with specific brain activity patterns. Methods A comprehensive literature search was undertaken across several online databases, such as PubMed, Web of Science, Embase, Cochrane Library, CNKI (China National Knowledge Infrastructure), Wanfang Database, VIP Database, and the Chinese Biomedical Database. Two independent researchers handled the study selection, quality assessment, and data extraction processes. Using the seed-based d-mapping meta-analysis approach, we evaluated the brain regions activated by LR3 acupuncture in healthy subjects. Subsequent subgroup analysis was stratified by fMRI types, and regression analyses were performed considering the duration of acupuncture, depth of needle insertion, and needle diameter. The identified active brain regions were then intricately projected onto large-scale functional networks. Results A total of 10 studies met the criteria for inclusion, encompassing 319 healthy right-handed participants. The meta-analysis indicates that acupuncture at the LR3 activates regions such as the right postcentral gyrus, left thalamus, left middle frontal gyrus, and right superior frontal gyrus. Additionally, meta-regression analysis highlights that increased acupuncture duration correlates with progressively intensified activation of the right superior frontal gyrus. Subgroup analysis posits that variations in the type of fMRI employed might account for heterogeneity in the pooled results. Concurrently, functional network analysis identifies the primary activated regions as aligning with the Basal ganglia network, Auditory network, Left executive control network, Posterior salience network, Right executive control network, and Sensorimotor networks. Conclusion Acupuncture at the LR3 in healthy subjects selectively activates brain regions linked to pain perception, emotional processing, and linguistic functions. Extending the needle retention duration intensifies the activation of the right superior frontal gyrus. These findings enrich our comprehension of the neurobiological underpinnings of acupuncture's role in pain mitigation and emotional regulation.
Collapse
Affiliation(s)
- Yawen Rao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | |
Collapse
|
3
|
Green REA, Dabek MK, Changoor A, Rybkina J, Monette GA, Colella B. Moderate-Severe TBI as a Progressive Disorder: Patterns and Predictors of Cognitive Declines in the Chronic Stages of Injury. Neurorehabil Neural Repair 2023; 37:799-809. [PMID: 37990972 DOI: 10.1177/15459683231212861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
BACKGROUND Moderate-severe traumatic brain injury (TBI) has been associated with progressive cognitive decline in the chronic injury stages in a small number of studies. OBJECTIVE This study aimed to (i) replicate our previous findings of decline from 1 to 3+ years post-injury in a larger, non-overlapping sample and (ii) extend these findings by examining the proportion of decliners in 2 earlier time windows, and by investigating novel predictors of decline. METHODS N = 48 patients with moderate-severe TBI underwent neuropsychological assessment at 2, 5, 12 months, and 30+ months post-injury. We employed the Reliable Change Index (RCI) to evaluate decline, stability and improvement across time and logistic regression to identify predictors of decline (demographic/cognitive reserve; injury-related). RESULTS The proportions of patients showing decline were: 12.5% (2-5 months post-injury), 17% (5-12 months post-injury), and 27% (12-30+ months post-injury). Measures of verbal retrieval were most sensitive to decline. Of the predictors, only left progressive hippocampal volume loss from 5 to 12 months post-injury significantly predicted cognitive decline from 12 to 30+ months post-injury. CONCLUSIONS Identical to our previous study, 27% of patients declined from 12 to 30+ months post-injury. Additionally, we found that the further from injury, the greater the proportion of patients declining. Importantly, earlier progressive hippocampal volume loss predicted later cognitive decline. Taken together, the findings highlight the need for ongoing research and treatment that target these deleterious mechanisms affecting patients in the chronic stages of moderate-severe TBI.
Collapse
Affiliation(s)
- Robin E A Green
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Marika K Dabek
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Alana Changoor
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Julia Rybkina
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | | | - Brenda Colella
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Brennan DJ, Duda J, Ware JB, Whyte J, Choi JY, Gugger J, Focht K, Walter AE, Bushnik T, Gee JC, Diaz‐Arrastia R, Kim JJ. Spatiotemporal profile of atrophy in the first year following moderate-severe traumatic brain injury. Hum Brain Mapp 2023; 44:4692-4709. [PMID: 37399336 PMCID: PMC10400790 DOI: 10.1002/hbm.26410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
Traumatic brain injury (TBI) triggers progressive neurodegeneration resulting in brain atrophy that continues months-to-years following injury. However, a comprehensive characterization of the spatial and temporal evolution of TBI-related brain atrophy remains incomplete. Utilizing a sensitive and unbiased morphometry analysis pipeline optimized for detecting longitudinal changes, we analyzed a sample consisting of 37 individuals with moderate-severe TBI who had primarily high-velocity and high-impact injury mechanisms. They were scanned up to three times during the first year after injury (3 months, 6 months, and 12 months post-injury) and compared with 33 demographically matched controls who were scanned once. Individuals with TBI already showed cortical thinning in frontal and temporal regions and reduced volume in the bilateral thalami at 3 months post-injury. Longitudinally, only a subset of cortical regions in the parietal and occipital lobes showed continued atrophy from 3 to 12 months post-injury. Additionally, cortical white matter volume and nearly all deep gray matter structures exhibited progressive atrophy over this period. Finally, we found that disproportionate atrophy of cortex along sulci relative to gyri, an emerging morphometric marker of chronic TBI, was present as early as 3 month post-injury. In parallel, neurocognitive functioning largely recovered during this period despite this pervasive atrophy. Our findings demonstrate msTBI results in characteristic progressive neurodegeneration patterns that are divergent across regions and scale with the severity of injury. Future clinical research using atrophy during the first year of TBI as a biomarker of neurodegeneration should consider the spatiotemporal profile of atrophy described in this study.
Collapse
Affiliation(s)
- Daniel J. Brennan
- CUNY Neuroscience Collaborative, The Graduate CenterCity University of New YorkNew YorkNew YorkUnited States
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
| | - Jeffrey Duda
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUnited States
| | - Jeffrey B. Ware
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - John Whyte
- Moss Rehabilitation Research Institute, Einstein Healthcare NetworkElkins ParkPennsylvaniaUnited States
| | - Joon Yul Choi
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
- Department of Biomedical EngineeringYonsei UniversityWonjuRepublic of Korea
| | - James Gugger
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Kristen Focht
- Widener University School for Graduate Clinical PsychologyChesterPennsylvaniaUnited States
| | - Alexa E. Walter
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Tamara Bushnik
- NYU Grossman School of MedicineNew YorkNew YorkUnited States
| | - James C. Gee
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUnited States
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUnited States
| | - Junghoon J. Kim
- CUNY Neuroscience Collaborative, The Graduate CenterCity University of New YorkNew YorkNew YorkUnited States
- Department of Molecular, Cellular, and Biomedical SciencesCUNY School of Medicine, The City College of New YorkNew YorkNew YorkUnited States
| |
Collapse
|
5
|
Hossain I, Mohammadian M, Maanpää HR, Takala RSK, Tenovuo O, van Gils M, Hutchinson P, Menon DK, Newcombe VF, Tallus J, Hirvonen J, Roine T, Kurki T, Blennow K, Zetterberg H, Posti JP. Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury. BMC Neurol 2023; 23:304. [PMID: 37582732 PMCID: PMC10426141 DOI: 10.1186/s12883-023-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. METHODS Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. RESULTS The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. CONCLUSION In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland.
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland.
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Intensive Care Medicine and Pain Management, Perioperative Services, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Turku, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Wu CY, Huang SM, Lin YH, Hsieh HH, Chu LWL, Yang HC, Chiu SC, Peng SL. Reproducibility of diffusion tensor imaging-derived parameters: implications for the streptozotocin-induced type 1 diabetic rats. MAGMA (NEW YORK, N.Y.) 2023; 36:631-639. [PMID: 36378408 DOI: 10.1007/s10334-022-01048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a useful approach for studying neuronal integrity in animals. However, the test-retest reproducibility of DTI techniques in animals has not been discussed. Therefore, the first part of this work was to systematically elucidate the reliability of DTI-derived parameters in an animal study. Subsequently, we applied the DTI approach to an animal model of diabetes in a longitudinal manner. MATERIALS AND METHODS In Study 1, nine rats underwent two DTI sessions using the same scanner and protocols, with a gap of 4 weeks. The reliability of the DTI-derived parameters was evaluated in terms of sessions and raters. In Study 2, nine rats received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to develop diabetes. Longitudinal DTI scans were used to assess brain alterations before and 4 weeks after STZ administration. RESULTS In the test-retest evaluation, the inter-scan coefficient of variation (CoV) ranged from 3.04 to 3.73% and 2.12-2.59% for fractional anisotropy (FA) and mean diffusivity (MD), respectively, in different brain regions, suggesting excellent reproducibility. Moreover, rater-dependence had minimal effects on FA and MD quantification, with all inter-rater CoV values less than 4%. Following the onset of diabetes, FA in striatum and cortex were noted to be significantly lower relative to the period where they had not developed diabetes (both P < 0.05). However, when compared to the control group, a significant change in FA caused by diabetes was detected only in the striatum (P < 0.05), but not in the cortex. CONCLUSION These results demonstrate good inter-rater and inter-scan reliability of DTI in animal studies, and the longitudinal setting has a beneficial effect on detecting small changes in the brain due to diseases.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
So I, Meusel LAC, Sharma B, Monette GA, Colella B, Wheeler AL, Rabin JS, Mikulis DJ, Green REA. Longitudinal Patterns of Functional Connectivity in Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:665-682. [PMID: 36367163 DOI: 10.1089/neu.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal neuroimaging studies aid our understanding of recovery mechanisms in moderate-to-severe traumatic brain injury (TBI); however, there is a dearth of longitudinal functional connectivity research. Our aim was to characterize longitudinal functional connectivity patterns in two clinically important brain networks, the frontoparietal network (FPN) and the default mode network (DMN), in moderate-to-severe TBI. This inception cohort study of prospectively collected longitudinal data used resting-state functional magnetic resonance imaging (fMRI) to characterize functional connectivity patterns in the FPN and DMN. Forty adults with moderate-to-severe TBI (mean ± standard deviation [SD]; age = 39.53 ± 16.49 years, education = 13.92 ± 3.20 years, lowest Glasgow Coma Scale score = 6.63 ± 3.24, sex = 70% male) were scanned at approximately 0.5, 1-1.5, and 3+ years post-injury. Seventeen healthy, uninjured participants (mean ± SD; age = 38.91 ± 15.57 years, education = 15.11 ± 2.71 years, sex = 29% male) were scanned at baseline and approximately 11 months afterwards. Group independent component analyses and linear mixed-effects modeling with linear splines that contained a knot at 1.5 years post-injury were employed to investigate longitudinal network changes, and associations with covariates, including age, sex, and injury severity. In patients with TBI, functional connectivity in the right FPN increased from approximately 0.5 to 1.5 years post-injury (unstandardized estimate = 0.19, standard error [SE] = 0.07, p = 0.009), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.21, SE = 0.11, p = 0.009), and marginally declined afterwards (estimate = -0.10, SE = 0.06, p = 0.079). Functional connectivity in the DMN increased from approximately 0.5 to 1.5 years (estimate = 0.15, SE = 0.05, p = 0.006), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.19, SE = 0.08, p = 0.021), and was estimated to decline from 1.5 to 3+ years (estimate = -0.04, SE = 0.04, p = 0.303). Similarly, the left FPN increased in functional connectivity from approximately 0.5 to 1.5 years post-injury (estimate = 0.15, SE = 0.05, p = 0.002), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.18, SE = 0.07, p = 0.008), and was estimated to decline thereafter (estimate = -0.04, SE = 0.03, p = 0.254). At approximately 0.5 years post-injury, patients showed hypoconnectivity compared with healthy, uninjured participants at baseline. Covariates were not significantly associated in any of the models. Findings of early improvement but a tapering and possible decline in connectivity thereafter suggest that compensatory effects are time-limited. These later reductions in connectivity mirror growing evidence of behavioral and structural decline in chronic moderate-to-severe TBI. Targeting such declines represents a novel avenue of research and offers potential for improving clinical outcomes.
