1
|
Humińska-Lisowska K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int J Mol Sci 2024; 25:11602. [PMID: 39519153 PMCID: PMC11546834 DOI: 10.3390/ijms252111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review examines the relationship between dopamine-related genetic polymorphisms, personality traits, and athletic success. Advances in sports genetics have identified specific single nucleotide polymorphisms (SNPs) in dopamine-related genes linked to personality traits crucial for athletic performance, such as motivation, cognitive function, and emotional resilience. This review clarifies how genetic variations can influence athletic predisposition through dopaminergic pathways and environmental interactions. Key findings reveal associations between specific SNPs and enhanced performance in various sports. For example, polymorphisms such as COMT Val158Met rs4680 and BDNF Val66Met rs6265 are associated with traits that could benefit performance, such as increased focus, stress resilience and conscientiousness, especially in martial arts. DRD3 rs167771 is associated with higher agreeableness, benefiting teamwork in sports like football. This synthesis underscores the multidimensional role of genetics in shaping athletic ability and advocates for integrating genetic profiling into personalized training to optimize performance and well-being. However, research gaps remain, including the need for standardized training protocols and exploring gene-environment interactions in diverse populations. Future studies should focus on how genetic and epigenetic factors can inform tailored interventions to enhance both physical and psychological aspects of athletic performance. By bridging genetics, personality psychology, and exercise science, this review paves the way for innovative training and performance optimization strategies.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
2
|
Chen P, Sun S, Yang Y, Huang A, Zhang H, Wang M. Cumulative Genetic Scores Interact with Maternal and Paternal Parenting in Predicting Parent-Adolescent Cohesion and Conflict. J Youth Adolesc 2024; 53:1171-1185. [PMID: 38308791 DOI: 10.1007/s10964-024-01947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Previous research concerning the interplay between genetics and parenting in the development of the parent-child relationship during adolescence has been extremely scarce, predominantly adopting single-gene designs. This limited body of work has largely overlooked the distinct effects of maternal and paternal roles, as well as potential gender differences. Additionally, existing gene-by-environment (G × E) studies have mainly concentrated on adverse environmental factors and associated negative outcomes, somewhat neglecting positive environments and outcomes. The present study examined the interactions of cumulative genetic scores (CGS, dopamine receptor D2 TaqIA and oxytocin receptor gene rs53576 polymorphisms) with both positive and negative parenting on parent-adolescent cohesion and conflict. Furthermore, this study aimed to ascertain with which gene-environment model the potential G × E interactions would align. A total of 745 Chinese Han adolescents (Mage = 13.36 ± 0.96 years; 46.8% girls) from grades 7 to 9 participated in this study. Results revealed a significant effect of CGS and negative maternal parenting on mother-adolescent conflict among males, consistent with the weak differential susceptibility model. As CGS increased, the effects of negative maternal parenting on mother-son conflict were magnified. These findings have implications for the timing and focus of interventions aimed at improving parent-adolescent relationships.
Collapse
Affiliation(s)
- Pian Chen
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Shan Sun
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Yang Yang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Aodi Huang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Hongmei Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Meiping Wang
- Department of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
3
|
Qin Y, Sun Q, Wang L, Hu F, Zhang Q, Wang W, Li W, Wang Y. DRD2 TaqIA polymorphism-related functional connectivity between anterior insula and dorsolateral prefrontal cortex predicts the retention time in heroin-dependent individuals under methadone maintenance treatment. Eur Arch Psychiatry Clin Neurosci 2024; 274:433-443. [PMID: 37400684 DOI: 10.1007/s00406-023-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.
Collapse
Affiliation(s)
- Yue Qin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, People's Republic of China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, People's Republic of China
| | - Feng Hu
- Department of Radiology, Hospital of Shaannxi Provincial Geology and Mineral Resources Bureau, Xi'an, People's Republic of China
| | - Qiuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi'an, 710038, People's Republic of China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi'an, 710038, People's Republic of China.
