1
|
Losch H, Altenmüller E, Marie D, Passarotto E, Kretschmer CR, Scholz DS, Kliegel M, Krüger THC, Sinke C, Jünemann K, James CE, Worschech F. Acquisition of musical skills and abilities in older adults-results of 12 months of music training. BMC Geriatr 2024; 24:1018. [PMID: 39702118 DOI: 10.1186/s12877-024-05600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Older adults can acquire new skills across different domains. Practicing a musical instrument has been identified as a promising activity for improving cognition, promoting well-being, and inducing brain plasticity in older individuals. However, the mechanisms of these changes are still poorly understood. This study aims to assess musical skill acquisition in musically naïve older adults over one year of practice, focusing on individual factors influencing this process and the relations between musical skills. METHODS One hundred fifty-six healthy older adults (age = 69.5 years ± 3.2) from Hannover and Geneva with no prior musical training participated in weekly piano practice (PP) or 'music culture' (MC) sessions over a one-year period. Baseline assessments included the Cognitive Reserve Index questionnaire (CRIq) and Cognitive Telephone Screening Instrument (CogTel). Musical abilities were measured using piano performance ratings (PP group), music quizzes (MC group), and aptitude tests such as the Beat Alignment Test (BAT), Melodic Discrimination Test (MDT) and Midi Scale Analysis (MSA) at baseline and six-, twelve and 18-month timepoints. The interrelationship between musical abilities was investigated through correlational analyses, and changes impacted through individual characteristics were modeled using Bayesian statistics. RESULTS The PP group demonstrated moderate improvements in piano articulation and dynamics, while the MC group achieved higher scores in the music quiz. Modest improvements in MDT and MSA were observed in both groups, with the PP group showing greater progress is MSA. Higher global cognitive functioning and musical sophistication was associated with greater performance in MDT for both groups. We did not identify any links between individual characteristics, like age, CogTel, CRIq, and musical sophistication, and improvement in musical aptitude tests. Changes in different musical aptitude test scores were not correlated, and neither the development of piano skills nor the music quiz correlated with initial performances on the musical aptitude tests. CONCLUSION Musically naïve older adults can acquire diverse musical abilities, which progress independently, suggesting a broad spectrum of musical abilities rather than a single general musical aptitude. Future research should also explore genetic and psychosocial factors influencing musical development. TRIAL REGISTRATION The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 (NCT03674931, no. 81185).
Collapse
Affiliation(s)
- Hannah Losch
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
- Institute for Music Education Research, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging Section, University of Geneva, Geneva, Switzerland
| | | | - Clara R Kretschmer
- Department of Experimental Psychology, University of Oxford, Oxford, England
| | - Daniel S Scholz
- Department of Musicians' Health, University of Music Lübeck, Lübeck, Germany
- Institute of Medical Psychology, University of Lübeck, Lübeck, Germany
| | - Matthias Kliegel
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Hannover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kristin Jünemann
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Florian Worschech
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
2
|
Joyal M, Sicard A, Penhune V, Jackson PL, Tremblay P. Attention, working memory, and inhibitory control in aging: Comparing amateur singers, instrumentalists, and active controls. Ann N Y Acad Sci 2024; 1541:163-180. [PMID: 39367878 PMCID: PMC11580768 DOI: 10.1111/nyas.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Despite the ubiquity of musical activities, little is known about the specificity of their association with executive functions. In this cross-sectional study, we examined this relationship as a function of age. Our main hypotheses were that executive functions would decline in older age, that this relationship would be reduced in singers and instrumentalists compared to nonmusician active controls, and that the amount of musical experience would be more strongly associated with executive functions compared to the specific type of activity. A sample of 122 cognitively healthy adults aged 20-88 years was recruited, consisting of 39 amateur singers, 43 amateur instrumentalists, and 40 nonmusician controls. Tests of auditory processing speed, auditory selective attention, auditory and visual inhibitory control, and auditory working memory were administered. The results confirm a negative relationship between age and executive functions. While musicians' advantages were found in selective attention, inhibitory control, and auditory working memory, these advantages were specific rather than global. Furthermore, most of these advantages were independent of age and experience. Finally, there were only limited differences between instrumentalists and singers, suggesting that the relationship between music-making activities and executive functions may be, at least in part, general as opposed to activity-specific.
Collapse
Affiliation(s)
| | - Alexandre Sicard
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté de Médecine, École des sciences de la réadaptationUniversité LavalQuebec CityQuebecCanada
| | - Virginia Penhune
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
| | - Philip L. Jackson
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté des sciences sociales, École de psychologieUniversité LavalQuebec CityQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Faculté de Médecine, École des sciences de la réadaptationUniversité LavalQuebec CityQuebecCanada
| |
Collapse
|
3
|
Mertel K, Dimitrijevic A, Thaut M. Can Music Enhance Working Memory and Speech in Noise Perception in Cochlear Implant Users? Design Protocol for a Randomized Controlled Behavioral and Electrophysiological Study. Audiol Res 2024; 14:611-624. [PMID: 39051196 PMCID: PMC11270222 DOI: 10.3390/audiolres14040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND A cochlear implant (CI) enables deaf people to understand speech but due to technical restrictions, users face great limitations in noisy conditions. Music training has been shown to augment shared auditory and cognitive neural networks for processing speech and music and to improve auditory-motor coupling, which benefits speech perception in noisy listening conditions. These are promising prerequisites for studying multi-modal neurologic music training (NMT) for speech-in-noise (SIN) perception in adult cochlear implant (CI) users. Furthermore, a better understanding of the neurophysiological correlates when performing working memory (WM) and SIN tasks after multi-modal music training with CI users may provide clinicians with a better understanding of optimal rehabilitation. METHODS Within 3 months, 81 post-lingual deafened adult CI recipients will undergo electrophysiological recordings and a four-week neurologic music therapy multi-modal training randomly assigned to one of three training focusses (pitch, rhythm, and timbre). Pre- and post-tests will analyze behavioral outcomes and apply a novel electrophysiological measurement approach that includes neural tracking to speech and alpha oscillation modulations to the sentence-final-word-identification-and-recall test (SWIR-EEG). Expected outcome: Short-term multi-modal music training will enhance WM and SIN performance in post-lingual deafened adult CI recipients and will be reflected in greater neural tracking and alpha oscillation modulations in prefrontal areas. Prospectively, outcomes could contribute to understanding the relationship between cognitive functioning and SIN besides the technical deficits of the CI. Targeted clinical application of music training for post-lingual deafened adult CI carriers to significantly improve SIN and positively impact the quality of life can be realized.
Collapse
Affiliation(s)
- Kathrin Mertel
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| | - Andrew Dimitrijevic
- Sunnybrook Cochlear Implant Program, Sunnybrook Hospital, Toronto, ON M4N 3M5, Canada;
| | - Michael Thaut
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| |
Collapse
|
4
|
Liebscher M, Dell’Orco A, Doll-Lee J, Buerger K, Dechent P, Ewers M, Fliessbach K, Glanz W, Hetzer S, Janowitz D, Kilimann I, Laske C, Lüsebrink F, Munk M, Perneczky R, Peters O, Preis L, Priller J, Rauchmann B, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth E, Teipel S, Wiltfang J, Jessen F, Düzel E, Wagner M, Röske S, Wirth M. Short communication: Lifetime musical activity and resting-state functional connectivity in cognitive networks. PLoS One 2024; 19:e0299939. [PMID: 38696395 PMCID: PMC11065262 DOI: 10.1371/journal.pone.0299939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Participation in multimodal leisure activities, such as playing a musical instrument, may be protective against brain aging and dementia in older adults (OA). Potential neuroprotective correlates underlying musical activity remain unclear. OBJECTIVE This cross-sectional study investigated the association between lifetime musical activity and resting-state functional connectivity (RSFC) in three higher-order brain networks: the Default Mode, Fronto-Parietal, and Salience networks. METHODS We assessed 130 cognitively unimpaired participants (≥ 60 years) from the baseline cohort of the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Lifetime musical activity was operationalized by the self-reported participation in musical instrument playing across early, middle, and late life stages using the Lifetime of Experiences Questionnaire (LEQ). Participants who reported musical activity during all life stages (n = 65) were compared to controls who were matched on demographic and reserve characteristics (including education, intelligence, socioeconomic status, self-reported physical activity, age, and sex) and never played a musical instrument (n = 65) in local (seed-to-voxel) and global (within-network and between-network) RSFC patterns using pre-specified network seeds. RESULTS Older participants with lifetime musical activity showed significantly higher local RSFC between the medial prefrontal cortex (Default Mode Network seed) and temporal as well as frontal regions, namely the right temporal pole and the right precentral gyrus extending into the superior frontal gyrus, compared to matched controls. There were no significant group differences in global RSFC within or between the three networks. CONCLUSION We show that playing a musical instrument during life relates to higher RSFC of the medial prefrontal cortex with distant brain regions involved in higher-order cognitive and motor processes. Preserved or enhanced functional connectivity could potentially contribute to better brain health and resilience in OA with a history in musical activity. TRIAL REGISTRATION German Clinical Trials Register (DRKS00007966, 04/05/2015).