Collapse
Affiliation(s)
- Isis So
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Liesel-Ann C Meusel
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Georges A Monette
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Toronto Western Hospital-University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Dodd WS, Panther EJ, Pierre K, Hernandez JS, Patel D, Lucke-Wold B. Traumatic Brain Injury and Secondary Neurodegenerative Disease. TRAUMA CARE 2022; 2:510-522. [PMID: 36211982 PMCID: PMC9541088 DOI: 10.3390/traumacare2040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a devastating event with severe long-term complications. TBI and its sequelae are one of the leading causes of death and disability in those under 50 years old. The full extent of secondary brain injury is still being intensely investigated; however, it is now clear that neurotrauma can incite chronic neurodegenerative processes. Chronic traumatic encephalopathy, Parkinson's disease, and many other neurodegenerative syndromes have all been associated with a history of traumatic brain injury. The complex nature of these pathologies can make clinical assessment, diagnosis, and treatment challenging. The goal of this review is to provide a concise appraisal of the literature with focus on emerging strategies to improve clinical outcomes. First, we review the pathways involved in the pathogenesis of neurotrauma-related neurodegeneration and discuss the clinical implications of this rapidly evolving field. Next, because clinical evaluation and neuroimaging are essential to the diagnosis and management of neurodegenerative diseases, we analyze the clinical investigations that are transforming these areas of research. Finally, we briefly review some of the preclinical therapies that have shown the most promise in improving outcomes after neurotrauma.
Collapse
Affiliation(s)
- William S. Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric J. Panther
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Pierre
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo S. Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devan Patel
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Sihvonen AJ, Siponkoski ST, Martínez-Molina N, Laitinen S, Holma M, Ahlfors M, Kuusela L, Pekkola J, Koskinen S, Särkämö T. Neurological Music Therapy Rebuilds Structural Connectome after Traumatic Brain Injury: Secondary Analysis from a Randomized Controlled Trial. J Clin Med 2022; 11:jcm11082184. [PMID: 35456277 PMCID: PMC9032739 DOI: 10.3390/jcm11082184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Traumatic brain injury (TBI) is a common and devastating neurological condition, associated often with poor functional outcome and deficits in executive function. Due to the neuropathology of TBI, neuroimaging plays a crucial role in its assessment, and while diffusion MRI has been proposed as a sensitive biomarker, longitudinal studies evaluating treatment-related diffusion MRI changes are scarce. Recent evidence suggests that neurological music therapy can improve executive functions in patients with TBI and that these effects are underpinned by neuroplasticity changes in the brain. However, studies evaluating music therapy induced structural connectome changes in patients with TBI are lacking. Design: Single-blind crossover (AB/BA) randomized controlled trial (NCT01956136). Objective: Here, we report secondary outcomes of the trial and set out to assess the effect of neurological music therapy on structural white matter connectome changes and their association with improved execute function in patients with TBI. Methods: Using an AB/BA design, 25 patients with moderate or severe TBI were randomized to receive a 3-month neurological music therapy intervention either during the first (AB, n = 16) or second (BA, n = 9) half of a 6-month follow-up period. Neuropsychological testing and diffusion MRI scans were performed at baseline and at the 3-month and 6-month stage. Findings: Compared to the control group, the music therapy group increased quantitative anisotropy (QA) in the right dorsal pathways (arcuate fasciculus, superior longitudinal fasciculus) and in the corpus callosum and the right frontal aslant tract, thalamic radiation and corticostriatal tracts. The mean increased QA in this network of results correlated with improved executive function. Conclusions: This study shows that music therapy can induce structural white matter neuroplasticity in the post-TBI brain that underpins improved executive function.
Collapse
Affiliation(s)
- Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-T.S.); (N.M.-M.); (T.S.)
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä & University of Helsinki, 00014 Helsinki, Finland;
- School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre and UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
- Correspondence:
| | - Sini-Tuuli Siponkoski
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-T.S.); (N.M.-M.); (T.S.)
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä & University of Helsinki, 00014 Helsinki, Finland;
| | - Noelia Martínez-Molina
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-T.S.); (N.M.-M.); (T.S.)
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä & University of Helsinki, 00014 Helsinki, Finland;
| | - Sari Laitinen
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä & University of Helsinki, 00014 Helsinki, Finland;
- Espoo Hospital, 02740 Espoo, Finland
| | - Milla Holma
- Independent Researcher, 00550 Helsinki, Finland;
| | | | - Linda Kuusela
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, 00014 Helsinki, Finland;
| | - Johanna Pekkola
- HUS Medical Imaging Center, Department of Radiology, Helsinki Central University Hospital and University of Helsinki, 00014 Helsinki, Finland;
| | - Sanna Koskinen
- Clinical Neuropsychology Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-T.S.); (N.M.-M.); (T.S.)
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä & University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
de Souza NL, Buckman JF, Dennis EL, Parrott JS, Velez C, Wilde EA, Tate DF, Esopenko C. Association between white matter organization and cognitive performance in athletes with a history of sport-related concussion. J Clin Exp Neuropsychol 2021; 43:704-715. [PMID: 34779351 DOI: 10.1080/13803395.2021.1991893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Impairments in cognitive performance after sport-related concussion (SRC) typically resolve within weeks of the injury, whereas alterations to white matter (WM) organization have been found to persist longer into the chronic injury stage. However, longer-term associations between cognition and WM organization following SRC have not been studied. The objective of this study was to compare WM organization and cognitive performance in collegiate athletes an average of almost 4 years post-SRC to athletes with no history of SRC. METHOD National Collegiate Athletic Association Division III athletes (n = 71, age = 19.3 ± 1.2; 14 with self-reported SRC) completed a neurocognitive assessment and diffusion tensor imaging (DTI). WM organization was assessed by extracting measures of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) from 20 WM regions of interest (ROIs). Multivariate partial least squares analyses were used to compare athletes with and without a history of SRC and assess relationships between DTI-derived metrics of WM organization and cognitive measures. RESULTS Cognitive performance and ROI metrics did not differ between athletes with and without prior SRC. However, among athletes with a history of SRC, better executive function, processing speed, and memory but worse choice reaction time were associated with higher FA and lower MD and RD in several WM tracts. CONCLUSION Athletes with a history of SRC demonstrated greater associations between cognitive performance and WM organization, but also variability in the domains showing associations. Taken together, the findings demonstrate the importance of examining brain-behavior relationships several years after SRC to better gauge how WM organization supports cognition.
Collapse
Affiliation(s)
- Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University - New Brunswick, Piscataway, NJ, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | | | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA.,Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, USA
| | - Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
11
|
Sandry J, Dobryakova E. Global hippocampal and selective thalamic nuclei atrophy differentiate chronic TBI from Non-TBI. Cortex 2021; 145:37-56. [PMID: 34689031 DOI: 10.1016/j.cortex.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/04/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) may increase susceptibility to neurodegenerative diseases later in life. One neurobiological parallel between chronic TBI and neurodegeneration may be accelerated aging and the nature of atrophy across subcortical gray matter structures. The main aim of the present investigation is to evaluate and rank the degree that subcortical gray matter atrophy differentiates chronic moderate-severe TBI from non-TBI participants by evaluating morphometric differences between groups. Forty individuals with moderate-severe chronic TBI (9.23 yrs from injury) and 33 healthy controls (HC) underwent high resolution 3D T1-weighted structural magnetic resonance imaging. Whole brain volume was classified into white matter, cortical and subcortical gray matter structures with hippocampi and thalami further segmented into subfields and nuclei, respectively. Extensive atrophy was observed across nearly all brain regions for chronic TBI participants. A series of multivariate logistic regression models identified subcortical gray matter structures of the hippocampus and thalamus as the most sensitive to differentiating chronic TBI from non-TBI participants (McFadden R2 = .36, p < .001). Further analyses revealed the pattern of hippocampal atrophy to be global, occurring across nearly all subfields. The pattern of thalamic atrophy appeared to be much more selective and non-uniform, with largest between-group differences evident for nuclei bordering the ventricles. Subcortical gray matter was negatively correlated with time since injury (r = -.31, p = .054), while white matter and cortical gray matter were not. Cognitive ability was lower in the chronic TBI group (Cohen's d = .97, p = .003) and correlated with subcortical structures including the pallidum (r2 = .23, p = .038), thalamus (r2 = .36, p = .007) and ventral diencephalon (r2 = .23, p = .036). These data may support an accelerated aging hypothesis in chronic moderate-severe TBI that coincides with a similar neuropathological profile found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Sandry
- Psychology Department, Montclair State University, Montclair, NJ, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School Newark, NJ, USA
| |
Collapse
|
12
|
Oschwald J, Mérillat S, Jäncke L, Seidler RD. Fractional Anisotropy in Selected, Motor-Related White Matter Tracts and Its Cross-Sectional and Longitudinal Associations With Motor Function in Healthy Older Adults. Front Hum Neurosci 2021; 15:621263. [PMID: 34239423 PMCID: PMC8258250 DOI: 10.3389/fnhum.2021.621263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background While it is well-known that deficits in motor performance and brain structural connectivity occur in the course of healthy aging, it is still unclear if and how these changes are related to each other. While some cross-sectional studies suggest that white matter (WM) microstructure is positively associated with motor function in healthy older adults, more evidence is needed. Moreover, longitudinal data is required to estimate whether similar associations can be found between trajectories of change in WM microstructure and motor function. The current study addresses this gap by investigating age-associations and longitudinal changes in WM microstructure and motor function, and the cross-sectional (level-level) and longitudinal (level-change, change-change) association between these two domains. Method We used multiple-occasion data (covering 4 years) from a large sample (N = 231) of healthy older adults from the Longitudinal Healthy Aging Brain (LHAB) database. To measure WM microstructure, we used diffusion-weighted imaging data to compute mean FA in three selected WM tracts [forceps minor (FMIN); superior longitudinal fasciculus (SLF); corticospinal tract (CST)]. Motor function was measured via two motor speed tests (grooved pegboard, finger tapping) and one motor strength test (grip force test), separately for the left and the right hand. The statistical analysis was conducted with longitudinal growth curve models in the structural equation modeling framework. Results The results revealed longitudinal decline and negative cross-sectional age-associations for mean WM FA in the FMIN and SLF, and for motor function in all tests, with a higher vulnerability for left than right hand motor performance. Regarding cross-domain associations, we found a significant positive level-level correlation among mean WM FA in the FMIN with motor speed. Mean FA in SLF and CST was not correlated with motor performance measures, and none of the level-change or change-change associations were significant. Overall, our results (a) provide important insights into aging-related changes of fine motor abilities and FA in selected white matter tracts associated with motor control, (b) support previous cross-sectional work showing that neural control of movement in older adults also involves brain structures outside the core motor system and (c) align with the idea that, in healthy aging, compensatory mechanisms may be in place and longer time delays may be needed to reveal level-change or change-change associations.