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
4
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Chen C, Long R, Pu Z, Massar SAA. Limited evidence for enhanced working memory performance and effort allocation in the face of loss versus gain incentives: A preregistered (non) replication. Psychophysiology 2022; 59:e14083. [DOI: 10.1111/psyp.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Christina Chen
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Royston Long
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Zhenghao Pu
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Stijn A. A. Massar
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
6
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, "the answer is blowin' in the wind," and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
7
|
Richter A, de Boer L, Guitart-Masip M, Behnisch G, Seidenbecher CI, Schott BH. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J Neural Transm (Vienna) 2021; 128:1705-1720. [PMID: 34302222 PMCID: PMC8536632 DOI: 10.1007/s00702-021-02382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.
Collapse
Affiliation(s)
- Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Lieke de Boer
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - Marc Guitart-Masip
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Gusalija Behnisch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
8
|
Dysfunctional mesocortical dopamine circuit at pre-adolescence is associated to aggressive behavior in MAO-A hypomorphic mice exposed to early life stress. Neuropharmacology 2019; 159:107517. [DOI: 10.1016/j.neuropharm.2019.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/27/2018] [Accepted: 01/31/2019] [Indexed: 01/22/2023]
|
9
|
Sanchez-Gistau V, Mariné R, Martorell L, Cabezas A, Algora MJ, Sole M, Labad J, Vilella E. Relationship between ANKK1 rs1800497 polymorphism, overweight and executive dysfunction in early psychosis. Schizophr Res 2019; 209:278-280. [PMID: 31103213 DOI: 10.1016/j.schres.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Vanessa Sanchez-Gistau
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain.
| | - Rosa Mariné
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Angel Cabezas
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Maria José Algora
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Montse Sole
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Universitat Autonoma, I3PT and CIBERSAM, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata of Reus, IIPSV, Universitat Rovira I Virgili and CIBERSAM, Spain
| |
Collapse
|
10
|
Li Y, Li Q, Li W, Chen J, Hu F, Liu Y, Wei X, Zhu J, Liu J, Ye J, Shi H, Wang Y, Wang W. The polymorphism of dopamine D2 receptor TaqIA gene is associated with brain response to drug cues in male heroin-dependent individuals during methadone maintenance treatment. Drug Alcohol Depend 2019; 198:150-157. [PMID: 30928885 DOI: 10.1016/j.drugalcdep.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Polymorphism of the dopamine D2 receptor TaqIA gene is related to reward response, relapse risks and effect of therapy for drug addiction. Whether the cue-induced craving and brain response was related to dopamine D2 receptor TaqIA gene is unknown. METHODS Forty-nine male heroin-dependent individuals [31 with A1 allele of the TaqIA (A1+), 18 A2 allele carriers (A1-)] under methadone maintenance treatment and 20 healthy control subjects performed a heroin cue-reactivity task during functional magnetic resonance imaging. Cue-elicited craving was measured. Difference in cue induced craving and brain response were analyzed among the three groups. Correlation analyses between craving and differential brain response, heroin use and treatment history were performed within A1+ and A1- group respectively. RESULTS Compared with A1- group, A1+ group showed greater cue-induced response in the ventrolateral prefrontal cortex, medial orbitofrontal gyrus, dorsomedial prefrontal cortex, pallidum, putamen, thalamus, superior parietal lobule and superior occipital gyrus. No difference in craving was found. The response in right thalamus positively correlated with daily heroin and methadone dose in A1+ group. For A1- group, response in left ventral orbitofrontal cortex, medial orbitofrontal gyrus, ventral anterior cingulate cortex, caudate, precuneus, calcarine and bilateral pallidum negatively correlated with duration of heroin use. The response in left ventral orbitofrontal cortex, medial orbitofrontal gyrus, bilateral calcarine and right cerebellum negatively correlated with duration of methadone maintenance treatment in A1- group. CONCLUSIONS The findings supported that A1 allele of the TaqIA is associated with higher salience allocation to heroin-related cues in heroin-dependent patients.