Collapse
Affiliation(s)
- Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Andrea Dell’Orco
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neuroradiology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Johanna Doll-Lee
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Göttingen, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Hetzer
- Center for Advanced Neuroimaging, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthias Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Institute of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, United Kingdom
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Nina Roy-Kluth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | | |
Collapse
|
5
|
Moisseinen N, Ahveninen L, Martínez‐Molina N, Sairanen V, Melkas S, Kleber B, Sihvonen AJ, Särkämö T. Choir singing is associated with enhanced structural connectivity across the adult lifespan. Hum Brain Mapp 2024; 45:e26705. [PMID: 38716698 PMCID: PMC11077432 DOI: 10.1002/hbm.26705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Lotta Ahveninen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Noelia Martínez‐Molina
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Center for Brain and Cognition, Department of Information and Communication TechnologiesUniversity Pompeu FabraBarcelonaSpain
| | - Viljami Sairanen
- Department of RadiologyKanta‐Häme Central HospitalHämeenlinnaFinland
- Baby Brain Activity Center, Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Susanna Melkas
- Clinical Neurosciences, NeurologyUniversity of HelsinkiHelsinkiFinland
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Centre for Clinical Research, School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyHelsinki University HospitalHelsinkiFinland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Jacobs S, Izzetoglu M, Holtzer R. The impact of music making on neural efficiency & dual-task walking performance in healthy older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:438-456. [PMID: 36999570 PMCID: PMC10544664 DOI: 10.1080/13825585.2023.2195615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Music making is linked to improved cognition and related neuroanatomical changes in children and adults; however, this has been relatively under-studied in aging. The purpose of this study was to assess neural, cognitive, and physical correlates of music making in aging using a dual-task walking (DTW) paradigm. Study participants (N = 415) were healthy adults aged 65 years or older, including musicians (n = 70) who were identified by current weekly engagement in musical activity. A DTW paradigm consisting of single- and dual-task conditions, as well as portable neuroimaging (functional near-infrared spectroscopy), was administered. Outcome measures included neural activation in the prefrontal cortex assessed across task conditions by recording changes in oxygenated hemoglobin, cognitive performance, and gait velocity. Linear mixed effects models examined the impact of music making on outcome measures in addition to moderating their change between task conditions. Across participants (53.3% women; 76 ± 6.55 years), neural activation increased from single- to dual-task conditions (p < 0.001); however, musicians demonstrated attenuated activation between a single cognitive interference task and dual-task walking (p = 0.014). Musicians also displayed significantly smaller decline in behavioral performance (p < 0.001) from single- to dual-task conditions and faster gait overall (p = 0.014). Given evidence of lower prefrontal cortex activation in the context of similar or improved behavioral performance, results indicate the presence of enhanced neural efficiency in older adult musicians. Furthermore, improved dual-task performance in older adult musicians was observed. Results have important clinical implications for healthy aging, as executive functioning plays an essential role in maintaining functional ability in older adulthood.
Collapse
Affiliation(s)
- Sydney Jacobs
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Ghosh A, Singh S, S. M, Jagtap T, Issac TG. Music and the aging brain - Exploring the role of long-term Carnatic music training on cognition and gray matter volumes. J Neurosci Rural Pract 2024; 15:327-333. [PMID: 38746502 PMCID: PMC11090532 DOI: 10.25259/jnrp_605_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Aging is a natural process and is often associated with an increased incidence of cognitive impairment. Physical exercise, diet, and leisure activities (music, dance, and art) are some of the lifestyle factors that contribute to healthy aging. The present study aims to explore the differences in cognitive functioning between aging individuals involved in musical activity throughout their lifetime and the ones who were not. Materials and Methods Fifty-one healthy elderly individuals (50-80 years of age) residing in an urban locality were selected for the study from the Tata Longitudinal Study of Aging cohort. Participants were divided into two groups: Active musicians trained in Carnatic music for more than five years (n = 18) and age-matched non-musicians (n = 33). Addenbrooke cognitive examination-III, Hindi mental status examination, and trail-making test-B (TMT-B) were used to assess cognitive functioning. A Generalized Linear Regression Model was performed including covariates such as gender, age, and years of education. We also looked at the available brain magnetic resonance imaging data of a subset of our study population to inspect the volumetric differences between musicians and non-musicians. Results Our results showed that musicians had significantly better visuospatial abilities as compared to non-musicians (P = 0.043). Musicians (130.89 ± 45.16 s) also took less time to complete the TMT-B task than non-musicians (148.73 ± 39.65 s), although it was not a statistically significant difference (P =0.150). In addition, brain imaging data suggested that musicians had increased gray matter volumes in the right precuneus, right post-central gyrus, right medial and superior frontal gyrus, right orbital gyrus, left middle temporal gyrus, left cuneus, left fusiform gyrus, and bilateral cingulate gyrus. Conclusion Our findings are indicative of music being an important attribute in improving cognitive reserve and predicting cognitive resilience. These findings pave the way to explore the utility of non-pharmacological interventions, such as Music Therapy (especially Carnatic music in the Indian context), as a potential factor for improving cognitive reserve in elderly individuals.
Collapse
Affiliation(s)
- Aishwarya Ghosh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sadhana Singh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Monisha S.
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Tejaswini Jagtap
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Vetere G, Williams G, Ballard C, Creese B, Hampshire A, Palmer A, Pickering E, Richards M, Brooker H, Corbett A. The relationship between playing musical instruments and cognitive trajectories: Analysis from a UK ageing cohort. Int J Geriatr Psychiatry 2024; 39:e6061. [PMID: 38281509 DOI: 10.1002/gps.6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The accumulation of age-associated cognitive deficits can lead to Mild Cognitive Impairment (MCI) and dementia. This is a major public health issue for the modern ageing population, as it impairs health, independence and overall quality of life. Keeping the brain active during life has been associated with an increased cognitive reserve, therefore reducing the risk of cognitive impairment in older age. Previous research has identified a potential relationship between musicality and cognition. OBJECTIVES Explore the relationship between musicality and cognitive function in a large cohort of older adults. METHODS This was a nested study within the PROTECT-UK cohort, which collects longitudinal computerised assessments of cognitive function in adults over 40. Participants were invited to complete the validated Edinburgh Lifetime Musical Experience Questionnaire (ELMEQ) to assess their musical experience and lifetime exposure to music. Linear regression analysis was performed using cognitive data from PROTECT-UK. RESULTS Analysis identified an association between musicality and cognition in this cohort. Playing a musical instrument was associated with significantly better performance in working memory and executive function. Significant associations were also found between singing and executive function, and between overall musical ability and working memory. CONCLUSIONS Our findings confirm previous literature, highlighting the potential value of education and engagement in musical activities throughout life as a means of harnessing cognitive reserve as part of a protective lifestyle for brain health.
Collapse
Affiliation(s)
- Gaia Vetere
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gareth Williams
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clive Ballard
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Byron Creese
- Division of Psychology, Department of Life Sciences, Brunel University, London, UK
| | - Adam Hampshire
- Division of Brain Sciences, & Dementia Research Institute Care Research & Technology Centre, Imperial College London, London, UK
| | - Abbie Palmer
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ellie Pickering
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Megan Richards
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Anne Corbett
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Izbicki P, Mendoza T, Zaman A, Stegemöller EL. Differences in motor inhibition in young and older musicians and non-musicians at rest. Front Aging Neurosci 2023; 15:1230865. [PMID: 37744390 PMCID: PMC10514489 DOI: 10.3389/fnagi.2023.1230865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Older adults experience a decline in motor inhibition. These declines have been implicated in instrumental activities of daily living. However, studies have revealed that older musicians have behavioral and neurophysiological enhancements in various motor domains compared to non-musicians. This suggests that music training may delay the decline in motor inhibition with aging. Nevertheless, motor inhibition has not been studied in young or older musicians and non-musicians. Thus, the present study aimed to investigate the neurophysiological differences in motor inhibition in aging musicians and non-musicians. Methods A total of 19 healthy young adult musicians, 16 healthy young non-musicians, 13 healthy older adult musicians, and 16 healthy older adult non-musicians were recruited for the study. Transcranial magnetic stimulation single-pulse (SP) and short interval cortical inhibition (SICI) were performed at rest and then converted into inhibition percentage. Results We did not observe significant differences between young and older musicians and non-musicians in resting SP MEP. Older adults had lower resting SICI MEP than young adults. Older adults (36%) had a greater percentage of inhibition than young adults (16%). However, when controlling for background EMG activity, musicians had a lower inhibition percentage than non-musicians. Discussion The results revealed that, despite the greater use of spinal mechanisms, decreased SICI, and increased inhibition percentage in older adults, motor inhibitory circuitry remains intact and functional in both young and older musicians and non-musicians. Future studies will reveal whether there are differences in motor inhibition during movement in musicians across a person's lifespan.
Collapse
Affiliation(s)
- Patricia Izbicki
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Tessa Mendoza
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Andrew Zaman
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | | |
Collapse
|
10
|
Wang X, Soshi T, Yamashita M, Kakihara M, Tsutsumi T, Iwasaki S, Sekiyama K. Effects of a 10-week musical instrument training on cognitive function in healthy older adults: implications for desirable tests and period of training. Front Aging Neurosci 2023; 15:1180259. [PMID: 37649718 PMCID: PMC10463729 DOI: 10.3389/fnagi.2023.1180259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Previous studies have shown that musical instrument training programs of 16 or more weeks improve verbal memory (Logical Memory Test delayed recall), processing speed (Digit Symbol Coding Test), and executive function (Trail Making Test Part B) of musically untrained healthy older adults. However, it is unclear whether shorter-period instrument training can yield similar effects. We sought to (1) verify those results and (2) clarify if intervention effects could be detected using other measures such as reaction time. Methods Healthy older adults (mean age = 73.28 years) were pseudo-randomly assigned to an untrained control group (n = 30) or an intervention group (n = 30) that received a weekly 10-session musical instrument training program (using melodica). We conducted neuropsychological tests on which intervention effects or association with musical training were reported in previous studies. We newly included two reaction time tasks to assess verbal working memory (Sternberg task) and rhythm entrainment (timing task). Intervention effects were determined using a "group × time" analysis of variance (ANOVA). Results The intervention effects were detected on the reaction time in Sternberg task and phonological verbal fluency. Although intervention effects had been reported on Logical Memory test, Digit Symbol Coding Test and Trail Making Test in previous studies with longer training periods, the present study did not show such effects. Instead, the test-retest practice effect, indicated by significant improvement in the control group, was significant on these tests. Discussion The present results indicated the usefulness of working memory assessments (Verbal Fluency Test and Sternberg task) in detecting the effects of short-term melodica training in healthy older adults. The practice effect detected on those three tasks may be due to the shorter interval between pre- and post-intervention assessments and may have obscured intervention effects. Additionally, the findings suggested the requirement for an extended interval between pre- and post-tests to capture rigorous intervention effects, although this should be justified by a manipulation of training period.