Collapse
Affiliation(s)
- Jessica Oschwald
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Susan Mérillat
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.,Department of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Boroda E, Armstrong M, Gilmore CS, Gentz C, Fenske A, Fiecas M, Hendrickson T, Roediger D, Mueller B, Kardon R, Lim K. Network topology changes in chronic mild traumatic brain injury (mTBI). Neuroimage Clin 2021; 31:102691. [PMID: 34023667 PMCID: PMC8163989 DOI: 10.1016/j.nicl.2021.102691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND In mild traumatic brain injury (mTBI), diffuse axonal injury results in disruption of functional networks in the brain and is thought to be a major contributor to cognitive dysfunction even years after trauma. OBJECTIVE Few studies have assessed longitudinal changes in network topology in chronic mTBI. We utilized a graph theoretical approach to investigate alterations in global network topology based on resting-state functional connectivity in veterans with chronic mTBI. METHODS 50 veterans with chronic mTBI (mean of 20.7 yrs. from trauma) and 40 age-matched controls underwent two functional magnetic resonance imaging scans 18 months apart. Graph theory analysis was used to quantify network topology measures (density, clustering coefficient, global efficiency, and modularity). Hierarchical linear mixed models were used to examine longitudinal change in network topology. RESULTS With all network measures, we found a significant group × time interaction. At baseline, brain networks of individuals with mTBI were less clustered (p = 0.03) and more modular (p = 0.02) than those of HC. Over time, the mTBI networks became more densely connected (p = 0.002), with increased clustering (p = 0.001) and reduced modularity (p < 0.001). Network topology did not change across time in HC. CONCLUSION These findings demonstrate that brain networks of individuals with mTBI remain plastic decades after injury and undergo significant changes in network topology even at the later phase of the disease.
Collapse
Affiliation(s)
- Elias Boroda
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | | | | | - Carrie Gentz
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Alicia Fenske
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mark Fiecas
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Tim Hendrickson
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Donovan Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Randy Kardon
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelvin Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN, USA; School of Public Health, Department of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration. Neuroimage 2021; 235:118004. [PMID: 33794359 DOI: 10.1016/j.neuroimage.2021.118004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023] Open
Abstract
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N=8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro- and microstructural brain changes over time.
Collapse
|
15
|
Tomaiuolo F, Cerasa A, Lerch JP, Bivona U, Carlesimo GA, Ciurli P, Raffa G, Quattropani MC, Germanò A, Caltagirone C, Formisano R, Nigro S. Brain Neurodegeneration in the Chronic Stage of the Survivors from Severe Non-Missile Traumatic Brain Injury: A Voxel-Based Morphometry Within-Group at One versus Nine Years from a Head Injury. J Neurotrauma 2020; 38:283-290. [PMID: 32962533 DOI: 10.1089/neu.2020.7203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The long-term time course of neuropathological changes occurring in survivors from severe traumatic brain injury (TBI) remains uncertain. We investigated the brain morphometry and memory performance modifications within the same group of severe non-missile traumatic brain injury patients (nmTBI) after about ∼one year and at ∼ nine years from injury. Brain magnetic resonance imaging (MRI) measurements were performed with voxel-based morphometry (VBM) to determine specific changes in the gray matter (GM) and white matter (WM) and the overall gray matter volume modifications (GMV) and white matter volume modifications (WMV). Contemporarily, memory-tests were also administered. In comparison with healthy control subjects (HC), those with nmTBI showed a significant change and volume reduction in the GM and WM and also in the GMV and WMV after ∼one year; conversely, ∼nine years after injury, neurodegenerative changes spared the GM and GMV, but a prominent loss was detected in WMV and in WM sites, such as the superior longitudinal fasciculi, the body of the corpus callosum, the optic radiation, and the uncinate fasciculus. Memory performance at ∼one year in comparison with ∼nine years was stable with a subtle but significant trend toward recovery. These data demonstrate that patients with nmTBI undergo neurodegenerative processes during the chronic stage affecting mainly the cerebral WM rather than GM. Despite these anatomical brain parenchyma losses, memory performance tends to be stable or even slightly recovered. These results suggest possible correlations between progressive demyelinization and/or neuropsychiatric changes other than memory performance, and support possible treatments to prevent long-term WM degeneration of the examined nmTBI.
Collapse
Affiliation(s)
- Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine and Department BIOMORF, University of Messina, Messina, Italy
| | - Antonio Cerasa
- IRIB, National Research Council, Cosenza, Italy, and S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | | | - Giovanni Augusto Carlesimo
- IRCCS Fondazione 'Santa Lucia', Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | | - Giovanni Raffa
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Marina Catena Quattropani
- Department of Clinical and Experimental Medicine and Department BIOMORF, University of Messina, Messina, Italy
| | - Antonino Germanò
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | | | | | - Salvatore Nigro
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| |
Collapse
|
16
|
Alivar A, Glassen M, Hoxha A, Allexandre D, Yue G, Saleh S. Relationship between DTI Brain Connectivity and Functional Performance in Individuals with Traumatic Brain Injury .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3256-3259. [PMID: 33018699 DOI: 10.1109/embc44109.2020.9176130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
this study examines the relationship between brain structural connectivity, and physical and cognitive performances in individuals with Traumatic Brain Injury (TBI). Nine moderate to severe TBI participants were included in the study, and regression analysis was performed to explore if DTI connectivity of 16 regions of interest can predict individuals' : 1) Maximum Voluntary Contraction (MVC), 2) time component of Wolf Motor Function Test (WMFT), 3) Reaction Time (RT) during bimanual force matching task, 4) Performance Error Measurement (PEM) during bimanual force matching task, and 5) cognitive assessment of task switching using Trail Making (TM) test. Results showed that slower WMFT, PEM, and TM can be predicted by weaker cerebrospinal tract connectivity. Higher Caudate connectivity predicted higher WMFT and slower RT, and higher right Cingulum predicted faster TM. Current results suggest that measures of cognitive-motor interference may be better indicators of functional performance than single cognitive and motor performance tests.
Collapse
|
17
|
LoBue C, Munro C, Schaffert J, Didehbani N, Hart J, Batjer H, Cullum CM. Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. J Alzheimers Dis 2020; 70:629-654. [PMID: 31282414 DOI: 10.3233/jad-190028] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injuries (TBI) have received widespread media attention in recent years as being a risk factor for the development of dementia and chronic traumatic encephalopathy (CTE). This has sparked fears about the potential long-term effects of TBI of any severity on cognitive aging, leading to a public health concern. This article reviews the evidence surrounding TBI as a risk factor for the later development of changes in brain structure and function, and an increased risk of neurodegenerative disorders. A number of studies have shown evidence of long-term brain changes and accumulation of pathological biomarkers (e.g., amyloid and tau proteins) related to a history of moderate-to-severe TBI, and research has also demonstrated that individuals with moderate-to-severe injuries have an increased risk of dementia. While milder injuries have been found to be associated with an increased risk for dementia in some recent studies, reports on long-term brain changes have been mixed and often are complicated by factors related to injury exposure (i.e., number of injuries) and severity/complications, psychiatric conditions, and opioid use disorder. CTE, although often described as a neurodegenerative disorder, remains a neuropathological condition that is poorly understood. Future research is needed to clarify the significance of CTE pathology and determine whether that can explain any clinical symptoms. Overall, it is clear that most individuals who sustain a TBI (particularly milder injuries) do not experience worse outcomes with aging, as the incidence for dementia is found to be less than 7% across the literature.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Munro
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hunt Batjer
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Castaño-Leon AM, Cicuendez M, Navarro-Main B, Munarriz PM, Paredes I, Cepeda S, Hilario A, Ramos A, Gómez PA, Lagares A. PREMIO SIXTO OBRADOR SENEC 2019: El uso de la secuencia Tensor de difusión como herramienta pronóstica en los pacientes con traumatismo craneoencefálico grave y moderado. Parte II: Análisis longitudinal de las características del Tensor de difusión y su relación con la evolución de los pacientes. Neurocirugia (Astur) 2020; 31:231-248. [DOI: 10.1016/j.neucir.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
19
|
Byom L, O'Neil-Pirozzi TM, Lemoncello R, MacDonald S, Meulenbroek P, Ness B, Sohlberg MM. Social Communication Following Adult Traumatic Brain Injury: A Scoping Review of Theoretical Models. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:1735-1748. [PMID: 32569483 DOI: 10.1044/2020_ajslp-19-00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose Social communication is the set of abilities that allows individuals to achieve relevant social goals across contexts. Speech-language pathology evaluation and treatment of traumatic brain injury (TBI)-related social communication problems should be informed by evidence-supported theories of social communication. The primary purpose of this article is to summarize the results of a scoping review of theoretical models that speech-language pathologists may apply to the evaluation and treatment of social communication problems of adults with TBI. Method A scoping review was conducted of PubMed, PsycINFO, and Embase for sources published in English between 1989 and 2020 that described human social communication and participation. Resulting sources were systematically examined for social communication models. Results Nine theoretical models were identified that speech-language pathologists may apply to their assessment and treatment of social communication abilities of adults with TBI. Identified models were categorized thematically into one of three classes: cognitive models, social competence models, and pragmatic models. Using a framework developed for the purposes of this article, each identified model was evaluated, and one exemplar model in each class is described in depth. Conclusions Social communication problems in adults post-TBI are common. The existence of multiple models empowers speech-language pathologists to select individual-focused assessment and treatment approaches to maximize intervention outcomes.
Collapse
Affiliation(s)
- Lindsey Byom
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina, Chapel Hill
| | - Therese M O'Neil-Pirozzi
- Communication Sciences and Disorders, Northeastern University and Spaulding-Harvard Traumatic Brain Injury Model System, Boston, MA
| | - Rik Lemoncello
- School of Communication Sciences and Disorders, Pacific University, Forest Grove, OR
| | - Sheila MacDonald
- Sheila MacDonald & Associates, University of Toronto, Ontario, Canada
| | - Peter Meulenbroek
- Communication Sciences and Disorders, University of Kentucky, Lexington
| | - Bryan Ness
- Communication Sciences and Disorders, California Baptist University, Riverside
| | | |
Collapse
|
20
|
Choi EB, Jang SH. Diffusion Tensor Imaging Studies on Recovery of Injured Optic Radiation: A Minireview. Neural Plast 2020; 2020:8881224. [PMID: 32587609 PMCID: PMC7301249 DOI: 10.1155/2020/8881224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/03/2022] Open
Abstract
The optic radiation (OR) is a visual neural fiber pathway for the transfer of visual information from the lateral geniculate body of the thalamus to the primary visual cortex. To demonstrate the recovery of an OR injury, quantification and visualization of changes to the injured OR are necessary. Diffusion tensor imaging (DTI) allows determination of the state of an OR by assessing the obtained DTI parameters. In particular, diffusion tensor tractography (DTT), which is derived from DTI data, allows three-dimensional visualization of the OR. Thus, recovery of an injured OR can be demonstrated by examining changes in DTI parameters and/or configuration on follow-up DTI scans or via DTT of the injured OR. Herein, we review nine DTI-based studies that demonstrated recovery of OR injuries. The results reported in these studies suggest that an OR injury has a potential for recovery. Moreover, the results of these studies can form a basis for elucidating the recovery mechanisms of injured OR. These studies have suggested two recovery mechanisms for OR injury: recovery via the original OR pathway or via the transcallosal fibers of the corpus callosum. However, only nine studies on this topic have been conducted to date and six of those nine studies were case reports. Therefore, further studies involving larger numbers of subjects and reporting precise evaluations of changes in OR injury during recovery are warranted.