Collapse
Affiliation(s)
- Yongbin Li
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China; Department of Radiology, The Second Affliated Hospital of Xi'an Medical College, Xi'an, 167 Fangdong Street, Baqiao District, China
| | - Qiang Li
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Wei Li
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Jiajie Chen
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Feng Hu
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Yan Liu
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Xuan Wei
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Jia Zhu
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Jierong Liu
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Jianjun Ye
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Hong Shi
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China
| | - Yarong Wang
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China; Department of Radiology, The First Affliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Yanta District, Xi'an 710061, China.
| | - Wei Wang
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 569 Xinsi Road, Baqiao District, China.
| |
Collapse
|
11
|
Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S. Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 2018; 25:61. [PMID: 30086746 PMCID: PMC6080374 DOI: 10.1186/s12929-018-0463-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies at the molecular level aim to integrate genetic and neurobiological data to provide an increasingly detailed understanding of phenotypes related to the ability in time perception. Main Text This study suggests that the polymorphisms genetic SLC6A4 5-HTTLPR, 5HTR2A T102C, DRD2/ANKK1-Taq1A, SLC6A3 3’-UTR VNTR, COMT Val158Met, CLOCK genes and GABRB2 A/C as modification factor at neurochemical levels associated with several neurofunctional aspects, modifying the circadian rhythm and built-in cognitive functions in the timing. We conducted a literature review with 102 studies that met inclusion criteria to synthesize findings on genetic polymorphisms and their influence on the timing. Conclusion The findings suggest an association of genetic polymorphisms on behavioral aspects related in timing. However, order to confirm the paradigm of association in the timing as a function of the molecular level, still need to be addressed future research.
Collapse
Affiliation(s)
- Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil. .,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Juliete Bandeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Giovanny R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Gomes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Valéria Lima
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Carla Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Orsini
- Master's Program in Local Development Program, University Center Augusto Motta - UNISUAM, Rio de Janeiro, Brazil and Health Sciences Applied - Vassouras University, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião n° 2819 - Nossa Sra. de Fátima -, Parnaíba, PI, CEP 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
12
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Richter A, Barman A, Wüstenberg T, Soch J, Schanze D, Deibele A, Behnisch G, Assmann A, Klein M, Zenker M, Seidenbecher C, Schott BH. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor. Front Psychol 2017; 8:654. [PMID: 28507526 PMCID: PMC5410587 DOI: 10.3389/fpsyg.2017.00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory.
Collapse
Affiliation(s)
- Anni Richter
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany
| | - Joram Soch
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Anna Deibele
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Anne Assmann
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany
| | - Marieke Klein
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
14
|
Smith CT, Dang LC, Buckholtz JW, Tetreault AM, Cowan RL, Kessler RM, Zald DH. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum. Transl Psychiatry 2017; 7:e1091. [PMID: 28398340 PMCID: PMC5416688 DOI: 10.1038/tp.2017.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BPND), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BPND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BPND of the high-affinity D2 receptor tracer 18F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BPND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BPND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.