Collapse
Affiliation(s)
- Xueyan Wang
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Takahiro Soshi
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Marcelo Kakihara
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Takanobu Tsutsumi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoko Iwasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Pentikäinen E, Kimppa L, Pitkäniemi A, Lahti O, Särkämö T. Longitudinal effects of choir singing on aging cognition and wellbeing: a two-year follow-up study. Front Hum Neurosci 2023; 17:1174574. [PMID: 37545597 PMCID: PMC10398963 DOI: 10.3389/fnhum.2023.1174574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction While increasing evidence points toward the benefits of musical activities in promoting cognitive and emotional well-being in older adults, more longitudinal studies are needed to establish their long-term effects and uncover the mechanisms through which musical activities affect well-being. Most previous research has focused on instrumental musical activities, but little is currently known about the long-term effects of singing, even though neuroimaging evidence suggests that it is a versatile activity for the brain, involving a multitude of neural processes that are potentially beneficial for well-being. Methods We conducted a 2-year follow-up study to assess aging-related changes in cognitive functioning and emotional and social well-being with self-report questionnaires and standardized tests in 107 older adult choir singers and 62 demographically matched non-singers. Data were collected at baseline (T1), and at 1-year (T2) and 2-year (T3) follow-ups using questionnaires on subjective cognitive functioning, depression, social engagement, and quality of life (QOL) in all participants and neuropsychological tests in a subgroup of participants (45 choir singers and 41 non-singers). Results The results of linear mixed model analysis showed that in verbal flexibility (phonemic fluency task), the choir singers had higher scores already at T1 and showed no change over time, whereas the non-singers showed enhancement from T1 to T3. Furthermore, active retrieval of word knowledge (WAIS-IV Vocabulary task) showed significantly different changes from T1 to T2 between the groups (enhancement in choir singers and decline in non-singers), however lacking significant change within groups. Similar opposite trajectories of QOL related to social inclusion and safety of the environment (WHOQOL-Bref Environmental subscale) were significant from T1 to T3, but these changes were not significant within groups or at each timepoint. Within the choir singers, shorter experience in choir singing was associated with greater improvement in the vocabulary task over the follow-up period, suggesting that initiation of choir singing at older age induces some verbal benefits. There were no group differences in any other questionnaire or neuropsychological measure over time. Discussion In conclusion, our results suggest that choir singing at older age is associated with a sustained enhancement of phonemic fluency, while the effects on other verbal skills and quality of life are less clear.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Lilli Kimppa
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Outi Lahti
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Seinäjoki Central Hospital, Geriatric Outpatient Clinic, Rehabilitation Analysis Clinic, Seinäjoki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Maillard E, Joyal M, Murray MM, Tremblay P. Are musical activities associated with enhanced speech perception in noise in adults? A systematic review and meta-analysis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100083. [PMID: 37397808 PMCID: PMC10313871 DOI: 10.1016/j.crneur.2023.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The ability to process speech in noise (SPiN) declines with age, with a detrimental impact on life quality. Music-making activities such as singing and playing a musical instrument have raised interest as potential prevention strategies for SPiN perception decline because of their positive impact on several brain system, especially the auditory system, which is critical for SPiN. However, the literature on the effect of musicianship on SPiN performance has yielded mixed results. By critically assessing the existing literature with a systematic review and a meta-analysis, we aim to provide a comprehensive portrait of the relationship between music-making activities and SPiN in different experimental conditions. 38/49 articles, most focusing on young adults, were included in the quantitative analysis. The results show a positive relationship between music-making activities and SPiN, with the strongest effects found in the most challenging listening conditions, and little to no effect in less challenging situations. This pattern of results supports the notion of a relative advantage for musicians on SPiN performance and clarify the scope of this effect. However, further studies, especially with older adults, using adequate randomization methods, are needed to extend the present conclusions and assess the potential for musical activities to be used to mitigate SPiN decline in seniors.
Collapse
Affiliation(s)
- Elisabeth Maillard
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marilyne Joyal
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| | - Micah M. Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Sion, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Pascale Tremblay
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| |
Collapse
|
13
|
Matziorinis AM, Gaser C, Koelsch S. Is musical engagement enough to keep the brain young? Brain Struct Funct 2023; 228:577-588. [PMID: 36574049 PMCID: PMC9945036 DOI: 10.1007/s00429-022-02602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Music-making and engagement in music-related activities have shown procognitive benefits for healthy and pathological populations, suggesting reductions in brain aging. A previous brain aging study, using Brain Age Gap Estimation (BrainAGE), showed that professional and amateur-musicians had younger appearing brains than non-musicians. Our study sought to replicate those findings and analyze if musical training or active musical engagement was necessary to produce an age-decelerating effect in a cohort of healthy individuals. We scanned 125 healthy controls and investigated if musician status, and if musical behaviors, namely active engagement (AE) and musical training (MT) [as measured using the Goldsmiths Musical Sophistication Index (Gold-MSI)], had effects on brain aging. Our findings suggest that musician status is not related to BrainAGE score, although involvement in current physical activity is. Although neither MT nor AE subscales of the Gold-MSI are predictive for BrainAGE scores, dispositional resilience, namely the ability to deal with challenge, is related to both musical behaviors and sensitivity to musical pleasure. While the study failed to replicate the findings in a previous brain aging study, musical training and active musical engagement are related to the resilience factor of challenge. This finding may reveal how such musical behaviors can potentially strengthen the brain's resilience to age, which may tap into a type of neurocognitive reserve.
Collapse
Affiliation(s)
- Anna Maria Matziorinis
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway.
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| |
Collapse
|
14
|
Spiech C, Endestad T, Laeng B, Danielsen A, Haghish EF. Beat alignment ability is associated with formal musical training not current music playing. Front Psychol 2023; 14:1034561. [PMID: 36794086 PMCID: PMC9922839 DOI: 10.3389/fpsyg.2023.1034561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
The ability to perceive the beat in music is crucial for both music listeners and players with expert musicians being notably skilled at noticing fine deviations in the beat. However, it is unclear whether this beat perception ability is enhanced in trained musicians who continue to practice relative to musicians who no longer play. Thus, we investigated this by comparing active musicians', inactive musicians', and nonmusicians' beat alignment ability scores on the Computerized Adaptive Beat Alignment Test (CA-BAT). 97 adults with diverse musical experience participated in the study, reporting their years of formal musical training, number of instruments played, hours of weekly music playing, and hours of weekly music listening, in addition to their demographic information. While initial tests between groups indicated active musicians outperformed inactive musicians and nonmusicians on the CA-BAT, a generalized linear regression analysis showed that there was no significant difference once differences in musical training had been accounted for. To ensure that our results were not impacted by multicollinearity between music-related variables, nonparametric and nonlinear machine learning regressions were employed and confirmed that years of formal musical training was the only significant predictor of beat alignment ability. These results suggest that expertly perceiving fine differences in the beat is not a use-dependent ability that degrades without regular maintenance through practice or musical engagement. Instead, better beat alignment appears to be associated with more musical training regardless of continued use.
Collapse
Affiliation(s)
- Connor Spiech
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway,*Correspondence: Connor Spiech, ✉
| | - Tor Endestad
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne Danielsen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Musicology, University of Oslo, Oslo, Norway
| | - E. F. Haghish
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Tremblay P, Perron M. Auditory cognitive aging in amateur singers and non-singers. Cognition 2023; 230:105311. [PMID: 36332309 DOI: 10.1016/j.cognition.2022.105311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The notion that lifestyle factors, such as music-making activities, can affect cognitive functioning and reduce cognitive decline in aging is often referred to as the mental exercise hypothesis. One ubiquitous musical activity is choir singing. Like other musical activities, singing is hypothesized to impact cognitive and especially executive functions. Despite the commonness of choir singing, little is known about the extent to which singing can affect cognition in adulthood. In this cross-sectional group study, we examined the relationship between age and four auditory executive functions to test hypotheses about the relationship between the level of mental activity and cognitive functioning. We also examined pitch discrimination capabilities. A non-probabilistic sample of 147 cognitively healthy adults was recruited, which included 75 non-singers (mean age 52.5 ± 20.3; 20-98 years) and 72 singers (mean age 55.5 ± 19.2; 21-87 years). Tests of selective attention, processing speed, inhibitory control, and working memory were administered to all participants. Our main hypothesis was that executive functions and age would be negatively correlated, and that this relationship would be stronger in non-singers than singers, consistent with the differential preservation hypothesis. The alternative hypothesis - preserved differentiation - predicts that the difference between singers and non-singers in executive functions is unaffected by age. Our results reveal a detrimental effect of age on processing speed, selective attention, inhibitory control and working memory. The effect of singing was comparatively more limited, being positively associated only with frequency discrimination, processing speed, and, to some extent, inhibitory control. Evidence of differential preservation was limited to processing speed. We also found a circumscribed positive impact of age of onset and a negative impact of singing experience on cognitive functioning in singers. Together, these findings were interpreted as reflecting an age-related decline in executive function in cognitively healthy adults, with specific and limited positive impacts of singing, consistent with the preserved differentiation hypothesis, but not with the differential preservation hypothesis.
Collapse
Affiliation(s)
- Pascale Tremblay
- CERVO Brain Research Center, Quebec City G1J 2G3, Canada; Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City G1V 0A6, Canada.
| | - Maxime Perron
- Rotman Research Institute, Baycrest, North York, Ontario M6A 2E1, Canada; University of Toronto, Faculty of Arts and Science, Department of Psychology, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
16
|
Wolff L, Quan Y, Perry G, Forde Thompson W. Music Engagement as a Source of Cognitive Reserve. Am J Alzheimers Dis Other Demen 2023; 38:15333175231214833. [PMID: 37993973 PMCID: PMC10666690 DOI: 10.1177/15333175231214833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Music engagement is a ubiquitous activity that is thought to have cognitive benefits for the rapidly aging population. In the absence of robust treatment approaches for many age-related and neuropathological health issues, interest has emerged surrounding lifestyle-enriching activities, like exercise and music engagement, to build cognitive reserve across the lifespan and preserve neurocognitive function in older adults. The present review evaluates evidence of neurocognitive preservation arising from lifelong music engagement with respect to the cognitive reserve hypothesis. We collated a body of neuroimaging, behavioral and epidemiological evidence to adjudicate the benefits of music engagement for cognitive reserve. The findings suggest that music engagement should be considered in tandem with other well-established cognitive reserve proxies as a contributor to differential clinical outcomes in older populations at risk of age-related and neuropathological cognitive decline.
Collapse
Affiliation(s)
- Lee Wolff
- Department of Psychology, Bond University, Robina, QLD, Australia
| | - Yixue Quan
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Gemma Perry
- Department of Psychology, Bond University, Robina, QLD, Australia
| | - William Forde Thompson
- Department of Psychology, Bond University, Robina, QLD, Australia
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Chacur K, Serrat R, Villar F. Older adults' participation in artistic activities: a scoping review. Eur J Ageing 2022; 19:931-944. [PMID: 36506665 PMCID: PMC9729516 DOI: 10.1007/s10433-022-00708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 01/26/2023] Open
Abstract
This scoping review analyses existing literature on older adults' participation in artistic activities. It identifies gaps in this research topic and suggests new directions for research. We followed the five-step process defined by Arksey and O'Malley (2005) and extended by Levac et al. (2010). Four electronic databases were searched, and 129 peer-reviewed articles were included in the scoping review. Research into older adults' participation in artistic activities has grown in the last ten years. However, empirical papers tend to focus on the outcomes of older people's participation in artistic activities, in particular the benefits. Most papers centred on facilitators to examine the antecedents of this type of participation among people in late life. Research about experiences, potentially negative consequences or barriers to older adults' participation in artistic activities have been largely overlooked. We identified several gaps in the literature, which we classified as: related to the artistic activities that were considered; the potential costs and barriers for older adults' participation in artistic activities; older adults' voices and their diversity; the life course perspective; and a contextual view of research on the topic. These gaps suggest challenges that future research on older adults' participation in artistic activities should consider.