Collapse
Affiliation(s)
- Eun Bi Choi
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| |
Collapse
|
21
|
Si T, Xing G, Han Y. Subjective Cognitive Decline and Related Cognitive Deficits. Front Neurol 2020; 11:247. [PMID: 32508729 PMCID: PMC7248257 DOI: 10.3389/fneur.2020.00247] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Since late stage dementia, including Alzheimer's disease (AD), cannot be reversed by any available drugs, there is increasing research interest in the preclinical stage of AD, i.e., subjective cognitive decline (SCD). SCD is characterized by self-perceptive cognitive decline but is difficult to detect using objective tests. At SCD stage, the cognitive deficits can be more easily reversed compared to that of mild cognitive impairment (MCI) and AD only if accurate diagnosis of SCD and early intervention can be developed. In this paper, we review the recent progress of SCD research including current assessment tools, biomarkers, neuroimaging, intervention and expected prognosis, and the potential relevance to traumatic brain injury (TBI)-induced cognitive deficits.
Collapse
Affiliation(s)
- Tong Si
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
22
|
Marcotte K, Sanchez E, Arbour C, Brambati SM, Bedetti C, Martineau S, Descoteaux M, Gosselin N. Long-term discourse outcomes and their relationship to white matter damage in moderate to severe adulthood traumatic brain injury. BRAIN AND LANGUAGE 2020; 204:104769. [PMID: 32078946 DOI: 10.1016/j.bandl.2020.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (Hôpital du Sacré-Coeur de Montréal), Montréal, Québec, Canada; École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada.
| | - Erlan Sanchez
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (Hôpital du Sacré-Coeur de Montréal), Montréal, Québec, Canada; Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Arbour
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (Hôpital du Sacré-Coeur de Montréal), Montréal, Québec, Canada; Faculté des sciences infirmières, Université de Montréal, Montréal, Québec, Canada
| | - Simona Maria Brambati
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Département de psychologie, Faculté des arts et Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Christophe Bedetti
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Sarah Martineau
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (Hôpital du Sacré-Coeur de Montréal), Montréal, Québec, Canada; École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Maxime Descoteaux
- Département d'informatique, Université de Sherbrooke, Québec, Canada
| | - Nadia Gosselin
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (Hôpital du Sacré-Coeur de Montréal), Montréal, Québec, Canada; Département de psychologie, Faculté des arts et Sciences, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Sharma B, Changoor A, Monteiro L, Colella B, Green R. Prognostic-factors for neurodegeneration in chronic moderate-to-severe traumatic brain injury: a systematic review protocol. Syst Rev 2020; 9:23. [PMID: 32014038 PMCID: PMC6998211 DOI: 10.1186/s13643-020-1281-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability. Recently, a paradigm shift in our understanding of moderate-to-severe TBI has led to its reconceptualization as a progressive neurodegenerative disorder. Widespread progressive atrophy is observed in the months and years post-injury, long after the acute effects of the injury have resolved. Some studies have begun to examine prognostic demographic, injury-related, and post-injury risk factors that contribute to these declines. A synthesis of this information, and in particular, an increased understanding of post-injury factors that may be modifiable, would improve our ability to design interventions to reduce neurodegeneration in moderate-to-severe TBI. This systematic review aims to identify prognostic factors for neural deterioration in moderate-to-severe TBI, and thereby inform future intervention research in this population. METHODS This review protocol was informed by and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) guidelines. Search strategies (designed to identify literature on prognostic factors of neurodegeneration in adults with moderate-to-severe TBI) optimized for MEDLINE, EMBASE PsychINFO, CINAHL, SportDiscus, and Cochrane Central Register of Controlled Trials will be developed with the assistance of a health sciences librarian. Retrieved studies will be screened by two team members. Studies must report on longitudinal neuroimaging (i.e., two or more scans in the same cohort) or neuroimaging in a cross-sectional study and potential prognostic factors for neurodegeneration, such as demographics (e.g., gender, age, education), injury (e.g., severity, etiology), or post-injury characteristics (e.g., type and length of therapy, activity level, mood). DISCUSSION By identifying prognostic factors for neurodegeneration, this systematic review can help inform injury management, as well as intervention research designed to offset the effects of modifiable prognostic factors, such as low levels of cognitive or physical activity. In turn, this systematic review can increase our understanding of how to improve outcome following moderate-to-severe TBI. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019122389.
Collapse
Affiliation(s)
- Bhanu Sharma
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Medical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8 Canada
| | - Alana Changoor
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Leanne Monteiro
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Brenda Colella
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Robin Green
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Psychiatry, University of Toronto, 550 University Avenue, Toronto, ON M5G2A2 Canada
| |
Collapse
|
24
|
Gozt A, Licari M, Halstrom A, Milbourn H, Lydiard S, Black A, Arendts G, Macdonald S, Song S, MacDonald E, Vlaskovsky P, Burrows S, Bynevelt M, Pestell C, Fatovich D, Fitzgerald M. Towards the Development of an Integrative, Evidence-Based Suite of Indicators for the Prediction of Outcome Following Mild Traumatic Brain Injury: Results from a Pilot Study. Brain Sci 2020; 10:brainsci10010023. [PMID: 31906443 PMCID: PMC7017246 DOI: 10.3390/brainsci10010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Persisting post-concussion symptoms (PPCS) is a complex, multifaceted condition in which individuals continue to experience the symptoms of mild traumatic brain injury (mTBI; concussion) beyond the timeframe that it typically takes to recover. Currently, there is no way of knowing which individuals may develop this condition. Method: Patients presenting to a hospital emergency department (ED) within 48 h of sustaining a mTBI underwent neuropsychological assessment and demographic, injury-related information and blood samples were collected. Concentrations of blood-based biomarkers neuron specific enolase, neurofilament protein-light, and glial fibrillary acidic protein were assessed, and a subset of patients also underwent diffusion tensor–magnetic resonance imaging; both relative to healthy controls. Individuals were classified as having PPCS if they reported a score of 25 or higher on the Rivermead Postconcussion Symptoms Questionnaire at ~28 days post-injury. Univariate exact logistic regression was performed to identify measures that may be predictive of PPCS. Neuroimaging data were examined for differences in fractional anisotropy (FA) and mean diffusivity in regions of interest. Results: Of n = 36 individuals, three (8.33%) were classified as having PPCS. Increased performance on the Repeatable Battery for the Assessment of Neuropsychological Status Update Total Score (OR = 0.81, 95% CI: 0.61–0.95, p = 0.004), Immediate Memory (OR = 0.79, 95% CI: 0.56–0.94, p = 0.001), and Attention (OR = 0.86, 95% CI: 0.71–0.97, p = 0.007) indices, as well as faster completion of the Trails Making Test B (OR = 1.06, 95% CI: 1.00–1.12, p = 0.032) at ED presentation were associated with a statistically significant decreased odds of an individual being classified as having PPCS. There was no significant association between blood-based biomarkers and PPCS in this small sample, although glial fibrillary acidic protein (GFAP) was significantly increased in individuals with mTBI relative to healthy controls. Furthermore, relative to healthy age and sex-matched controls (n = 8), individuals with mTBI (n = 14) had higher levels of FA within the left inferior frontal occipital fasciculus (t (18.06) = −3.01, p = 0.008). Conclusion: Performance on neuropsychological measures may be useful for predicting PPCS, but further investigation is required to elucidate the utility of this and other potential predictors.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Melissa Licari
- Telethon Kids Institute, West Perth, WA 6005, Australia;
| | - Alison Halstrom
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Hannah Milbourn
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Stephen Lydiard
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
| | - Anna Black
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Glenn Arendts
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
| | - Stephen Macdonald
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Swithin Song
- Radiology Department, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Ellen MacDonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Philip Vlaskovsky
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Sally Burrows
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (P.V.); (S.B.)
| | - Michael Bynevelt
- School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia;
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gardener Hospital, Nedlands, WA 6009, Australia
| | - Carmela Pestell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- School of Psychological Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel Fatovich
- Emergency Medicine, The University of Western Australia, Crawley, WA 6009, Australia; (G.A.); (S.M.); (D.F.)
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, WA 6000, Australia;
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (A.G.); (A.B.); (C.P.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.H.); (H.M.); (S.L.)
- Correspondence: ; Tel.: +61-467-729-300
| |
Collapse
|
25
|
Sharma B, Changoor AT, Monteiro L, Colella B, Green REA. The scale of neurodegeneration in moderate-to-severe traumatic brain injury: a systematic review protocol. Syst Rev 2019; 8:332. [PMID: 31852523 PMCID: PMC6921548 DOI: 10.1186/s13643-019-1208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of recovery after moderate-to-severe traumatic brain injury (TBI) has shifted. Until recently, it was presumed that following a period of acute neurological vulnerability, the brain remained stable in the chronic stages of injury. However, recent research has shown neurodegeneration in the chronic stages of moderate-to-severe TBI, challenging the assumption of neurological stability. While there is extensive evidence that neurodegeneration occurs, debate remains regarding the scale and timing. This systematic review will evaluate the scale and timelines of neurodegeneration in adult patients with moderate-to-severe TBI. METHODS Literature searches will be conducted in six electronic databases (from inception onwards), including MEDLINE, EMBASE, PsycINFO, CINAHL, SportDiscus, and Cochrane Central Register of Controlled Trials. We will include observational studies that examine neurodegenerative changes within a single sample of TBI patients or studies that compare neuroimaging outcomes between TBI patients and healthy controls. Our primary outcome is structural neuroimaging, and our secondary outcome is diffusion tensor imaging for detection of post-injury white matter changes. All screening, data extraction, and study quality appraisal will be performed independently by the same two study members. It is expected that a narrative summary of the literature will be produced. If feasible, we will conduct a random-effects meta-analysis. However, given the expected heterogeneity between studies (with respect to, for example, timing of imaging, regions imaged) we do not expect to perform a meta-analysis; rather, a narrative synthesis of our findings is expected to be performed. DISCUSSION Understanding the scale and timelines of neurodegeneration in moderate-to-severe TBI (as well as which brain areas are most vulnerable to chronic declines) can inform intervention research designed to offset such changes. This may help improve patient outcome following moderate-to-severe TBI and, in turn, reduce the burden of the injury. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019117548.