Collapse
Affiliation(s)
- C T Smith
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - L C Dang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - J W Buckholtz
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - A M Tetreault
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - R L Cowan
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R M Kessler
- Department of Radiology, UAB School of Medicine, Birmingham, AL, USA
| | - D H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
15
|
Abid S, Jafri W, Zaman MU, Bilal R, Awan S, Abbas A. Itopride for gastric volume, gastric emptying and drinking capacity in functional dyspepsia. World J Gastrointest Pharmacol Ther 2017; 8:74-80. [PMID: 28217377 PMCID: PMC5292610 DOI: 10.4292/wjgpt.v8.i1.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effect of itopride on gastric accommodation, gastric emptying and drinking capacity in functional dyspepsia (FD). METHODS Randomized controlled trial was conducted to check the effect of itopride on gastric accommodation, gastric emptying, capacity of tolerating nutrient liquid and symptoms of FD. We recruited a total of 31 patients having FD on the basis of ROME III criteria. After randomization, itopride was received by 15 patients while 16 patients received placebo. Gastric accommodation was determined using Gastric Scintigraphy. 13C labeled octanoic breadth test was performed to assess gastric emptying. Capacity of tolerating nutrient liquid drink was checked using satiety drinking capacity test. The intervention group comprised of 150 mg itopride. Patients in both arms were followed for 4 wk. RESULTS Mean age of the recruited participant 33 years (SD = 7.6) and most of the recruited individuals, i.e., 21 (67.7%) were males. We found that there was no effect of itopride on gastric accommodation as measured at different in volumes in the itopride and control group with the empty stomach (P = 0.14), at 20 min (P = 0.38), 30 min (P = 0.30), 40 min (P = 0.43), 50 min (P = 0.50), 60 min (P = 0.81), 90 min (P = 0.25) and 120 min (P = 0.67). Gastric emptying done on a sub sample (n = 11) showed no significant difference (P = 0.58) between itopride and placebo group. There was no significant improvement in the capacity to tolerate liquid in the itopride group as compared to placebo (P = 0.51). Similarly there was no significant improvement of symptoms as assessed through a composite symptom score (P = 0.74). The change in QT interval in itopride group was not significantly different from placebo (0.10). CONCLUSION Our study found no effect of itopride on gastric accommodation, gastric emptying and maximum tolerated volume in patients with FD.
Collapse
|
16
|
Prediction of alcohol drinking in adolescents: Personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity. Biol Psychol 2016; 118:79-87. [PMID: 27180911 DOI: 10.1016/j.biopsycho.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
Adolescence is a time that can set the course of alcohol abuse later in life. Sensitivity to reward on multiple levels is a major factor in this development. We examined 736 adolescents from the IMAGEN longitudinal study for alcohol drinking during early (mean age=14.37) and again later (mean age=16.45) adolescence. Conducting structural equation modeling we evaluated the contribution of reward-related personality traits, behavior, brain responses and candidate genes. Personality seems to be most important in explaining alcohol drinking in early adolescence. However, genetic variations in ANKK1 (rs1800497) and HOMER1 (rs7713917) play an equal role in predicting alcohol drinking two years later and are most important in predicting the increase in alcohol consumption. We hypothesize that the initiation of alcohol use may be driven more strongly by personality while the transition to increased alcohol use is more genetically influenced.
Collapse
|
17
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Landers JG, Esch T. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation. Med Hypotheses 2015; 85:905-9. [PMID: 26474929 DOI: 10.1016/j.mehy.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by very frequent and intense practice and extra stress from public scrutiny, would potentially have their negative feedback system overwhelmed, were it not that many of them carry the C allele of the NOS3-786T/C polymorphism. Then, even very high DA would not result in so much NO as to shut the system down. We add some evolutionary speculations.
Collapse
Affiliation(s)
| | - Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Coburg, Germany; Institute for General Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany; Neuroscience Research Institute, State University of New York, College at Old Westbury, New York, USA
| |
Collapse
|
19
|
Braverman ER, Blum K, Hussman KL, Han D, Dushaj K, Li M, Marin G, Badgaiyan RD, Smayda R, Gold MS. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients. PLoS One 2015; 10:e0133609. [PMID: 26244349 PMCID: PMC4526533 DOI: 10.1371/journal.pone.0133609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/29/2015] [Indexed: 11/30/2022] Open
Abstract
To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19–90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost-effective methods utilizable in primary care medicine following further confirmation.