Collapse
Affiliation(s)
- Karima Chacur
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Rodrigo Serrat
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Feliciano Villar
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
18
|
Böttcher A, Zarucha A, Köbe T, Gaubert M, Höppner A, Altenstein S, Bartels C, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Frommann I, Haynes JD, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Metzger C, Munk MHJ, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Spottke A, Teipel SJ, Wiltfang J, Wolfsgruber S, Yakupov R, Düzel E, Jessen F, Röske S, Wagner M, Kempermann G, Wirth M. Musical Activity During Life Is Associated With Multi-Domain Cognitive and Brain Benefits in Older Adults. Front Psychol 2022; 13:945709. [PMID: 36092026 PMCID: PMC9454948 DOI: 10.3389/fpsyg.2022.945709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Regular musical activity as a complex multimodal lifestyle activity is proposed to be protective against age-related cognitive decline and Alzheimer’s disease. This cross-sectional study investigated the association and interplay between musical instrument playing during life, multi-domain cognitive abilities and brain morphology in older adults (OA) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Participants reporting having played a musical instrument across three life periods (n = 70) were compared to controls without a history of musical instrument playing (n = 70), well-matched for reserve proxies of education, intelligence, socioeconomic status and physical activity. Participants with musical activity outperformed controls in global cognition, working memory, executive functions, language, and visuospatial abilities, with no effects seen for learning and memory. The musically active group had greater gray matter volume in the somatosensory area, but did not differ from controls in higher-order frontal, temporal, or hippocampal volumes. However, the association between gray matter volume in distributed frontal-to-temporal regions and cognitive abilities was enhanced in participants with musical activity compared to controls. We show that playing a musical instrument during life relates to better late-life cognitive abilities and greater brain capacities in OA. Musical activity may serve as a multimodal enrichment strategy that could help preserve cognitive and brain health in late life. Longitudinal and interventional studies are needed to support this notion.
Collapse
Affiliation(s)
- Adriana Böttcher
- German Center for Neurodegenerative Diseases, Dresden, Germany
- Section of Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexis Zarucha
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Theresa Köbe
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Malo Gaubert
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Angela Höppner
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | | | - Ingo Frommann
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | | | - Christoph Laske
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Coraline Metzger
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H. J. Munk
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Systems Neurophysiology, Department of Biology, Darmstadt University of Technology, Darmstadt, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Psychiatry, Faculty of Medicine, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases, Dresden, Germany
- *Correspondence: Miranka Wirth,
| |
Collapse
|
19
|
Strong JV. Music experience predicts episodic memory performance in older adult instrumental musicians. Brain Cogn 2022; 161:105883. [PMID: 35667284 DOI: 10.1016/j.bandc.2022.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Previous research suggests that there is a relationship between music lessons early in life and cognitive functioning in late life. The current study examined 1) how lifestyle factors, including music lessons, physical and social activity, and health predict late life cognition and 2) how unique music training variables (e.g., hours practiced, years in lessons, age of acquisition) predicted cognitive scores for older adults. METHODS Participants completed a neuropsychological battery examining major cognitive domains, and completed questionnaires on music experience, physical and social activity, and physician diagnosed health factors. RESULTS Results suggested that belonging to the musician group predicted scores on executive functioning, language, and visual spatial ability. Among instrumental musicians, number of years in formal training and current number of hours playing per week predicted scores on verbal memory. Age of acquisition was not a significant predictor of cognitive functioning. CONCLUSIONS Music training significantly predicted scores on tests of executive function, visual spatial ability, and language, above and beyond other variables, including current age and health and lifestyle factors. The number of years of formal training predicted scores on verbal learning and memory, with significant implications for aging. The results are discussed in the context of cognitive aging and music education.
Collapse
Affiliation(s)
- Jessica V Strong
- University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
20
|
Gray R, Sarampalis A, Başkent D, Harding EE. Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Front Aging Neurosci 2022; 14:806439. [PMID: 35645774 PMCID: PMC9131017 DOI: 10.3389/fnagi.2022.806439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
During the normal course of aging, perception of speech-on-speech or “cocktail party” speech and use of working memory (WM) abilities change. Musical training, which is a complex activity that integrates multiple sensory modalities and higher-order cognitive functions, reportedly benefits both WM performance and speech-on-speech perception in older adults. This mini-review explores the relationship between musical training, WM and speech-on-speech perception in older age (> 65 years) through the lens of the Ease of Language Understanding (ELU) model. Linking neural-oscillation literature associating speech-on-speech perception and WM with alpha-theta oscillatory activity, we propose that two stages of speech-on-speech processing in the ELU are underpinned by WM-related alpha-theta oscillatory activity, and that effects of musical training on speech-on-speech perception may be reflected in these frequency bands among older adults.
Collapse
Affiliation(s)
- Ryan Gray
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Psychology, Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Anastasios Sarampalis
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Deniz Başkent
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eleanor E. Harding
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Eleanor E. Harding,
| |
Collapse
|
21
|
Yamashita M, Ohsawa C, Suzuki M, Guo X, Sadakata M, Otsuka Y, Asano K, Abe N, Sekiyama K. Neural Advantages of Older Musicians Involve the Cerebellum: Implications for Healthy Aging Through Lifelong Musical Instrument Training. Front Hum Neurosci 2022; 15:784026. [PMID: 35069154 PMCID: PMC8766763 DOI: 10.3389/fnhum.2021.784026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
This study compared 30 older musicians and 30 age-matched non-musicians to investigate the association between lifelong musical instrument training and age-related cognitive decline and brain atrophy (musicians: mean age 70.8 years, musical experience 52.7 years; non-musicians: mean age 71.4 years, no or less than 3 years of musical experience). Although previous research has demonstrated that young musicians have larger gray matter volume (GMV) in the auditory-motor cortices and cerebellum than non-musicians, little is known about older musicians. Music imagery in young musicians is also known to share a neural underpinning [the supramarginal gyrus (SMG) and cerebellum] with music performance. Thus, we hypothesized that older musicians would show superiority to non-musicians in some of the abovementioned brain regions. Behavioral performance, GMV, and brain activity, including functional connectivity (FC) during melodic working memory (MWM) tasks, were evaluated in both groups. Behaviorally, musicians exhibited a much higher tapping speed than non-musicians, and tapping speed was correlated with executive function in musicians. Structural analyses revealed larger GMVs in both sides of the cerebellum of musicians, and importantly, this was maintained until very old age. Task-related FC analyses revealed that musicians possessed greater cerebellar-hippocampal FC, which was correlated with tapping speed. Furthermore, musicians showed higher activation in the SMG during MWM tasks; this was correlated with earlier commencement of instrumental training. These results indicate advantages or heightened coupling in brain regions associated with music performance and imagery in musicians. We suggest that lifelong instrumental training highly predicts the structural maintenance of the cerebellum and related cognitive maintenance in old age.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Chie Ohsawa
- School of Music, Mukogawa Women’s University, Hyogo, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan
| | - Xia Guo
- Graduate School of Social and Cultural Sciences, Kumamoto University, Kumamoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Makiko Sadakata
- Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Yuki Otsuka
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Faculty of Child Care and Education, Osaka University of Comprehensive Children Education, Osaka, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
- *Correspondence: Kaoru Sekiyama,
| |
Collapse
|
22
|
Music improvisation enhances neutral verbal and visual memory in musicians and non-musicians alike. ARTS IN PSYCHOTHERAPY 2021. [DOI: 10.1016/j.aip.2021.101807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Musical training mediates the relation between working memory capacity and preference for musical complexity. Mem Cognit 2021; 48:972-981. [PMID: 32193819 DOI: 10.3758/s13421-020-01031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has examined the relationships among cognitive variables and musical training, but relatively less attention has addressed downstream effects of musical training on other psychological domains, such as aesthetic preference, and the potential impact of domain-general constructs, such as working memory. Accordingly, the present study sought to draw links between musical training, working memory capacity, and preference for musical complexity. Participants were assessed for their experience with musical training, their working-memory capacity, and their preference for musical complexity. Diverging from predictions based on vision research, our analyses revealed that musical training significantly mediated the association between working memory capacity and preference for music complexity. This significant mediation held even after a variety of sociodemographic variables (gender, education, socioeconomic status) were taken into account. Furthermore, the role of working memory capacity was domain general, such that the mediation was significant regardless of which measure of working memory capacity was used (tone, operation, or symmetry span). The current results develop a model of aesthetic preference that illuminates differences between vision and audition in terms of the multifaceted effects of complex skills training on cognition and affect. Moreover, they drive new work aimed at better understanding how domain-general constructs such as working memory capacity might interact with domain-specific cognition.
Collapse
|
24
|
Okely JA, Deary IJ, Overy K. The Edinburgh Lifetime Musical Experience Questionnaire (ELMEQ): Responses and non-musical correlates in the Lothian Birth Cohort 1936. PLoS One 2021; 16:e0254176. [PMID: 34264964 PMCID: PMC8282069 DOI: 10.1371/journal.pone.0254176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence of the potential effects of musical training on the human brain, as well as increasing interest in the potential contribution of musical experience to healthy ageing. Conducting research on these topics with older adults requires a comprehensive assessment of musical experience across the lifespan, as well as an understanding of which variables might correlate with musical training and experience (such as personality traits or years of education). The present study introduces a short questionnaire for assessing lifetime musical training and experience in older populations: the Edinburgh Lifetime Musical Experience Questionnaire (ELMEQ). 420 participants from the Lothian Birth Cohort 1936 completed the ELMEQ at a mean age of 82 years. We used their responses to the ELMEQ to address three objectives: 1) to report the prevalence of lifetime musical experience in a sample of older adults; 2) to demonstrate how certain item-level responses can be used to model latent variables quantifying experience in different musical domains (playing a musical instrument, singing, self-reported musical ability, and music listening); and 3) to examine non-musical (lifespan) correlates of these domains. In this cohort, 420 of 431 participants (97%) completed the questionnaire. 40% of participants reported some lifetime experience of playing a musical instrument, starting at a median age of 10 years and playing for a median of 5 years. 38% of participants reported some lifetime experience of singing in a group. Non-musical variables of childhood environment, years of education, childhood cognitive ability, female sex, extraversion, history of arthritis and fewer constraints on activities of daily living were found to be associated, variously, with the domains of playing a musical instrument, singing, self-reported musical ability, and music listening. The ELMEQ was found to be an effective research tool with older adults and is made freely available for future research.