Collapse
Affiliation(s)
- Bhanu Sharma
- University Health Network – Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Medical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8 Canada
| | - Alana T. Changoor
- University Health Network – Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Leanne Monteiro
- University Health Network – Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Brenda Colella
- University Health Network – Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Robin E. A. Green
- University Health Network – Toronto Rehabilitation Institute, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Psychiatry, University of Toronto, 550 University Avenue, Toronto, ON M5G2A2 Canada
| |
Collapse
|
26
|
Yamagata B, Ueda R, Tasato K, Aoki Y, Hotta S, Hirano J, Takamiya A, Nakaaki S, Tabuchi H, Mimura M. Widespread White Matter Aberrations Are Associated with Phonemic Verbal Fluency Impairment in Chronic Traumatic Brain Injury. J Neurotrauma 2019; 37:975-981. [PMID: 31631743 DOI: 10.1089/neu.2019.6751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microstructural white matter (WM) disruption and resulting abnormal structural connectivity form a potential underlying pathology in traumatic brain injury (TBI). Herein, to determine the potential mechanism of cognitive deterioration in TBI, we examined the association of damage to specific WM tracts with cognitive function in TBI patients. We recruited 18 individuals with mild-to-moderate/severe TBI in the chronic phase and 17 age-matched controls. We determined the pattern of WM aberrations in TBI using tract-based spatial statistics (TBSS) and then examined the relationship between cognitive impairment and WM damage using the threshold-free cluster enhancement correction in TBSS. TBSS analysis showed that TBI patients exhibited WM aberrations in a wide range of brain regions. In the majority of these regions, lower fractional anisotropy (FA) largely overlapped with increased radial diffusivity, but not with axial diffusivity. Further, voxel-wise correction in TBSS demonstrated that higher FA values were associated with better performance in the phonemic verbal fluency task (VFT) in widespread WM regions, but not with the semantic VFT. Despite variation in the magnitude and location of brain injury between individual cases, chronic TBI patients exhibited widespread WM aberrations. We confirmed the findings of previous studies that WM integrity is lower across the spectrum of TBI severity in chronic subjects compared to controls. Further, phonemic VFT may be a more sensitive cognitive measure of executive dysfunction associated with WM aberrations in TBI compared with semantic VFT.
Collapse
Affiliation(s)
- Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Radiological Sciences, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.,Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Kumiko Tasato
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Shogo Hotta
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shutaro Nakaaki
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Mac Donald CL, Barber J, Andre J, Panks C, Zalewski K, Temkin N. Longitudinal neuroimaging following combat concussion: sub-acute, 1 year and 5 years post-injury. Brain Commun 2019; 1:fcz031. [PMID: 31915753 PMCID: PMC6935683 DOI: 10.1093/braincomms/fcz031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Questions remain regarding the long-term impact of combat concussive blast exposure. While efforts have begun to highlight the clinical impact, less is known about neuroimaging trajectories that may inform underlying pathophysiological changes post-injury. Through collaborative efforts in combat, following medical evacuation, and at universities in the USA, this study followed service members both with and without blast concussion from the sub-acute to 1-year and 5-year outcomes with quantitative neuroimaging. The following two primary and two exploratory groups were examined: combat-deployed controls without blast exposure history ‘non-blast control’ and concussive blast patients (primary) and combat concussion arising not from blast ‘non-blast concussion’ and combat-deployed controls with blast exposure history ‘blast control’ (exploratory). A total of 575 subjects were prospectively enrolled and imaged; 347 subjects completed further neuroimaging examination at 1 year and 342 subjects completed further neuroimaging examination at 5 years post-injury. At each time point, MRI scans were completed that included high-resolution structural as well as diffusion tensor imaging acquisitions processed for quantitative volumetric and diffusion tensor imaging changes. Longitudinal evaluation of the number of abnormal diffusion tensor imaging and volumetric regions in patients with blast concussion revealed distinct trends by imaging modality. While the presence of abnormal volumetric regions remained quite stable comparing our two primary groups of non-blast control to blast concussion, the diffusion tensor imaging abnormalities were observed to have varying trajectories. Most striking was the fractional anisotropy ‘U-shaped’ curve observed for a proportion of those that, if we had only followed them to 1 year, would look like trajectories of recovery. However, by continuing the follow-up to 5 years in these very same patients, a secondary increase in the number of reduced fractional anisotropy regions was identified. Comparing non-blast controls to blast concussion at each time point revealed significant differences in the number of regions with reduced fractional anisotropy at both the sub-acute and 5-year time points, which held after adjustment for age, education, gender, scanner and subsequent head injury exposure followed by correction for multiple comparisons. The secondary increase identified in patients with blast concussion may be the earliest indications of microstructural changes underlying the ‘accelerated brain aging’ theory recently reported from chronic, cross-sectional studies of veterans following brain injury. These varying trajectories also inform potential prognostic neuroimaging biomarkers of progression and recovery.
Collapse
Affiliation(s)
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Jalal Andre
- Department of Radiology, University of Washington, Seattle, WA 98104, USA
| | - Chris Panks
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Kody Zalewski
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA.,Department of Biostatistics, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
28
|
Li L, Chopp M, Ding G, Davoodi-Bojd E, Li Q, Mahmood A, Xiong Y, Jiang Q. Diffuse white matter response in trauma-injured brain to bone marrow stromal cell treatment detected by diffusional kurtosis imaging. Brain Res 2019; 1717:127-135. [PMID: 31009610 PMCID: PMC6571170 DOI: 10.1016/j.brainres.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Diffuse white matter (WM) response to traumatic brain injury (TBI) and transplantation of human bone marrow stromal cells (hMSCs) after the injury were non-invasively and dynamically investigated. Male Wistar rats (300-350 g) subjected to TBI were intravenously injected with 1 ml of saline (n = 10) or with hMSCs in suspension (∼3 × 106 hMSCs, n = 10) 1-week post-TBI. MRI measurements of T2-weighted imaging and diffusional kurtosis imaging (DKI) were acquired on all animals at multiple time points up to 3-months post-injury. Functional outcome was assessed using the Morris water maze test. DKI-derived metrics of fractional anisotropy (FA), axonal water fraction (AWF) and radial kurtosis (RK) longitudinally reveal an evolving pattern of structural alteration post-TBI occurring in the brain region remote from primary impact site. The progressive structural change is characterized by gradual disruption of WM integrity at an early stage (weeks post-TBI), followed by spontaneous recovery at a later stage (months post-TBI). Transplantation of hMSCs post-TBI promotes this structural plasticity as indicated by significantly increased FA and AWF in conjunction with substantially elevated RK at the later stage. Our long-term imaging data demonstrate that hMSC therapy leads to modified temporal profiles of these metrics, inducing an earlier presence of enhanced structural remodeling, which may contribute to improved functional recovery.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
29
|
Kinder HA, Baker EW, Wang S, Fleischer CC, Howerth EW, Duberstein KJ, Mao H, Platt SR, West FD. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019; 36:2930-2942. [PMID: 31084386 DOI: 10.1089/neu.2018.6303] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children. Pediatric TBI patients often suffer from crippling cognitive, emotional, and motor function deficits that have negative lifelong effects. The objective of this study was to longitudinally assess TBI pathophysiology using multi-parametric magnetic resonance imaging (MRI), gait analysis, and histological approaches in a pediatric piglet model. TBI was produced by controlled cortical impact in Landrace piglets. MRI data, including from proton magnetic resonance spectroscopy (MRS), were collected 24 hours and 12 weeks post-TBI, and gait analysis was performed at multiple time-points over 12 weeks post-TBI. A subset of animals was sacrificed 24 hours, 1 week, 4 weeks, and 12 weeks post-TBI for histological analysis. MRI results demonstrated that TBI led to a significant brain lesion and midline shift as well as microscopic tissue damage with altered brain diffusivity, decreased white matter integrity, and reduced cerebral blood flow. MRS showed a range of neurochemical changes after TBI. Histological analysis revealed neuronal loss, astrogliosis/astrocytosis, and microglia activation. Further, gait analysis showed transient impairments in cadence, cycle time, % stance, step length, and stride length, as well as long-term impairments in weight distribution after TBI. Taken together, this study illustrates the distinct time course of TBI pathoanatomic and functional responses up to 12 weeks post-TBI in a piglet TBI model. The study of TBI injury and recovery mechanisms, as well as the testing of therapeutics in this translational model, are likely to be more predictive of human responses and clinical outcomes compared to traditional small animal models.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Silun Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Castaño-Leon AM, Cicuendez M, Navarro B, Paredes I, Munarriz PM, Cepeda S, Hilario A, Ramos A, Gomez PA, Lagares A. Longitudinal Analysis of Corpus Callosum Diffusion Tensor Imaging Metrics and Its Association with Neurological Outcome. J Neurotrauma 2019; 36:2785-2802. [PMID: 30963801 DOI: 10.1089/neu.2018.5978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic axonal injury (TAI) is the main cause of cognitive and psychological disfunction after a traumatic brain injury (TBI). Diffusion tensor imaging (DTI) is considered a useful technique for indirect assessment of white matter (WM) integrity after a TBI. Scattered WM alterations and its relationship with patient severity have been discovered in normal appearing conventional magnetic resonance imaging (MRI) studies based on DTI sequences. However, there is a lack of large sample studies on the longitudinal changes of DTI metrics to be used to determine the temporal profile after head injury and its association with patient outcome. We performed a prospective observational study in 118 moderate-to-severe TBI patients. The study included clinical outcome assessment based on the Glasgow Outcome Scale Extended (GOSE) and serial DTI studies in the early subacute setting (< 60 days) and 6 and 12 months after injury. Fractional anisotropy (FA) and axial and radial diffusivities (AD and RD, respectively) were measured in the three portions of corpus callosum (genu, body, splenium) at each time-point and compared with normalized values from an age-matched control group. Longitudinal FA analysis and its correlation with patient improvement also was done by non-parametric testing and ordinal regression analysis. Our main results indicated that between all the time-points, dynamic changes in DTI metrics in all three portions of corpus callosum were detected, but TBI patients continued to show significantly lower FA and AD values and higher RD values compared with controls. We also have discovered differences in the change of DTI metrics among different time-points in patient subgroups according with their outcome improvement. In conclusion, even without normalization of DTI metrics in the long-term, knowledge of the temporal profile of change in DTI metrics can provide important information about patients' clinical recovery after TBI.
Collapse
Affiliation(s)
- Ana M Castaño-Leon
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Marta Cicuendez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Blanca Navarro
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Pablo M Munarriz
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Santiago Cepeda
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Amaya Hilario
- Department of Radiology, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Ana Ramos
- Department of Radiology, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Gomez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
31
|
Yin B, Li DD, Huang H, Gu CH, Bai GH, Hu LX, Zhuang JF, Zhang M. Longitudinal Changes in Diffusion Tensor Imaging Following Mild Traumatic Brain Injury and Correlation With Outcome. Front Neural Circuits 2019; 13:28. [PMID: 31133818 PMCID: PMC6514143 DOI: 10.3389/fncir.2019.00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
The chronic consequences of traumatic brain injury (TBI) may contribute to the increased risk for early cognitive decline and dementia, primarily due to diffusion axonal injury. Previous studies in mild TBI (mTBI) have been controversial in describing the white matter tract integrity changes occurring at acute and subacute post-injury. In this prospective longitudinal study, we aim to investigate the longitudinal changes of white matter (WM) using diffusion tensor imaging (DTI) and their correlations with neuropsychological tests. Thirty-three patients with subacute mTBI and 31 matched healthy controls were studied with an extensive imaging and clinical battery. Neuroimaging was obtained within 7 days post-injury for acute scans and repeated at 1 and 3 months post-injury. Using a region-of-interest-based approach, tract-based spatial statistics was used to conduct voxel-wise analysis on diffusion changes in mTBI and was compared to those of healthy matched controls, scanned during the same time period and rescanned with an interval similar to that of patients. We found decreased fractional anisotropy (FA) values in the left anterior limb of internal capsule (ALIC) and right inferior fronto-occipital fasciculus (IFOF) during the 7 days post-injury, which showed longitudinal evidence of recovery following 1 month post-injury. Increased FA values in these two tracts at 1 month post-injury were positively associated with better performance on cognitive information processing speed at initial assessment. By contrast, there were also some tracts (right anterior corona radiata, forceps major, and body of corpus callosum) exhibiting the continuing loss of integrity sustaining even beyond 3 months, which can predict the persisting post-concussion syndromes. Continuing loss of structural integrity in some tracts may contribute to the persistent post-concussion syndromes in mTBI patients, suggesting certain tracts providing an objective biomarker for tracking the pathological recovery process following mTBI.