Collapse
Affiliation(s)
- Eric R. Braverman
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
- * E-mail:
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
- Human Integrated Services, University of Vermont, Center for Clinical and Translational Science, College of Medicine, Burlington, Vermont, United States of America
- Department of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, Rhode Island, United States of America
| | - Karl L. Hussman
- Alpha 3T MRI & Diagnostic Imaging, New York, New York, United States of America
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
| | - Mona Li
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
| | - Gabriela Marin
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Neuroimaging Center, University Of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| | - Richard Smayda
- Department of Clinical Neurology, PATH Foundation NY, New York, New York, United States of America
| | - Mark S. Gold
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
20
|
Barman A, Richter S, Soch J, Deibele A, Richter A, Assmann A, Wüstenberg T, Walter H, Seidenbecher CI, Schott BH. Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient. Soc Cogn Affect Neurosci 2015; 10:1537-47. [PMID: 25944965 DOI: 10.1093/scan/nsv044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder refers to a neurodevelopmental condition primarily characterized by deficits in social cognition and behavior. Subclinically, autistic features are supposed to be present in healthy humans and can be quantified using the Autism Quotient (AQ). Here, we investigated a potential relationship between AQ and neural correlates of social and monetary reward processing, using functional magnetic resonance imaging in young, healthy participants. In an incentive delay task with either monetary or social reward, reward anticipation elicited increased ventral striatal activation, which was more pronounced during monetary reward anticipation. Anticipation of social reward elicited activation in the default mode network (DMN), a network previously implicated in social processing. Social reward feedback was associated with bilateral amygdala and fusiform face area activation. The relationship between AQ and neural correlates of social reward processing varied in a gender-dependent manner. In women and, to a lesser extent in men, higher AQ was associated with increased posterior DMN activation during social reward anticipation. During feedback, we observed a negative correlation of AQ and right amygdala activation in men only. Our results suggest that social reward processing might constitute an endophenotype for autism-related traits in healthy humans that manifests in a gender-specific way.
Collapse
Affiliation(s)
| | - Sylvia Richter
- Department of Clinical Psychology, University of Salzburg, Salzburg, Austria
| | - Joram Soch
- Leibniz Institute for Neurobiology, Magdeburg, Germany, Otto-von-Guericke University, Magdeburg, Germany, Department of Psychiatry, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany, and
| | - Anna Deibele
- Leibniz Institute for Neurobiology, Magdeburg, Germany, Otto-von-Guericke University, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne Assmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany, Otto-von-Guericke University, Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany, and
| | - Henrik Walter
- Department of Psychiatry, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany, and
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany, Otto-von-Guericke University, Magdeburg, Germany, Department of Psychiatry, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany, and Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
21
|
Paschke LM, Walter H, Steimke R, Ludwig VU, Gaschler R, Schubert T, Stelzel C. Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network. Neuroimage 2015; 111:549-61. [DOI: 10.1016/j.neuroimage.2015.02.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/23/2015] [Accepted: 02/20/2015] [Indexed: 12/30/2022] Open
|
22
|
Zhang C, Zhang J, Fan J, Cheng W, Du Y, Yu S, Fang Y. Identification of ANKK1 rs1800497 variant in schizophrenia: new data and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:564-71. [PMID: 25073965 DOI: 10.1002/ajmg.b.32259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
Abstract
One functional polymorphism (rs1800497) within the ankyrin repeat and kinase domain containing-1 gene (ANKK1) was reported to be associated with schizophrenia, but results among different studies vary and conclusions remain controversial. The present study sought to clarify this potential association among a population of Han Chinese with early onset schizophrenia using a case-control (396 patients and 399 controls) and family based study (103 trios). We then performed a meta-analysis (comprising 11 case-control and 2 family-based studies) based on the present literature. Results of the association study revealed no significant difference in allele and genotype frequencies between the cases and controls, and no significant transmission distortion was detected. Kaplan-Meier survival analysis showed that age at onset in schizophrenia was significantly associated with the rs1800497 polymorphism in female patients, but not in males. Female T allele carriers had a lower age at onset than those without T allele (log rank statistic χ(2) = 5.16, P = 0.023; corrected P = 0.046). Meta-analysis results indicated that rs1800497 is not associated with schizophrenia in the overall population (P = 0.77 for the case-control studies; P = 0.06 for the family-based studies). Our results support the hypothesis that rs1800497 polymorphism is likely to have a modifying rather than causative effect on schizophrenia. These findings may represent a significant genetic clue for the etiology of schizophrenia in females, but further investigation is required to clarify the exact role of ANKK1 in the development of schizophrenia.