Collapse
Affiliation(s)
- Judith A. Okely
- Department of Psychology, Lothian Birth Cohort Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, Lothian Birth Cohort Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Overy
- Reid School of Music, Edinburgh College of Art, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Neuroscience, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Romeiser JL, Smith DM, Clouston SAP. Musical instrument engagement across the life course and episodic memory in late life: An analysis of 60 years of longitudinal data from the Wisconsin Longitudinal Study. PLoS One 2021; 16:e0253053. [PMID: 34166389 PMCID: PMC8224921 DOI: 10.1371/journal.pone.0253053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND As the global burden of dementia increases, the absence of treatment underscores the need for identification of factors that may improve cognitive reserve-the ability to stave off cognitive decline in old age. The beneficial association between musical instrument engagement and episodic memory has been identified in children, young adults, and older adults. Yet, previous studies in musical instrument engagement have rarely examined the potential for adolescence and adulthood exposures to independently improve cognition, nor have they been linked with the rate of memory decline over time in older adults. We investigated whether adolescent musical instrument engagement and continued musical instrument engagement over the adult life course were separately associated with higher episodic memory, as well as rate of decline in a large longitudinal cohort. METHODS Data were from a prospective cohort of high school graduates from 1957. High school music engagement (HSME) was ascertained through graduate yearbooks and assessed as membership in musical performance groups. A questionnaire was used to assess musical engagement through adulthood (MEA) at ages 35, 55, and 65. The episodic memory score was composed of immediate and delayed recall task scores, and was assessed when participants were aged approximately 65 and 72 years old among 5,718 individuals. Linear mixed models were used to assess the association between music, and memory performance and decline over time. RESULTS Of high school graduates who participated in the study, 38.1% played music in high school, and 21.1% played music in adulthood. While musical engagement was more common in those who played in childhood, 40% of those who played continuously as an adult did not play in high school. High HSME (B = 0.348, p = 0.049) and continuous MEA (B = 0.424, p = 0.012) were associated with higher memory scores at age 65 after covariate adjustment. When examining memory decline, the benefits of high HSME decreased over time (B = -0.435, p = 0.048), while the rate of decline did not differ between MEA groups. Exploratory models revealed differential benefits for HSME and immediate recall, and MEA and delayed recall. CONCLUSION This study provides further evidence that musical engagement in childhood or adulthood is associated with non-musical cognitive reserve. These two exposures may act differentially in different domains of episodic memory. Further work is needed to determine the relationship between musicianship and the rate of cognitive decline.
Collapse
Affiliation(s)
- Jamie L. Romeiser
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Dylan M. Smith
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Sean A. P. Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
26
|
Amanollahi M, Amanollahi S, Anjomshoa A, Dolatshahi M. Mitigating the negative impacts of aging on cognitive function; modifiable factors associated with increasing cognitive reserve. Eur J Neurosci 2021; 53:3109-3124. [PMID: 33715252 DOI: 10.1111/ejn.15183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022]
Abstract
Research suggests that social, physical, and cognitively challenging activities during lifetime, could mitigate the negative effects of aging on cognitive function. This effect is explained by the increased cognitive reserve (CR) resulting from such factors; in fact, such activities, by altering structural and functional properties of the human brain, equip one with more effective compensatory mechanisms to resist brain damage before the presentation of severe clinical symptoms. Therefore, applying appropriate modifications in one's lifestyle and activities may be effective in lowering the risk of developing dementia and cognitive dysfunction in old age, especially in brain areas that are susceptible to aging. In this paper, we are going to review relevant studies discussing the association between important modifiable factors, known as CR proxies (i.e., educational attainment, occupational complexity, physical activity, social engagement, bilingualism, leisure activities, and Mediterranean diet), and different domains of cognitive function, which are affected either in the process of healthy aging or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saba Amanollahi
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Anjomshoa
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
Krause AE, Davidson JW. A Qualitative Exploration of Aged-Care Residents' Everyday Music Listening Practices and How These May Support Psychosocial Well-Being. Front Psychol 2021; 12:585557. [PMID: 33746821 PMCID: PMC7973015 DOI: 10.3389/fpsyg.2021.585557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Strategies to support the psychosocial well-being of older adults living in aged-care are needed; and evidence points toward music listening as an effective, non-pharmacological tool with many benefits to quality of life and well-being. Yet, the everyday listening practices (and their associated specific psychosocial benefits) of older adults living in residential aged-care remain under-researched. The current study explored older adults' experiences of music listening in their daily lives while living in residential aged-care and considered how music listening might support their well-being. Specifically, what might go into autonomous listening activities? 32 Australian residents (aged 73-98) living in two Australian care facilities participated in semi-structured interviews. The results of a qualitative thematic analysis revealed three themes pertaining to "previous music experiences and interest," "current music listening," and "barriers to listening." While an interest in and access to music did not necessarily result in everyday listening practices, of those participants who did listen to music, perceived benefits included outcomes such as entertainment, enjoyment, relaxation, and mood regulation. Drawing on Ruud's notion of music as a "cultural immunogen" supporting well-being and Self-Determination Theory, theoretical implications of the findings are addressed, relating to how to create and support music activities in aged-care facilities so that they are engaging, meaningful, and promote emotional regulation, community, and well-being.
Collapse
Affiliation(s)
- Amanda E Krause
- The Melbourne Conservatorium of Music, The University of Melbourne, Southbank, VIC, Australia.,Department of Psychology, James Cook University, Townsville, QLD, Australia
| | - Jane W Davidson
- The Melbourne Conservatorium of Music, The University of Melbourne, Southbank, VIC, Australia
| |
Collapse
|
28
|
Music Playing and Interhemispheric Communication: Older Professional Musicians Outperform Age-Matched Non-Musicians in Fingertip Cross-Localization Test. J Int Neuropsychol Soc 2021; 27:282-292. [PMID: 32967757 DOI: 10.1017/s1355617720000946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Numerous investigations have documented that age-related changes in the integrity of the corpus callosum are associated with age-related decline in the interhemispheric transfer of information. Conversely, there is accumulating evidence for more efficient white matter organization of the corpus callosum in individuals with extensive musical training. However, the relationship between making music and accuracy in interhemispheric transfer remains poorly explored. METHODS To test the hypothesis that musicians show enhanced functional connectivity between the two hemispheres, 65 professional musicians (aged 56-90 years) and 65 age- and sex-matched non-musicians performed the fingertip cross-localization test. In this task, subjects must respond to a tactile stimulus presented to one hand using the ipsilateral (intra-hemispheric test) or contralateral (inter-hemispheric test) hand. Because the transfer of information from one hemisphere to another may imply a loss of accuracy, the value of the difference between the intrahemispheric and interhemispheric tests can be utilized as a reliable measure of the effectiveness of hemispheric interactions. RESULTS Older professional musicians show significantly greater accuracy in tactile interhemispheric transfer than non-musicians who suffer from age-related decline. CONCLUSIONS Musicians have more efficient interhemispheric communication than age-matched non-musicians. This finding is in keeping with studies showing that individuals with extensive musical training have a larger corpus callosum. The results are discussed in relation to relevant data suggesting that music positively influences aging brain plasticity.
Collapse
|
29
|
Xu Y, Nyeong Y, Yu S, Yu Y, Li B, Han C, Li X. Task switching in old participants: A potential interplay between strategy and cognitive ability. Acta Psychol (Amst) 2021; 214:103253. [PMID: 33513462 DOI: 10.1016/j.actpsy.2021.103253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Task-switching cost is highly reliable in old participants. However, in a Stroop-switching paradigm that compared old musicians with old non-musicians (Experiment 1A), task-switching costs were not consistent. For non-musicians, the task-switching costs were significant in the congruent and neutral trials, but not in the incongruent trials. For musicians, the task-switching costs disappeared completely. We suspected that besides following task rules, old participants might also apply a stimulus-based strategy called the target-first strategy. In Experiment 1B and 2, participants in Experiment 1A were invited again to perform two more Stroop-switching paradigms. To encourage the participants to use task rules, in Experiment 1B we removed the neutral trials but found the same results as in Experiment 1A. In Experiment 2, when inserting a cue-target interval in the Stroop-switching paradigm, both musicians and non-musicians produced reliable task-switching costs in all trial conditions. Note that younger participants had reliable task-switching costs in Experiment 1B and 2. We suggest that older participants preferred the target-first strategy to the task rules-based strategy because the former was easy to implant although it was less flexible. Besides task-switching costs, we found that old musicians had less interference effect than old non-musicians in Experiment 1B. In all three experiments, old musicians had shorter RTs than old non-musicians, which might be due to differences in strategies apart from cognitive abilities. We propose that without considering the strategy preference, some previous studies might misestimate the difference between old and young participants in terms of task-switching performance and interference control.