Collapse
Affiliation(s)
- Bo Yin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Hui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu-Xun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Fei Zhuang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Imms P, Clemente A, Cook M, D'Souza W, Wilson PH, Jones DK, Caeyenberghs K. The structural connectome in traumatic brain injury: A meta-analysis of graph metrics. Neurosci Biobehav Rev 2019; 99:128-137. [PMID: 30615935 PMCID: PMC7615245 DOI: 10.1016/j.neubiorev.2019.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
Although recent structural connectivity studies of traumatic brain injury (TBI) have used graph theory to evaluate alterations in global integration and functional segregation, pooled analysis is needed to examine the robust patterns of change in graph metrics across studies. Following a systematic search, 15 studies met the inclusion criteria for review. Of these, ten studies were included in a random-effects meta-analysis of global graph metrics, and subgroup analyses examined the confounding effects of severity and time since injury. The meta-analysis revealed significantly higher values of normalised clustering coefficient (gö=ö1.445, CI=[0.512, 2.378], pö=ö0.002) and longer characteristic path length (gö=ö0.514, CI=[0.190, 0.838], pö=ö0.002) in TBI patients compared with healthy controls. Our findings suggest that the TBI structural network has shifted away from the balanced small-world network towards a regular lattice. Therefore, these graph metrics may be useful markers of neurocognitive dysfunction in TBI. We conclude that the pattern of change revealed by our analysis should be used to guide hypothesis-driven research into the role of graph metrics as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Phoebe Imms
- Mary MacKillop Institute for Heatlh Research, Faculty of Health Sciences, Australian Catholic University. 115 Victoria Parade, Melbourne, VIC, 3065, Australia.
| | - Adam Clemente
- Mary MacKillop Institute for Heatlh Research, Faculty of Health Sciences, Australian Catholic University. 115 Victoria Parade, Melbourne, VIC, 3065, Australia.
| | - Mark Cook
- Department of Medicine, St. Vincent's Hospital, University of Melbourne. 41 Victoria Parade, Melbourne, VIC, 3065, Australia.
| | - Wendyl D'Souza
- Department of Medicine, St. Vincent's Hospital, University of Melbourne. 41 Victoria Parade, Melbourne, VIC, 3065, Australia.
| | - Peter H Wilson
- Mary MacKillop Institute for Heatlh Research, Faculty of Health Sciences, Australian Catholic University. 115 Victoria Parade, Melbourne, VIC, 3065, Australia.
| | - Derek K Jones
- Mary MacKillop Institute for Heatlh Research, Faculty of Health Sciences, Australian Catholic University. 115 Victoria Parade, Melbourne, VIC, 3065, Australia; Cardiff University Brain Research Imaging Centre, School of Psychology, and Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, United Kingdom.
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Heatlh Research, Faculty of Health Sciences, Australian Catholic University. 115 Victoria Parade, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
33
|
Abstract
Over 1.4 million people in the United States experience traumatic brain injury (TBI) each year and approximately 52,000 people die annually due to complications related to TBI. Traditionally, TBI has been viewed as a static injury with significant consequences for frontal lobe functioning that plateaus after some window of recovery, remaining relatively stable thereafter. However, over the past decade there has been growing consensus that the consequences of TBI are dynamic, with unique characteristics expressed at the individual level and over the life span. This chapter first discusses the pathophysiology of TBI in order to understand its dynamic process and then describes the behavioral changes that are the result of injury with focus on frontal lobe functions. It integrates a historical perspective on structural and functional brain-imaging approaches used to understand how TBI impacts the frontal lobes, as well as more recent approaches to examine large-scale network changes after TBI. The factors most useful for outcome prediction are surveyed, along with how the theoretical frameworks used to predict recovery have developed over time. In this chapter, the authors argue for the need to understand outcome after TBI as a dynamic process with individual trajectories, taking a network theory perspective to understand the consequences of disrupting frontal systems in TBI. Within this framework, understanding frontal lobe dysfunction within a larger coordinated neural network to study TBI may provide a novel perspective in outcome prediction and in developing individualized treatments.
Collapse
Affiliation(s)
- Rachel A Bernier
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States.
| |
Collapse
|
34
|
Myer GD, Barber Foss K, Thomas S, Galloway R, DiCesare CA, Dudley J, Gadd B, Leach J, Smith D, Gubanich P, Meehan Iii WP, Altaye M, Lavin P, Yuan W. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes. Br J Sports Med 2018; 53:1539-1551. [PMID: 30323056 DOI: 10.1136/bjsports-2018-099571] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To (1) quantify white matter (WM) alterations in female high school athletes during a soccer season and characterise the potential for normalisation during the off-season rest period, (2) determine the association between WM alterations and exposure to repetitive subconcussive head impacts, and (3) evaluate the efficacy of a jugular vein compression collar to prevent WM alterations associated with head impact exposure. METHODS Diffusion tensor imaging (DTI) data were prospectively collected from high school female soccer participants (14-18 years) at up to three time points over 9 months. Head impacts were monitored using accelerometers during all practices and games. Participants were assigned to a collar (n=24) or non-collar group (n=22). The Tract-Based Spatial Statistics approach was used in the analysis of within-group longitudinal change and between-group comparisons. RESULTS DTI analyses revealed significant pre-season to post-season WM changes in the non-collar group in mean diffusivity (2.83%±2.46%), axial diffusivity (2.58%±2.34%) and radial diffusivity (3.52%±2.60%), but there was no significant change in the collar group despite similar head impact exposure. Significant correlation was found between head impact exposure and pre-season to post-season DTI changes in the non-collar group. WM changes in the non-collar group partially resolved at 3 months off-season follow-up. DISCUSSION Microstructural changes in WM occurred during a season of female high school soccer among athletes who did not wear the collar device. In comparison, there were no changes in players who wore the collar, suggesting a potential prophylactic effect of the collar device in preventing changes associated with repetitive head impacts. In those without collar use, the microstructural changes showed a reversal towards normal over time in the off-season follow-up period.
Collapse
Affiliation(s)
- Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA.,Duke University School of Medicine, Durham, North Carolina, USA
| | - Kim Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Staci Thomas
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brooke Gadd
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Smith
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul Gubanich
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Philip Lavin
- Boston Biostatistics Research Foundation, Framingham, Massachusetts, USA
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
35
|
Filley CM, Kelly JP. White Matter and Cognition in Traumatic Brain Injury. J Alzheimers Dis 2018; 65:345-362. [DOI: 10.3233/jad-180287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| | - James P. Kelly
- Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Marcus Institute for Brain Health, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
36
|
Aldag M, Armstrong RC, Bandak F, Bellgowan PSF, Bentley T, Biggerstaff S, Caravelli K, Cmarik J, Crowder A, DeGraba TJ, Dittmer TA, Ellenbogen RG, Greene C, Gupta RK, Hicks R, Hoffman S, Latta RC, Leggieri MJ, Marion D, Mazzoli R, McCrea M, O'Donnell J, Packer M, Petro JB, Rasmussen TE, Sammons-Jackson W, Shoge R, Tepe V, Tremaine LA, Zheng J. The Biological Basis of Chronic Traumatic Encephalopathy following Blast Injury: A Literature Review. J Neurotrauma 2018; 34:S26-S43. [PMID: 28937953 DOI: 10.1089/neu.2017.5218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The United States Department of Defense Blast Injury Research Program Coordinating Office organized the 2015 International State-of-the-Science meeting to explore links between blast-related head injury and the development of chronic traumatic encephalopathy (CTE). Before the meeting, the planning committee examined articles published between 2005 and October 2015 and prepared this literature review, which summarized broadly CTE research and addressed questions about the pathophysiological basis of CTE and its relationship to blast- and nonblast-related head injury. It served to inform participants objectively and help focus meeting discussion on identifying knowledge gaps and priority research areas. CTE is described generally as a progressive neurodegenerative disorder affecting persons exposed to head injury. Affected individuals have been participants primarily in contact sports and military personnel, some of whom were exposed to blast. The symptomatology of CTE overlaps with Alzheimer's disease and includes neurological and cognitive deficits, psychiatric and behavioral problems, and dementia. There are no validated diagnostic criteria, and neuropathological evidence of CTE has come exclusively from autopsy examination of subjects with histories of exposure to head injury. The perivascular accumulation of hyperphosphorylated tau (p-tau) at the depths of cortical sulci is thought to be unique to CTE and has been proposed as a diagnostic requirement, although the contribution of p-tau and other reported pathologies to the development of clinical symptoms of CTE are unknown. The literature on CTE is limited and is focused predominantly on head injuries unrelated to blast exposure (e.g., football players and boxers). In addition, comparative analyses of clinical case reports has been challenging because of small case numbers, selection biases, methodological differences, and lack of matched controls, particularly for blast-exposed individuals. Consequently, the existing literature is not sufficient to determine whether the development of CTE is associated with head injury frequency (e.g., single vs. multiple exposures) or head injury type (e.g., impact, nonimpact, blast-related). Moreover, the incidence and prevalence of CTE in at-risk populations is unknown. Future research priorities should include identifying additional risk factors, pursuing population-based longitudinal studies, and developing the ability to detect and diagnose CTE in living persons using validated criteria.