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Richter A, Guitart-Masip M, Barman A, Libeau C, Behnisch G, Czerney S, Schanze D, Assmann A, Klein M, Düzel E, Zenker M, Seidenbecher CI, Schott BH. Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression. Front Syst Neurosci 2014; 8:140. [PMID: 25147510 PMCID: PMC4123722 DOI: 10.3389/fnsys.2014.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Motivational salience plays an important role in shaping human behavior, but recent studies demonstrate that human performance is not uniformly improved by motivation. Instead, action has been shown to dominate valence in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward, but the neural mechanism behind this behavioral specificity is yet unclear. In all mammals, including humans, the monoamine neurotransmitter dopamine is particularly important in the neural manifestation of appetitively motivated behavior, and the human dopamine system is subject to considerable genetic variability. The well-studied TaqIA restriction fragment length polymorphism (rs1800497) has previously been shown to affect striatal dopamine metabolism. In this study we investigated a potential effect of this genetic variation on motivated action/inhibition learning. Two independent cohorts consisting of 87 and 95 healthy participants, respectively, were tested using the previously described valenced go/no-go learning paradigm in which participants learned the reward-associated no-go condition significantly worse than all other conditions. This effect was modulated by the TaqIA polymorphism, with carriers of the A1 allele showing a diminished learning-related performance enhancement in the rewarded no-go condition compared to the A2 homozygotes. This result highlights a modulatory role for genetic variability of the dopaminergic system in individual learning differences of action-valence interaction.
Collapse
Affiliation(s)
- Anni Richter
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Marc Guitart-Masip
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK ; Ageing Research Centre, Karolinska Institute Stockholm, Sweden
| | - Adriana Barman
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Catherine Libeau
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Gusalija Behnisch
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Sophia Czerney
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | - Anne Assmann
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Marieke Klein
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg Magdeburg, Germany ; Institute of Cognitive Neuroscience, University College London London, UK ; German Center for Neurodegenerative Diseases Magdeburg, Germany ; Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | - Björn H Schott
- Department of Neurochemistry and Molecular Biology, Department of Behavioral Neurology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences, Otto von Guericke University of Magdeburg Magdeburg, Germany ; Department of Psychiatry, Charité University Hospital Berlin, Germany ; Department of Neurology, University of Magdeburg Magdeburg, Germany
| |
Collapse
|
24
|
Barman A, Assmann A, Richter S, Soch J, Schütze H, Wüstenberg T, Deibele A, Klein M, Richter A, Behnisch G, Düzel E, Zenker M, Seidenbecher CI, Schott BH. Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory. Front Hum Neurosci 2014; 8:260. [PMID: 24808846 PMCID: PMC4010733 DOI: 10.3389/fnhum.2014.00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022] Open
Abstract
The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans.
Collapse
Affiliation(s)
- Adriana Barman
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Anne Assmann
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Otto von Guericke University Magdeburg, Germany
| | - Sylvia Richter
- Department of Clinical Psychology, University of Salzburg Salzburg, Austria
| | - Joram Soch
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Otto von Guericke University Magdeburg, Germany ; Bernstein Center for Computational Neuroscience, Humboldt University Berlin, Germany
| | - Hartmut Schütze
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Anna Deibele
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Otto von Guericke University Magdeburg, Germany
| | - Marieke Klein
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Department of Genetics, Radboud University Nijmegen Medical Center Nijmegen, Netherlands
| | - Anni Richter
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Gusalija Behnisch
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany ; Helmholtz Center for Neurodegenerative Diseases Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Martin Zenker
- Department of Human Genetics, Otto von Guericke University Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Björn H Schott
- Department of Behavioral Neurology and Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Department of Psychiatry, Charité Universitätsmedizin Berlin Berlin, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Neurology, Otto von Guericke University Magdeburg, Germany
| |
Collapse
|