Collapse
|
30
|
Pentikäinen E, Pitkäniemi A, Siponkoski ST, Jansson M, Louhivuori J, Johnson JK, Paajanen T, Särkämö T. Beneficial effects of choir singing on cognition and well-being of older adults: Evidence from a cross-sectional study. PLoS One 2021; 16:e0245666. [PMID: 33534842 PMCID: PMC7857631 DOI: 10.1371/journal.pone.0245666] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background and objectives Choir singing has been associated with better mood and quality of life (QOL) in healthy older adults, but little is known about its potential cognitive benefits in aging. In this study, our aim was to compare the subjective (self-reported) and objective (test-based) cognitive functioning of senior choir singers and matched control subjects, coupled with assessment of mood, QOL, and social functioning. Research design and methods We performed a cross-sectional questionnaire study in 162 healthy older (age ≥ 60 years) adults (106 choir singers, 56 controls), including measures of cognition, mood, social engagement, QOL, and role of music in daily life. The choir singers were divided to low (1–10 years, N = 58) and high (>10 years, N = 48) activity groups based on years of choir singing experience throughout their life span. A subcohort of 74 participants (39 choir singers, 35 controls) were assessed also with a neuropsychological testing battery. Results In the neuropsychological testing, choir singers performed better than controls on the verbal flexibility domain of executive function, but not on other cognitive domains. In questionnaires, high activity choir singers showed better social integration than controls and low activity choir singers. In contrast, low activity choir singers had better general health than controls and high activity choir singers. Discussion and implications In healthy older adults, regular choir singing is associated with better verbal flexibility. Long-standing choir activity is linked to better social engagement and more recently commenced choir activity to better general health.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini-Tuuli Siponkoski
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maarit Jansson
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Louhivuori
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Julene K. Johnson
- Institute for Health & Aging, University of California San Francisco, San Francisco, California, United States of America
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Walsh S, Luben R, Hayat S, Brayne C. Is there a dose-response relationship between musical instrument playing and later-life cognition? A cohort study using EPIC-Norfolk data. Age Ageing 2021; 50:220-226. [PMID: 33206939 DOI: 10.1093/ageing/afaa242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Musical instrument playing provides intellectual stimulation, which is hypothesised to generate cognitive reserve that protects against cognitive impairment. Studies to date have classified musicianship as a binary entity. This investigation draws on the dataset of the European Prospective Investigation of Cancer Norfolk study to examine the effect of frequency of playing on later-life cognition. METHODS We compared three categorisations of self-reported musical playing frequency in late mid-life (12-month period) against cognitive performance measured after a 4-11 year delay, adjusted for relevant health and social confounders. Logistic regression models estimated the adjusted association between frequency of musical playing and the likelihood of being in the top and bottom cognitive deciles. RESULTS A total of 5,693 participants (745 musicians) provided data on music playing, cognition and all co-variables. Classification of musicianship by frequency of playing demonstrated key differences in socio-demographic factors. Musicians outperformed non-musicians in cognition generally. Compared with non-musicians, frequent musicians had 80% higher odds of being in the top cognitive decile (OR 1.80 [95% CI 1.19-2.73]), whereas musicians playing at any frequency had 29% higher odds (95% CI 1.03-1.62). There was evidence of a threshold effect, rather than a linear dose-response relationship. DISCUSSION This study supports a positive association between late mid-life musical instrument playing and later-life cognition, although causation cannot be assumed. Musicians playing frequently demonstrated the best cognition. 'Musicians' are a heterogeneous group and frequency of music playing seems a more informative measure than binary classification. Ideally, this more nuanced measure would be collected for different life course phases.
Collapse
Affiliation(s)
- Sebastian Walsh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Shabina Hayat
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Musical Training and Brain Volume in Older Adults. Brain Sci 2021; 11:brainsci11010050. [PMID: 33466337 PMCID: PMC7824792 DOI: 10.3390/brainsci11010050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Musical practice, including musical training and musical performance, has been found to benefit cognitive function in older adults. Less is known about the role of musical experiences on brain structure in older adults. The present study examined the role of different types of musical behaviors on brain structure in older adults. We administered the Goldsmiths Musical Sophistication Index, a questionnaire that includes questions about a variety of musical behaviors, including performance on an instrument, musical practice, allocation of time to music, musical listening expertise, and emotional responses to music. We demonstrated that musical training, defined as the extent of musical training, musical practice, and musicianship, was positively and significantly associated with the volume of the inferior frontal cortex and parahippocampus. In addition, musical training was positively associated with volume of the posterior cingulate cortex, insula, and medial orbitofrontal cortex. Together, the present study suggests that musical behaviors relate to a circuit of brain regions involved in executive function, memory, language, and emotion. As gray matter often declines with age, our study has promising implications for the positive role of musical practice on aging brain health.
Collapse
|
33
|
Rizzolo L, Leger M, Corvaisier S, Groussard M, Platel H, Bouet V, Schumann-Bard P, Freret T. Long-Term Music Exposure Prevents Age-Related Cognitive Deficits in Rats Independently of Hippocampal Neurogenesis. Cereb Cortex 2021; 31:620-634. [PMID: 32959057 DOI: 10.1093/cercor/bhaa247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive decline appears across aging. While some studies report beneficial effects of musical listening and practice on cognitive aging, the underlying neurobiological mechanisms remain unknown. This study aims to determine whether chronic (6 h/day, 3 times/week) and long-lasting (4-8 months) music exposure, initiated at middle age in rats (15 months old), can influence behavioral parameters sensitive to age effects and reduce age-related spatial memory decline in rats. Spontaneous locomotor, circadian rhythmic activity, and anxiety-like behavior as well as spatial working and reference memory were assessed in 14-month-old rats and then after 4 and 8 months of music exposure (19 and 23 months old, respectively). Spatial learning and reference memory data were followed up by considering cognitive status of animals prior to music exposure (14 months old) given by K-means clustering of individual Z-score. Hippocampal cell proliferation and brain-derived neurotrophic factor (BDNF) level in the hippocampus and frontal cortex were measured. Results show that music exposure differentially rescues age-related deficits in spatial navigation tasks according to its duration without affecting spontaneous locomotor, circadian rhythmic activity, and anxiety-like behavior. Hippocampal cell proliferation as well as hippocampal and frontal cortex BDNF levels was not affected by music across aging. Cognitive improvement by music in aging rats may require distinct neurobiological mechanisms than hippocampal cell proliferation and BDNF.
Collapse
Affiliation(s)
- Lou Rizzolo
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| | - Marianne Leger
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| | - Sophie Corvaisier
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| | - Mathilde Groussard
- Normandie University, Unicaen, PSL Research University, EPHE, INSERM U1077, CHU de Caen, Cyceron, 14000 Caen, France
- PSL Research University, EPHE, Paris, France
| | - Hervé Platel
- Normandie University, Unicaen, PSL Research University, EPHE, INSERM U1077, CHU de Caen, Cyceron, 14000 Caen, France
- PSL Research University, EPHE, Paris, France
| | - Valentine Bouet
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| | - Pascale Schumann-Bard
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| | - Thomas Freret
- Normandie University, Unicaen, INSERM, COMETE, CHU de Caen, Cyceron, 14000 Caen, France
| |
Collapse
|
34
|
James CE, Altenmüller E, Kliegel M, Krüger THC, Van De Ville D, Worschech F, Abdili L, Scholz DS, Jünemann K, Hering A, Grouiller F, Sinke C, Marie D. Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatr 2020; 20:418. [PMID: 33087078 PMCID: PMC7576734 DOI: 10.1186/s12877-020-01761-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education. METHODS We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling. DISCUSSION We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity. TRIAL REGISTRATION The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).
Collapse
Affiliation(s)
- Clara E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland. .,Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dimitri Van De Ville
- Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015, Lausanne, Switzerland.,Faculty of Medecine of the University of Geneva, Switzerland, Campus Biotech, Chemin des Mines 9, 1211, Geneva, Switzerland
| | - Florian Worschech
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Laura Abdili
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medecine, Hannover University of Music, Drama and Media, Neues Haus 1, 30175, Hannover, Germany.,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alexandra Hering
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard du Pont-d'Arve 40, 1205, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Genève, Switzerland
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland. Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Christopher Sinke
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Section of Clinical Psychology & Sexual Medicine, Hannover Medical School, Centre of Mental Health, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Damien Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI Lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| |
Collapse
|
35
|
Diaz Abrahan V, Shifres F, Justel N. Impact of music-based intervention on verbal memory: an experimental behavioral study with older adults. Cogn Process 2020; 22:117-130. [PMID: 32955643 DOI: 10.1007/s10339-020-00993-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Normal age-related declines have been reported in different cognitive functions, such as episodic memory. Some environmental factors have the potential to reduce cognitive decline and promote healthy aging. In this research, we employed musical improvisation as a focal music-based intervention to explore its effects as a modulator of verbal memory. We evaluated two types of verbal memory: a neutral one, employing the Rey Auditory Verbal Learning Test (Study 1), and an emotional one, implementing the Spanish version of Affective Norms for English Words (Study 2) in a volunteer group of older adults. After the acquisition of neutral (Study 1) or emotional (Study 2) verbal information, the participants were exposed to musical improvisation (experimental condition) or two control conditions (rhythmic reproduction as a musically active control condition or a rest condition as a passive control condition) for 3 min. Then, memory was evaluated through two memory tasks (immediate and deferred free-recall and recognition tests). In both studies, we compared memory performance among musicians (with five or more years of music training) and non-musicians. We found a significant improvement in neutral verbal memory among participants involved in musical improvisation, who remembered more words than those in the control conditions. Differences were also found according to the musical experience of the sample, with musicians outperforming non-musicians. The current research supports the late-life cognitive benefits of music-based intervention and music training.
Collapse
Affiliation(s)
- Veronika Diaz Abrahan
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), Centro de Estudios Multidisciplinarios en Sistemas Complejos y Ciencias del Cerebro (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Escuela de Ciencia y Tecnología (ECyT), Universidad de San Martín (UNSAM), 25 de Mayo 1169, 1er piso, Of. 18, San Martin, 1650, Argentina. .,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. .,Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| | - Favio Shifres
- Laboratorio para el Estudio de la Experiencia Musical (LEEM), Departamento de Música, Facultad de Bellas Artes (FBA), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), Centro de Estudios Multidisciplinarios en Sistemas Complejos y Ciencias del Cerebro (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Escuela de Ciencia y Tecnología (ECyT), Universidad de San Martín (UNSAM), 25 de Mayo 1169, 1er piso, Of. 18, San Martin, 1650, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
36
|
Groussard M, Coppalle R, Hinault T, Platel H. Do Musicians Have Better Mnemonic and Executive Performance Than Actors? Influence of Regular Musical or Theater Practice in Adults and in the Elderly. Front Hum Neurosci 2020; 14:557642. [PMID: 33100995 PMCID: PMC7522322 DOI: 10.3389/fnhum.2020.557642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
The effects of musical practice on cognition are well established yet rarely compared with other kinds of artistic training or expertise. This study aims to compare the possible effect of musical and theater regular practice on cognition across the lifespan. Both of these artistic activities require many hours of individual or collective training in order to reach an advanced level. This process requires the interaction between higher-order cognitive functions and several sensory modalities (auditory, verbal, visual and motor), as well as regular learning of new pieces. This study included participants with musical or theater practice, and healthy controls matched for age (18–84 years old) and education. The objective was to determine whether specific practice in these activities had an effect on cognition across the lifespan, and a protective influence against undesirable cognitive outcomes associated with aging. All participants underwent a battery of cognitive tasks that evaluated processing speed, executive function, fluency, working memory, verbal and visual long-term memories, and non-verbal reasoning abilities. Results showed that music and theater artistic practices were strongly associated with cognitive enhancements. Participants with musical practice were better in executive functioning, working memory and non-verbal reasoning, whereas participants with regular acting practice had better long-term verbal memory and fluency performance. Thus, taken together, results suggest a differential effect of these artistic practices on cognition across the lifespan. Advanced age did not seem to reduce the benefit, so future studies should focus on the hypothetical protective effects of artistic practice against cognitive decline.