Collapse
Affiliation(s)
- Matt Aldag
- 1 Booz Allen Hamilton , McLean, Virginia
| | - Regina C Armstrong
- 2 Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Faris Bandak
- 3 Defense Advanced Research Projects Agency , Arlington, Virginia
| | | | | | - Sean Biggerstaff
- 6 Office of the Assistant Secretary of Defense , Health Affairs, Falls Church, Virginia
| | | | - Joan Cmarik
- 7 Office of the Principal Assistant for Acquisition, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | - Alicia Crowder
- 8 Combat Casualty Care Research Program , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | | | - Richard G Ellenbogen
- 10 Departments of Neurological Surgery and Global Health Medicine, University of Washington , Seattle, Washington
| | - Colin Greene
- 11 Joint Trauma Analysis and Prevention of Injuries in Combat Program, Frederick, Maryland
| | - Raj K Gupta
- 12 Department of Defense Blast Injury Research Program Coordinating Office, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | | | | | | | - Michael J Leggieri
- 12 Department of Defense Blast Injury Research Program Coordinating Office, United States Army Medical Research and Materiel Command , Frederick, Maryland
| | - Donald Marion
- 16 Defense and Veterans Brain Injury Center , Silver Spring, Maryland
| | | | | | | | - Mark Packer
- 20 Hearing Center of Excellence , Lackland, Texas
| | - James B Petro
- 21 Office of the Assistant Secretary of Defense, Research and Engineering, Arlington, Virginia
| | - Todd E Rasmussen
- 8 Combat Casualty Care Research Program , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Wendy Sammons-Jackson
- 22 Office of the Principal Assistant for Research and Technology , United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Richard Shoge
- 23 Military Operational Medicine Research Program, United States Army Medical Research and Materiel Command , Fort Detrick, Maryland
| | | | | | - James Zheng
- 25 Program Executive Office Soldier , Fort Belvoir, Virginia
| |
Collapse
|
37
|
Wang R, Hösl KM, Ammon F, Markus J, Koehn J, Roy S, Liu M, de Rojas Leal C, Muresanu D, Flanagan SR, Hilz MJ. Eyeball pressure stimulation induces subtle sympathetic activation in patients with a history of moderate or severe traumatic brain injury. Clin Neurophysiol 2018; 129:1161-1169. [PMID: 29635100 DOI: 10.1016/j.clinph.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE After traumatic brain injury (TBI), there may be persistent central-autonomic-network (CAN) dysfunction causing cardiovascular-autonomic dysregulation. Eyeball-pressure-stimulation (EPS) normally induces cardiovagal activation. In patients with a history of moderate or severe TBI (post-moderate-severe-TBI), we determined whether EPS unveils cardiovascular-autonomic dysregulation. METHODS In 51 post-moderate-severe-TBI patients (32.7 ± 10.5 years old, 43.1 ± 33.4 months post-injury), and 30 controls (29.1 ± 9.8 years), we recorded respiration, RR-intervals (RRI), systolic and diastolic blood-pressure (BPsys, BPdia), before and during EPS (120 sec; 30 mmHg), using an ocular-pressure-device (Okulopressor®). We calculated spectral-powers of mainly sympathetic low (LF: 0.04-0.15 Hz) and parasympathetic high (HF: 0.15-0.5 Hz) frequency RRI-fluctuations, sympathetically mediated LF-powers of BPsys, and calculated normalized (nu) LF- and HF-powers of RRI. We compared parameters between groups before and during EPS by repeated-measurement-analysis-of-variance with post-hoc analysis (significance: p < 0.05). RESULTS At rest, sympathetically mediated LF-BPsys-powers were significantly lower in the patients than the controls. During EPS, only controls significantly increased RRIs and parasympathetically mediated HFnu-RRI-powers, but decreased LF-RRI-powers, LFnu-RRI-powers, and LF-BPsys-powers; in contrast, the patients slightly though significantly increased BPsys upon EPS, without changing any other parameter. CONCLUSIONS In post-moderate-severe-TBI patients, autonomic BP-modulation was already compromised at rest. During EPS, our patients failed to activate cardiovagal modulation but slightly increased BPsys, indicating persistent CAN dysregulation. SIGNIFICANCE Our findings unveil persistence of subtle cardiovascular-autonomic dysregulation even years after TBI.
Collapse
Affiliation(s)
- Ruihao Wang
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina M Hösl
- Dept. of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Fabian Ammon
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jörg Markus
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julia Koehn
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sankanika Roy
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mao Liu
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carmen de Rojas Leal
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dafin Muresanu
- Dept. of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Steven R Flanagan
- Dept. of Rehabilitation Medicine, New York University School of Medicine, New York, NY, USA
| | - Max J Hilz
- Dept. of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Dept of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Neuropsychological Recovery Trajectories in Moderate to Severe Traumatic Brain Injury: Influence of Patient Characteristics and Diffuse Axonal Injury. J Int Neuropsychol Soc 2018; 24:237-246. [PMID: 29032776 PMCID: PMC5957498 DOI: 10.1017/s1355617717000996] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The goal of the present study was to elucidate the influence of demographic and neuropathological moderators on the longitudinal trajectory neuropsychological functions during the first year after moderate to severe traumatic brain injury (TBI). In addition to examining demographic moderators such as age and education, we included a measure of whole-brain diffuse axonal injury (DAI), and examined measures of processing speed (PS), executive function (EF), and verbal learning (VL) separately. METHODS Forty-six adults with moderate to severe TBI were examined at 3, 6, and 12 months post-injury. Participants underwent neuropsychological evaluation and neuroimaging including diffusion tensor imaging. Using linear mixed effects modeling, we examined longitudinal trajectories and moderating factors of cognitive outcomes separately for three domains: PS, VL, and EF. RESULTS VL and EF showed linear improvements, whereas PS exhibited a curvilinear trend characterized by initial improvements that plateaued or declined, depending on age. Age moderated the recovery trajectories of EF and PS. Education and DAI did not influence trajectory but were related to initial level of functioning for PS and EF in the case of DAI, and all three cognitive domains in the case of education. CONCLUSIONS We found disparate recovery trajectories across cognitive domains. Younger age was associated with more favorable recovery of EF and PS. These findings have both clinical and theoretical implications. Future research with a larger sample followed over a longer time period is needed to further elucidate the factors that may influence cognitive change over the acute to chronic period after TBI. (JINS, 2018, 24, 237-246).
Collapse
|
39
|
O'Phelan KH, Otoshi CK, Ernst T, Chang L. Common Patterns of Regional Brain Injury Detectable by Diffusion Tensor Imaging in Otherwise Normal-Appearing White Matter in Patients with Early Moderate to Severe Traumatic Brain Injury. J Neurotrauma 2018; 35:739-749. [PMID: 29228858 PMCID: PMC5831746 DOI: 10.1089/neu.2016.4944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) alters the lives of millions of people every year. Although mortality rates have improved, attributed to better pre-hospital care and reduction of secondary injury in the critical care setting, improvements in functional outcomes post-TBI have been difficult to achieve. Diffusion-tensor imaging (DTI) allows detailed measurement of microstructural damage in regional brain tissue post-TBI, thus improving our understanding of the extent and severity of TBI. Twenty subjects were recruited from a neurological intensive care unit and compared to 18 healthy control subjects. Magnetic resonance imaging (MRI) scanning was performed on a 3.0-Tesla Siemens TIM Trio Scanner (Siemens Medical Solutions, Erlangen, Germany) including T1- and T2-weighted sequences and DTI. Images were processed using DTIStudio software. SAS (SAS Institute Inc., Cary, NC) was used for statistical analysis of group differences in 14 brain regions (25 regions of interests [ROIs]). Seventeen TBI subjects completed scanning. TBI and control subjects did not differ in age or sex. All TBI subjects had visible lesions on structural MRI. TBI subjects had seven brain regions (nine ROIs) that showed significant group differences on DTI metrics (fractional anisotropy, radial diffusion, or mean diffusion) compared to noninjured subjects, including the corpus callosum (genu and splenium), superior longitudinal fasciculus, internal capsule, right retrolenticular internal capsule, posterior corona radiata, and thalamus. However, 16 ROIs showed relatively normal DTI measures. Quantitative DTI demonstrates multiple areas of microstructual injury in specific normal-appearing white matter brain regions. DTI may be useful for assessing the extent of brain injury in patients with early moderate to severe TBI.
Collapse
Affiliation(s)
- Kristine H. O'Phelan
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Chad K. Otoshi
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Thomas Ernst
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Linda Chang
- Department of Medicine, Neuroscience and MRI Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury. Front Neurol 2017; 8:599. [PMID: 29209266 PMCID: PMC5702013 DOI: 10.3389/fneur.2017.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Sami Abu Hamdeh
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Terpstra AR, Girard TA, Colella B, Green REA. Higher Anxiety Symptoms Predict Progressive Hippocampal Atrophy in the Chronic Stages of Moderate to Severe Traumatic Brain Injury. Neurorehabil Neural Repair 2017; 31:1063-1071. [PMID: 29153039 DOI: 10.1177/1545968317736817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In the chronic stages of moderate-severe traumatic brain injury (TBI), progressive hippocampal volume loss-continuing well after acute neurological insults have resolved-has now been well documented. Previous research in other populations suggests that elevated anxiety symptoms are associated with compromise to the medial temporal lobes. OBJECTIVE To examine whether higher anxiety symptoms predict greater hippocampal volume loss in moderate-severe TBI. METHODS We conducted an analysis of prospectively collected, longitudinal behavioral and magnetic resonance imaging (MRI) data from 5 to 12 to 30 months post-injury. Eighty participants were included in the study, with anxiety symptom and MRI data collected at a minimum of 2 time points. Correlational and bivariate latent difference score (with imputation) analyses were used to examine the relationship of Beck Anxiety Inventory scores with hippocampal volume loss, while controlling for depressive symptoms and total brain volume. RESULTS Analyses revealed that higher anxiety symptoms at 5 and at 12 months following moderate-severe TBI predicted significant later volume loss in the right hippocampal complex and the right hippocampal head. Right hippocampal volume and volume change did not predict subsequent anxiety scores or anxiety change scores. CONCLUSIONS These novel findings implicate anxiety symptoms as a possible predictor of progressive hippocampal volume loss in the chronic stages of moderate-severe TBI.
Collapse
Affiliation(s)
- Alex R Terpstra
- 1 Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| | | | - Brenda Colella
- 1 Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- 1 Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,2 University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Pischiutta F, Micotti E, Hay JR, Marongiu I, Sammali E, Tolomeo D, Vegliante G, Stocchetti N, Forloni G, De Simoni MG, Stewart W, Zanier ER. Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Exp Neurol 2017; 300:167-178. [PMID: 29126888 DOI: 10.1016/j.expneurol.2017.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/29/2023]
Abstract
There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jennifer R Hay
- Institute of Neuroscience and Psychology, University of Glasgow, UK; Department of Laboratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ines Marongiu
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eliana Sammali
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gloria Vegliante
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Nino Stocchetti
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy; ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, UK; Department of Laboratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
43
|
Maudsley AA, Govind V, Saigal G, Gold SG, Harris L, Sheriff S. Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury. J Neuroimaging 2017; 27:562-569. [PMID: 28736910 DOI: 10.1111/jon.12463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain trauma is known to result in heterogeneous patterns of tissue damage and altered neuronal and glial metabolism that evolve over time following injury; however, little is known on the longitudinal evolution of these changes. In this study, magnetic resonance spectroscopic imaging (MRSI) was used to map the distributions of altered metabolism in a single subject at five time points over a period of 28 months following injury. METHODS Magnetic resonance imaging and volumetric MRSI data were acquired in a subject that had experienced a moderate traumatic brain injury (Glasgow Coma Scale 13) at five time points, from 7 weeks to 28 months after injury. Maps of N-acetylaspartate (NAA), total choline (Cho), and total creatine signal were generated and differences from normal control values identified using a z-score image analysis method. RESULTS The z-score metabolite maps revealed areas of significantly reduced NAA and increased Cho, predominately located in frontal and parietal white matter, which evolved over the complete course of the study. A map of the ratio of Cho/NAA showed the greatest sensitivity to change, which indicated additional metabolic changes throughout white matter. The metabolic changes reduced over time following injury, though with abnormal values remaining in periventricular regions. CONCLUSIONS The use of z-score image analysis for MRSI provides a method for visualizing diffuse changes of tissue metabolism in the brain. This image visualization method is of particularly effective for visualizing widespread and diffuse metabolic changes, such as that due to traumatic injury.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL
| | - Varan Govind
- Department of Radiology, University of Miami School of Medicine, Miami, FL
| | - Gaurav Saigal
- Department of Radiology, University of Miami School of Medicine, Miami, FL
| | - Stuart G Gold
- Division of Behavioral Health, Hallandale Medical Center, Hallandale, FL.,Jackson Memorial Hospital, Miami, FL
| | | | - Sulaiman Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
44
|
Wood RL. Accelerated cognitive aging following severe traumatic brain injury: A review. Brain Inj 2017; 31:1270-1278. [DOI: 10.1080/02699052.2017.1332387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rodger Ll. Wood
- Neuropsychology Clinic, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
45
|
Predictors of Recovery from Traumatic Brain Injury-Induced Prolonged Consciousness Disorder. Neural Plast 2017; 2017:9358092. [PMID: 28326199 PMCID: PMC5343264 DOI: 10.1155/2017/9358092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022] Open
Abstract
We investigated the clinical predictors of the degree of recovery in patients with prolonged disorders of consciousness (PDC) caused by traumatic brain injury. Fourteen patients with PDC underwent two diffusion tensor imaging (DTI) studies; the first and second scans were performed at 345.6 ± 192.6 and 689.1 ± 272.2 days after the injury, respectively. In addition to the temporal changes in each of these diffusion parameters, fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity were assessed over a 1-year period. Relationship of clinical and DTI parameters with recovery from PDC (RPDC) was evaluated using Spearman's rank-correlation and stepwise multiple linear regression analysis. The mean FA and number of voxels with FA values > 0.4 (VsFA0.4) were significantly decreased at the second scan. A significant positive correlation was observed between the degree of RPDC and mean FA (r = 0.60) and VsFA0.4 (r = 0.68) as well as between the difference in VsFA0.4 (r = 0.63) and AD (r = 0.54) between the first and second scans. On multiple linear regression analysis, initial severity of PDC and the difference in AD remained significantly associated with the degree of RPDC. The microstructural white matter changes observed in this study indicate their potential relation with the degree of RPDC over the longer term.
Collapse
|
46
|
Sours C, Raghavan P, Medina AE, Roys S, Jiang L, Zhuo J, Gullapalli RP. Structural and Functional Integrity of the Intraparietal Sulcus in Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2017; 34:1473-1481. [PMID: 27931179 DOI: 10.1089/neu.2016.4570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients.
Collapse
Affiliation(s)
- Chandler Sours
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Prashant Raghavan
- 2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Alexandre E Medina
- 3 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | | | - Li Jiang
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jiachen Zhuo
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Rao P Gullapalli
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
47
|
Mac Donald CL, Barber J, Andre J, Evans N, Panks C, Sun S, Zalewski K, Elizabeth Sanders R, Temkin N. 5-Year imaging sequelae of concussive blast injury and relation to early clinical outcome. NEUROIMAGE-CLINICAL 2017; 14:371-378. [PMID: 28243574 PMCID: PMC5320067 DOI: 10.1016/j.nicl.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Abstract
Current imaging diagnostic techniques are often insensitive to the underlying pathological changes following mild traumatic brain injury (TBI) or concussion so much so that the explicit definition of these uncomplicated mild brain injuries includes the absence of radiological findings. In the US military, this is complicated by the natural tendency of service members to down play symptoms for fear of removal from their unit particularly in combat making it challenging for clinicians to definitively diagnose and determine course of treatment. Questions remain regarding the long-term impact of these war-time brain injuries. The objective of the current study was to evaluate the long-term imaging sequelae of blast concussion in active-duty US military and leverage previous longitudinal data collected in these same patients to identify predictors of sustained DTI signal change indicative of chronic neurodegeneration. In total, 50 blast TBI and 44 combat-deployed controls were evaluated at this 5-year follow up by advanced neuroimaging techniques including diffusion tensor imaging and quantitative volumetry. While cross-sectional analysis of regions of white matter on DTI images did not reveal significant differences across groups after statistical correction, an approach flexible to the heterogeneity of brain injury at the single-subject level identified 74% of the concussive blast TBI cohort to have reductions in fractional anisotropy indicative of chronic brain injury. Logistic regression leveraging clinical and demographic data collected in the acute/sub-acute and 1-year follow up to determine predictors of these long-term imaging changes determined that brain injury diagnosis, older age, verbal memory and verbal fluency best predicted the presence of DTI abnormalities 5 years post injury with an AUC of 0.78 indicating good prediction strength. These results provide supporting evidence for the evolution not resolution of this brain injury pathology, adding to the growing body of literature describing imaging signatures of chronic neurodegeneration even after mild TBI and concussion. Design: prospective, observational, longitudinal research study Patients: concussive blast (n = 50), combat-deployed control (n = 44) Diffusion tensor imaging analyzed 5 yr post-injury, highly predicted by 1 yr outcomes. Imaging abnormalities appear to evolve from sub-acute, to 1-year, to 5-year scan. Findings indicate chronic neurodegeneration in majority of blast concussion patients.
Collapse
Key Words
- A-P, anterior–posterior
- Concussion
- DR-BUDDI, Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging
- DTI, Diffusion Tensor Imaging
- Diffusion tensor imaging
- EPI, Echo Planar Imaging
- EPV, events-per-variable
- FA, Fractional Anisotropy
- FLAIR, Fluid attenuation inversion recovery
- MPRAGE, Magnetization prepared rapid gradient-echo
- Neurodegeneration
- TBI, Traumatic Brain Injury
- TORTOISE, Tolerably Obsessive Registration and Tensor Optimization Indolent Software Ensemble
- Traumatic brain injury
- US, United States
Collapse
Affiliation(s)
| | - Jason Barber
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA
| | - Jalal Andre
- University of Washington, Department of Radiology, Seattle, WA, USA
| | - Nicole Evans
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA
| | - Chris Panks
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA
| | - Samantha Sun
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA
| | - Kody Zalewski
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA
| | | | - Nancy Temkin
- University of Washington, Department of Neurological Surgery, Seattle, WA, USA; University of Washington, Department of Biostatistics, Seattle, WA, USA
| |
Collapse
|
48
|
Ewing-Cobbs L, Johnson CP, Juranek J, DeMaster D, Prasad M, Duque G, Kramer L, Cox CS, Swank PR. Longitudinal diffusion tensor imaging after pediatric traumatic brain injury: Impact of age at injury and time since injury on pathway integrity. Hum Brain Mapp 2016; 37:3929-3945. [PMID: 27329317 PMCID: PMC5053864 DOI: 10.1002/hbm.23286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 01/09/2023] Open
Abstract
Following pediatric traumatic brain injury (TBI), longitudinal diffusion tensor imaging may characterize alterations in initial recovery and subsequent trajectory of white matter development. Our primary aim examined effects of age at injury and time since injury on pathway microstructure in children ages 6-15 scanned 3 and 24 months after TBI. Microstructural values generated using tract-based spatial statistics extracted from core association, limbic, and projection pathways were analyzed using general linear mixed models. Relative to children with orthopedic injury, the TBI group had lower fractional anisotropy (FA) bilaterally in all seven pathways. In left-hemisphere association pathways, school-aged children with TBI had the lowest initial pathway integrity and showed the greatest increase in FA over time suggesting continued development despite incomplete recovery. Adolescents showed limited change in FA and radial diffusivity and had the greatest residual deficit suggesting relatively arrested development. Radial diffusivity was persistently elevated in the TBI group, implicating dysmyelination as a core contributor to chronic post-traumatic neurodegenerative changes. The secondary aim compared FA values over time in the total sample, including participants contributing either one or two scans to the analysis, to the longitudinal cases contributing two scans. For each pathway, FA values and effect sizes were very similar and indicated extremely small differences in measurement of change over time in the total and longitudinal samples. Statistical approaches incorporating missing data may reliably estimate the effects of TBI and provide increased power to identify whether pathways show neurodegeneration, arrested development, or continued growth following pediatric TBI. Hum Brain Mapp 37:3929-3945, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Linda Ewing-Cobbs
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030.
- Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030.
| | - Chad Parker Johnson
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
- The Children's Learning Institute, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Jenifer Juranek
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
- The Children's Learning Institute, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Dana DeMaster
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
- The Children's Learning Institute, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Mary Prasad
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
- The Children's Learning Institute, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Gerardo Duque
- Departments of Pediatrics, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
- The Children's Learning Institute, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Larry Kramer
- Diagnostic and Interventional Radiology, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Charles S Cox
- Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| | - Paul R Swank
- School of Public Health, University of Texas Health Sciences Center at Houston, Houston, Texas, 77030
| |
Collapse
|
49
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
50
|
Bigler ED, Zielinski BA, Goodrich-Hunsaker N, Black GM, Huff BST, Christiansen Z, Wood DM, Abildskov TJ, Dennis M, Taylor HG, Rubin K, Vannatta K, Gerhardt CA, Stancin T, Yeates KO. The Relation of Focal Lesions to Cortical Thickness in Pediatric Traumatic Brain Injury. J Child Neurol 2016; 31:1302-11. [PMID: 27342577 PMCID: PMC5525324 DOI: 10.1177/0883073816654143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
In a sample of children with traumatic brain injury, this magnetic resonance imaging (MRI)-based investigation examined whether presence of a focal lesion uniquely influenced cortical thickness in any brain region. Specifically, the study explored the relation of cortical thickness to injury severity as measured by Glasgow Coma Scale score and length of stay, along with presence of encephalomalacia, focal white matter lesions or presence of hemosiderin deposition as a marker of shear injury. For comparison, a group of children without head injury but with orthopedic injury of similar age and sex were also examined. Both traumatic brain injury and orthopedic injury children had normally reduced cortical thickness with age, assumed to reflect neuronal pruning. However, the reductions observed within the traumatic brain injury sample were similar to those in the orthopedic injury group, suggesting that in this sample traumatic brain injury, per se, did not uniquely alter cortical thickness in any brain region at the group level. Injury severity in terms of Glasgow Coma Scale or longer length of stay was associated with greater reductions in frontal and occipitoparietal cortical thickness. However, presence of focal lesions were not related to unique changes in cortical thickness despite having a prominent distribution of lesions within frontotemporal regions among children with traumatic brain injury. Because focal lesions were highly heterogeneous, their association with cortical thickness and development appeared to be idiosyncratic, and not associated with group level effects.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, UT, USA Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Brandon A Zielinski
- Departments of Pediatrics and Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Garrett M Black
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - B S Trevor Huff
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | | | - Dawn-Marie Wood
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | | | - Maureen Dennis
- Program in Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Canada Department of Surgery and Department of Psychology, University of Toronto, Toronto, Canada
| | - H Gerry Taylor
- Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children's Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Kenneth Rubin
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Kathryn Vannatta
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA Center for Behavioral Health, Columbus Children's Research Institute, Columbus, OH, USA
| | - Cynthia A Gerhardt
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA Center for Behavioral Health, Columbus Children's Research Institute, Columbus, OH, USA
| | - Terry Stancin
- Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children's Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA Department of Psychiatry, MetroHealth Medical Center, Cleveland, OH, USA
| | - Keith Owen Yeates
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|