Collapse
Affiliation(s)
- Mathilde Groussard
- UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, Caen, France
| | - Renaud Coppalle
- UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, Caen, France
| | - Thomas Hinault
- UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, Caen, France
| | - Hervé Platel
- UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Université, Caen, France
| |
Collapse
|
37
|
Mansky R, Marzel A, Orav EJ, Chocano-Bedoya PO, Grünheid P, Mattle M, Freystätter G, Stähelin HB, Egli A, Bischoff-Ferrari HA. Playing a musical instrument is associated with slower cognitive decline in community-dwelling older adults. Aging Clin Exp Res 2020; 32:1577-1584. [PMID: 32144734 DOI: 10.1007/s40520-020-01472-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Elucidating behavioral protective factors for cognitive decline and dementia can have a far-reaching impact. AIMS To describe the association of present and past musical instrument playing with cognitive function in cognitively intact older adults. METHOD A post hoc observational analysis of the Zurich Disability Prevention Trial. Past and present musical instrument playing was correlated with Mini-Mental State Examination (MMSE) and EuroQol-Visual Analogue Scale (EQ-VAS) using linear regression at baseline and mixed-model linear regression over 1 year. RESULTS Two hundred community dwelling adults age 70 and older (mean age 77.7) were included. There were 48.5% (97/200) participants, who ever played a musical instrument; 35% (70/200) played in the past and 13.5% (27/200) played at present. At baseline, present players had a suggestively higher adjusted-MMSE than never players (28.9 vs. 28.5, p value 0.059). Over 12 months, compared to never players, ever players showed a significantly better improvement from baseline in adjusted-MMSE (0.29 vs. - 0.12, p value 0.007). The association remained significant even after restricting to participants without higher education (p value 0.03). Over time, no differences were observed for EQ-VAS (p value 0.45). However, past players had the largest decline in health-related quality of life at 12 months. DISCUSSION The support for a protective association in our observational study suggests the need for clinical trials to examine the effect of playing a musical instrument on cognitive function and decline. Both returning to play after an interruption and learning to play from the beginning should be examined. CONCLUSIONS Present and past musical instrument playing may assist in preserving cognitive function in community-dwelling older adults.
Collapse
Affiliation(s)
- Richard Mansky
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - Alex Marzel
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Department of Teaching, Research and Development, Schulthess Clinic, Zurich, Switzerland
| | - E John Orav
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Patricia O Chocano-Bedoya
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - Patricia Grünheid
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - Michèle Mattle
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - Gregor Freystätter
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - H B Stähelin
- Department of Geriatrics, University of Basel, Basel, Switzerland
| | - Andreas Egli
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland
| | - Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, University Hospital Zurich, Raemistrasse 101, 8091, Zurich, Switzerland.
- Centre on Aging and Mobility, University Hospital Zurich and City Hospital Waid Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Zharinov GM, Mikhalsky AI, Neklasova NY, Anisimov VN. Longevity and Some Causes of Death in Musicians of the 20th Century. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020020150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Sutcliffe R, Du K, Ruffman T. Music Making and Neuropsychological Aging: A Review. Neurosci Biobehav Rev 2020; 113:479-491. [PMID: 32302600 DOI: 10.1016/j.neubiorev.2020.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Aging is associated with a decline in social understanding and general cognition. Both are integral to wellbeing and rely on similar brain regions. Thus, as the population ages, there is a growing need for knowledge on the types of activities that maintain brain health in older adulthood. Active engagement in music making might be one such activity because it places a demand on brain networks tapping into multisensory integration, learning, reward, and cognition. It has been hypothesized that this demand may promote plasticity in the frontal and temporal lobes by taxing cognitive abilities and, hence, increase resistance to age-related neurodegeneration. We examine research relevant to this hypothesis and note that there is a lack of intervention studies with a well-matched control condition and random assignment. Thus, we discuss potential causal mechanisms underlying training-related neuropsychological changes, and provide suggestions for future research. It is argued that although music training might be a valuable tool for supporting healthy neuropsychological aging and mental wellbeing, well-controlled intervention studies are necessary to provide clear evidence.
Collapse
Affiliation(s)
- Ryan Sutcliffe
- Department of Psychology, University of Otago, New Zealand.
| | - Kangning Du
- Department of Psychology, University of Otago, New Zealand
| | - Ted Ruffman
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
40
|
Pesnot Lerousseau J, Hidalgo C, Schön D. Musical Training for Auditory Rehabilitation in Hearing Loss. J Clin Med 2020; 9:jcm9041058. [PMID: 32276390 PMCID: PMC7230165 DOI: 10.3390/jcm9041058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the overall success of cochlear implantation, language outcomes remain suboptimal and subject to large inter-individual variability. Early auditory rehabilitation techniques have mostly focused on low-level sensory abilities. However, a new body of literature suggests that cognitive operations are critical for auditory perception remediation. We argue in this paper that musical training is a particularly appealing candidate for such therapies, as it involves highly relevant cognitive abilities, such as temporal predictions, hierarchical processing, and auditory-motor interactions. We review recent studies demonstrating that music can enhance both language perception and production at multiple levels, from syllable processing to turn-taking in natural conversation.
Collapse
|
41
|
Abstract
La memoria es una función cognitiva que permite al ser humano adquirir, almacenar y recuperar información. Dentro de la literatura se identifican diversos factores que tienen la capacidad de modificar la capacidad mnémica, así como también afectar las diferentes fases de formación de la memoria. En este sentido el objetivo del presente artículo de revisión sistemática estuvo orientado a presentar los antecedentes en cuanto al efecto de la música, como entrenamiento musical prolongado, así como intervención focal, sobre esta función cognitiva. Se seleccionaron 39 artículos de investigación empírica extraídos de diversas bases de datos. A través de la evidencia presentada se concluye que las propuestas musicales representan una potencial herramienta para abordar no sólo el estudio de la memoria, sino también para la estimulación y rehabilitación de la misma.
Collapse
|
42
|
Park S, Choi B, Choi C, Kang JM, Lee JY. Relationship between education, leisure activities, and cognitive functions in older adults. Aging Ment Health 2019; 23:1651-1660. [PMID: 30350714 DOI: 10.1080/13607863.2018.1512083] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to reveal the relationship between life activities and cognitive function and to evaluate the interaction between education and various leisure activities in predicting cognitive function. Using a cross-sectional research design with retrospective data, a total of 210 healthy Korean older adults participated and reported their years of education, working, and lifelong leisure activities. Cognitive function was measured using the Mini Mental State Examination. A hierarchical multiple regression analysis showed that education was positively associated with cognitive function, whereas working activity was not. Craft activities positively predicted cognitive function. Furthermore, education moderated the relationship between leisure activities and cognitive function. Only low-educated participants showed a decrease in cognitive function as they performed domestic chores and an increase in cognitive function as they participated in social activities and volunteering. High-educated participants showed no relation between leisure activities and cognitive function. The results of the current study suggest that the relationship between various leisure activities and cognitive function can vary based on the nature of the leisure activity and educational level. Professionals examining older adults' cognitive function should pay closer attention to educational level, as well as life styles (i.e. leisure activities), to provide appropriate interventions.
Collapse
Affiliation(s)
- Soowon Park
- Department of Education, Sejong University , Seoul , Republic of Korea
| | - Boungho Choi
- Seoul Metropolitan Police Agency , Seoul , Republic of Korea
| | - Chihyun Choi
- Department of Psychiatry, Seoul National University Hospital , Seoul , Republic of Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine , Incheon , Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine , Seoul , Republic of Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea
| |
Collapse
|
43
|
Schneider CE, Hunter EG, Bardach SH. Potential Cognitive Benefits From Playing Music Among Cognitively Intact Older Adults: A Scoping Review. J Appl Gerontol 2019; 38:1763-1783. [PMID: 29361873 DOI: 10.1177/0733464817751198] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The aging population is growing rapidly, raising rates of cognitive impairment, which makes strategies for protection against cognitive impairment increasingly important. There is little evidence indicating highly effective interventions preventing or slowing onset of cognitive impairment. Music playing influences brain and cognitive function, activating multiple brain areas and using cognitive and motor functions as well as multiple sensory systems, simultaneously. The purpose of this study was to review the current evidence related to playing a musical instrument being a potentially protective mechanism against cognitive decline among older adults. Using scoping review procedures, four databases were searched. Paired reviewers analyzed articles for content, design, and bias. Eleven studies met study criteria and were included in the review. All studies showed that music playing was correlated with positive outcomes on cognitive ability; more high-quality research is needed in this area to understand mechanisms behind potential cognitive protection of music.
Collapse
|
44
|
Koshimori Y, Thaut MH. New Perspectives on Music in Rehabilitation of Executive and Attention Functions. Front Neurosci 2019; 13:1245. [PMID: 31803013 PMCID: PMC6877665 DOI: 10.3389/fnins.2019.01245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023] Open
Abstract
Modern music therapy, starting around the middle of the twentieth century was primarily conceived to promote emotional well-being and to facilitate social group association and integration. Therefore, it was rooted mostly in social science concepts. More recently, music as therapy began to move decidedly toward perspectives of neuroscience. This has been facilitated by the advent of neuroimaging techniques that help uncover the therapeutic mechanisms for non-musical goals in the brain processes underlying music perception, cognition, and production. In this paper, we focus on executive function (EF) and attentional processes (AP) that are central for cognitive rehabilitation efforts. To this end, we summarize existing behavioral as well as neuroimaging and neurophysiological studies in musicians, non-musicians, and clinical populations. Musical improvisation and instrumental playing may have some potential for EF/AP stimulation and neurorehabilitation. However, more neuroimaging studies are needed to investigate the neural mechanisms for the active musical performance. Furthermore, more randomized clinical trials combined with neuroimaging techniques are warranted to demonstrate the specific efficacy and neuroplasticity induced by music-based interventions.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
45
|
Gray R, Gow AJ. How is musical activity associated with cognitive ability in later life? AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:617-635. [PMID: 31549569 DOI: 10.1080/13825585.2019.1660300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Research has suggested that individuals who play a musical instrument throughout adulthood have better preserved executive function. However, mixed results have been found for associations between musical activity and visuo-spatial abilities, and less is known about associations with fluid intelligence. We explored differences between musicians (N = 30) and non-musicians (N = 30) aged 60-93 years old across a range of neuropsychological measures of cognitive function. Musicians performed significantly better than non-musicians on all domains, which remained after adjusting for age, gender, educational history, languages spoken and physical activity. As a cross-sectional comparison, the results should not be overstated; however, they are consistent with findings suggesting learning a musical instrument throughout the life course may be associated with cognitive benefits. Identifying potential lifestyle factors that have cognitive benefits in later life, such as musical experience, is an important step in developing intervention strategies for cognitive aging.
Collapse
Affiliation(s)
- Ryan Gray
- Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| | - Alan J Gow
- Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
46
|
Hudak EM, Bugos J, Andel R, Lister JJ, Ji M, Edwards JD. Keys to staying sharp: A randomized clinical trial of piano training among older adults with and without mild cognitive impairment. Contemp Clin Trials 2019; 84:105789. [PMID: 31226405 PMCID: PMC6945489 DOI: 10.1016/j.cct.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The prevalence of dementia, the most expensive medical condition (Kirschstein, 2000 and Hurd et al., 2013 [1,2]), and its precursor, mild cognitive impairment (MCI) are increasing [3]. Finding effective intervention strategies to prevent or delay dementia is imperative to public health. Prior research provides compelling evidence that central auditory processing (CAP) deficits are a risk factor for dementia [4-6]. Grounded in the information degradation theory [7, 8], we hypothesize that improving brain function at early perceptual levels (i.e., CAP) may be optimal to attenuate cognitive and functional decline and potentially curb dementia prevalence. Piano training is one avenue to enhance cognition [9-13] by facilitating CAP at initial perceptual stages [14-18]. OBJECTIVES The Keys To Staying Sharp study is a two arm, randomized clinical trial examining the efficacy of piano training relative to music listening instruction to improve CAP, cognition, and everyday function among older adults. In addition, the moderating effects of MCI status on piano training efficacy will be examined and potential mediators of intervention effects will be explored. HYPOTHESES We hypothesize that piano training will improve CAP and cognitive performance, leading to functional improvements. We expect that enhanced CAP will mediate cognitive gains. We further hypothesize that cognitive gains will mediate functional improvements. METHOD We plan to enroll 360 adults aged 60 years and older who will be randomized to piano training or an active control condition of music listening instruction and complete pre- and immediate post- assessments of CAP, cognition, and everyday function.
Collapse
Affiliation(s)
- Elizabeth M Hudak
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida.
| | | | - Ross Andel
- School of Aging Studies, University of South Florida; Department of Neurology, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jennifer J Lister
- Department of Communication Sciences and Disorders, University of South Florida
| | - Ming Ji
- College of Nursing, University of South Florida
| | - Jerri D Edwards
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida; Department of Communication Sciences and Disorders, University of South Florida
| |
Collapse
|
47
|
Relationship between Interhemispheric Inhibition and Dexterous Hand Performance in Musicians and Non-musicians. Sci Rep 2019; 9:11574. [PMID: 31399612 PMCID: PMC6689014 DOI: 10.1038/s41598-019-47959-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Interhemispheric inhibition (IHI) is essential for dexterous motor control. Small previous studies have shown differences in IHI in musicians compared to non-musicians, but it is not clear whether these differences are robustly linked to musical performance. In the largest study to date, we examined IHI and comprehensive measures of dexterous bimanual performance in 72 individuals (36 musicians and 36 non-musicians). Dexterous bimanual performance was quantified by speed, accuracy, and evenness derived from a series of hand tasks. As expected, musicians significantly outperformed non-musicians. Surprisingly, these performance differences could not be simply explained by IHI, as IHI did not significantly differ between musicians and non-musicians. However, canonical correlation analysis revealed a significant relationship between combinations of IHI and performance variables in the musician group. Specifically, we identified that IHI may contribute to the maintenance of evenness regardless of speed, a feature of musical performance that may be driven by practice with a metronome. Therefore, while IHI changes by themselves may not be sufficient to explain superior hand dexterity exhibited by musicians, IHI may be a potential neural correlate for specific features of musical performance.
Collapse
|
48
|
Kempermann G. Making DEEP Sense of Lifestyle Risk and Resilience. Front Aging Neurosci 2019; 11:171. [PMID: 31379556 PMCID: PMC6651944 DOI: 10.3389/fnagi.2019.00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
To effectively promote life-long health and resilience against – for example – neurodegenerative diseases, evidence-based recommendations must acknowledge the complex multidimensionality not only of the diseases but also of personal lifestyle. In a straightforward descriptive and heuristic framework, more than 50 potential lifestyle factors cluster around diet (D), education (E), exercise (E), and purpose (P), unveiling their many relationships across domains and scales. The resulting systematics and its visualization might be a small but helpful step toward the development of more comprehensive, interdisciplinary models of lifestyle-dependent risk and resilience and a means to explain the opportunities and limitations of preventive measures to the public and other stakeholders. Most importantly, this perspective onto the subject implies that not all lifestyle factors are created equal but that there is a hierarchy of values and needs that influences the success of lifestyle-based interventions.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies (CRTD) TU Dresden, Dresden, Germany
| |
Collapse
|
49
|
Jordan C. When I'm 64: A review of instrumental music-making and brain health in later life. Exp Gerontol 2019; 123:17-23. [PMID: 31121221 DOI: 10.1016/j.exger.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023]
Abstract
According to the World Health Organization, global average life expectancy increased by 5.5 years between 2000 and 2016. This is the greatest increase in life expectancy since the 1960s. Identifying lifestyle choices which can be implemented in later life to support brain health are imperative given the increasing prevalence of age-related neurodegenerative diseases, such as dementia. Music-making, specifically instrumental music-making, has been suggested to support cognition function and emotional wellbeing in later life. This review will distinguish instrumental music-making from other musical activities (i.e. singing or listening to music), specifically focusing on its influence on cognitive function in later life and its contribution to the emotional wellbeing and quality of life. This review will also explore the viability of instrumental music-making as an intervention to support brain health in later life.
Collapse
Affiliation(s)
- Catherine Jordan
- Global Brain Health Institute, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
50
|
Belleville S, Moussard A, Ansaldo AI, Belchior P, Bherer L, Bier N, Bohbot VD, Bruneau MA, Cuddy LL, Gilbert B, Jokel R, Mahalingam K, McGilton K, Murphy KJ, Naglie G, Rochon E, Troyer AK, Anderson ND. Rationale and protocol of the ENGAGE study: a double-blind randomized controlled preference trial using a comprehensive cohort design to measure the effect of a cognitive and leisure-based intervention in older adults with a memory complaint. Trials 2019; 20:282. [PMID: 31118095 PMCID: PMC6532200 DOI: 10.1186/s13063-019-3250-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leisure activities can be both enjoyable and cognitively stimulating, and participation in such activities has been associated with reduced age-related cognitive decline. Thus, integrating stimulating leisure activities in cognitive training programs may represent a powerful and innovative approach to promote cognition in older adults at risk of dementia. The ENGAGE study is a randomized controlled, double-blind preference trial with a comprehensive cohort design that will test the efficacy and long-term impact of an intervention that combines cognitive training and cognitively stimulating leisure activities. METHODS One hundred and forty-four older adults with a memory complaint will be recruited in Montreal and Toronto. A particular effort will be made to reach persons with low cognitive reserve. Participants will be randomly assigned to one of two conditions: cognitive + leisure training (ENGAGE-MUSIC/SPANISH) or active control (ENGAGE-DISCOVERY). The ENGAGE-MUSIC/SPANISH training will include teaching of mnemonic and attentional control strategies, casual videogames selected to train attention, and classes in music or Spanish as a second language. The ENGAGE-DISCOVERY condition will comprise psychoeducation on cognition and the brain, low-stimulating casual videogames and documentary viewing with discussions. To retain the leisure aspect of the activities, participants will be allowed to exclude either music or Spanish at study entry if they strongly dislike one of these activities. Participants randomized to ENGAGE-MUSIC/SPANISH who did not exclude any activity will be assigned to music or Spanish based on a second random assignment. Training will be provided in 24 2-h sessions over 4 months. Outcomes will be measured at baseline, at 4-month follow-up, and at 24-month follow-up. The primary outcome will be cognitive performance on a composite measure of episodic memory (delayed recall scores for words and face-name associations) measured at baseline and at the 4-month follow-up. Secondary outcomes will include a composite measure of attention (speed of processing, inhibition, dual tasking, and shifting), psychological health, activities of daily living, and brain structure and function and long-term maintenance measured at the 24-month follow-up. Information on cognitive reserve proxies (education and lifestyle questionnaires), sex and genotype (apolipoprotein (Apo)E4, brain-derived neurotrophic factor (BDNF), and catechol-O-methyltransferase (COMT)) will be collected and considered as moderators of training efficacy. DISCUSSION This study will test whether a program combining cognitive training with stimulating leisure activities can increase cognition and reduce cognitive decline in persons at risk of dementia. TRIAL REGISTRATION NCT03271190 . Registered on 5 September 2017.
Collapse
Affiliation(s)
- S Belleville
- Université de Montréal, Montreal, Canada. .,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.
| | - A Moussard
- Université de Montréal, Montreal, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - A I Ansaldo
- Université de Montréal, Montreal, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - P Belchior
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.,McGill University, Montreal, Canada
| | - L Bherer
- Université de Montréal, Montreal, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - N Bier
- Université de Montréal, Montreal, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - V D Bohbot
- McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - M-A Bruneau
- Université de Montréal, Montreal, Canada.,Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - L L Cuddy
- Queen's University, Kingston, Canada
| | - B Gilbert
- Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - R Jokel
- University of Toronto, Toronto, Canada.,Baycrest Health Sciences, Toronto, Canada
| | | | - K McGilton
- University of Toronto, Toronto, Canada.,Toronto Rehabilitation Institute - the University Health Network, Toronto, Canada
| | - K J Murphy
- University of Toronto, Toronto, Canada.,Baycrest Health Sciences, Toronto, Canada
| | - G Naglie
- University of Toronto, Toronto, Canada.,Baycrest Health Sciences, Toronto, Canada
| | - E Rochon
- University of Toronto, Toronto, Canada.,Toronto Rehabilitation Institute - the University Health Network, Toronto, Canada
| | - A K Troyer
- University of Toronto, Toronto, Canada.,Baycrest Health Sciences, Toronto, Canada
| | - N D Anderson
- University of Toronto, Toronto, Canada.,Baycrest Health Sciences, Toronto, Canada
| |
Collapse
|