1
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, et alAlldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|
2
|
Montero-Martin N, Girón MD, Vílchez JD, Salto R. Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells. Int J Mol Sci 2024; 25:9150. [PMID: 39273113 PMCID: PMC11394838 DOI: 10.3390/ijms25179150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.
Collapse
Affiliation(s)
- Nora Montero-Martin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - María D Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| |
Collapse
|
3
|
Zaldumbide-Alcocer FL, Labra-Ruiz NA, Carbó-Godinez AA, Ruíz-García M, Mendoza-Torreblanca JG, Naranjo-Albarrán L, Cárdenas-Rodríguez N, Valenzuela-Alarcón E, Espinosa-Garamendi E. Neurohabilitation of Cognitive Functions in Pediatric Epilepsy Patients through LEGO ®-Based Therapy. Brain Sci 2024; 14:702. [PMID: 39061442 PMCID: PMC11274765 DOI: 10.3390/brainsci14070702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 07/28/2024] Open
Abstract
In the pediatric population, epilepsy is one of the most common neurological disorders that often results in cognitive dysfunction. It affects patients' life quality by limiting academic performance and self-esteem and increasing social rejection. There are several interventions for the neurohabilitation of cognitive impairment, including LEGO®-based therapy (LEGO® B-T), which promotes neuronal connectivity and cortical plasticity through the use of assembly sets and robotic programming. Therefore, the aim of this study was to analyze the effect of LEGO® B-T on cognitive processes in pediatric patients with epilepsy. Eligible patients were identified; in the treatment group, an initial evaluation was performed with the NEUROPSI and BANFE-2 neuropsychological tests. Then, the interventions were performed once a week, and a final test was performed. In the control group, after the initial evaluation, the final evaluation was performed. An overall improvement was observed in the LEGO® B-T patients, with a significant increase in BANFE-2 scores in the orbitomedial, anterior prefrontal, and dorsolateral areas. In addition, in the gain score analysis, the orbitomedial and memory scores were significantly different from the control group. LEGO® B-T neurohabilitation is a remarkable option for epilepsy patients, who are motivated when they observe improvements.
Collapse
Affiliation(s)
- Flor Lorena Zaldumbide-Alcocer
- Servicio de Neurología, Dirección Médica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (F.L.Z.-A.); (M.R.-G.)
| | - Norma Angélica Labra-Ruiz
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (N.A.L.-R.); (J.G.M.-T.); (N.C.-R.)
| | - Abril Astrid Carbó-Godinez
- Unidad de Neurohabilitación y Conducta, Subdirección de Medicina, Dirección Médica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Matilde Ruíz-García
- Servicio de Neurología, Dirección Médica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (F.L.Z.-A.); (M.R.-G.)
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (N.A.L.-R.); (J.G.M.-T.); (N.C.-R.)
- Fundación COGNITIVE HABILITATION, Mexico City 03100, Mexico
| | - Lizbeth Naranjo-Albarrán
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (N.A.L.-R.); (J.G.M.-T.); (N.C.-R.)
- Fundación COGNITIVE HABILITATION, Mexico City 03100, Mexico
| | | | - Eduardo Espinosa-Garamendi
- Unidad de Neurohabilitación y Conducta, Subdirección de Medicina, Dirección Médica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
- Fundación COGNITIVE HABILITATION, Mexico City 03100, Mexico
| |
Collapse
|
4
|
Rickelton K, Zintel TM, Pizzollo J, Miller E, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Tempo and mode of gene expression evolution in the brain across primates. eLife 2024; 13:e70276. [PMID: 38275218 PMCID: PMC10876213 DOI: 10.7554/elife.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Trisha M Zintel
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Emily Miller
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
- MAEBIOS Epidemiology UnitAlamogordoUnited States
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State UniversityKentUnited States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine,The University of Texas M D Anderson Cancer CentreBastropUnited States
| | - Patrick R Hof
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Anthropology, Washington University in St. LouisSt. LouisUnited States
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
5
|
Gómez-Robles A, Nicolaou C, Smaers JB, Sherwood CC. The evolution of human altriciality and brain development in comparative context. Nat Ecol Evol 2024; 8:133-146. [PMID: 38049480 PMCID: PMC10781642 DOI: 10.1038/s41559-023-02253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
Human newborns are considered altricial compared with other primates because they are relatively underdeveloped at birth. However, in a broader comparative context, other mammals are more altricial than humans. It has been proposed that altricial development evolved secondarily in humans due to obstetrical or metabolic constraints, and in association with increased brain plasticity. To explore this association, we used comparative data from 140 placental mammals to measure how altriciality evolved in humans and other species. We also estimated how changes in brain size and gestation length influenced the timing of neurodevelopment during hominin evolution. Based on our data, humans show the highest evolutionary rate to become more altricial (measured as the proportion of adult brain size at birth) across all placental mammals, but this results primarily from the pronounced postnatal enlargement of brain size rather than neonatal changes. In addition, we show that only a small number of neurodevelopmental events were shifted to the postnatal period during hominin evolution, and that they were primarily related to the myelination of certain brain pathways. These results indicate that the perception of human altriciality is mostly driven by postnatal changes, and they point to a possible association between the timing of myelination and human neuroplasticity.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Schmidgall S, Hays J. Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks. Front Neurosci 2023; 17:1183321. [PMID: 37250397 PMCID: PMC10213417 DOI: 10.3389/fnins.2023.1183321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
We propose that in order to harness our understanding of neuroscience toward machine learning, we must first have powerful tools for training brain-like models of learning. Although substantial progress has been made toward understanding the dynamics of learning in the brain, neuroscience-derived models of learning have yet to demonstrate the same performance capabilities as methods in deep learning such as gradient descent. Inspired by the successes of machine learning using gradient descent, we introduce a bi-level optimization framework that seeks to both solve online learning tasks and improve the ability to learn online using models of plasticity from neuroscience. We demonstrate that models of three-factor learning with synaptic plasticity taken from the neuroscience literature can be trained in Spiking Neural Networks (SNNs) with gradient descent via a framework of learning-to-learn to address challenging online learning problems. This framework opens a new path toward developing neuroscience inspired online learning algorithms.
Collapse
Affiliation(s)
- Samuel Schmidgall
- U.S. Naval Research Laboratory, Spacecraft Engineering Department, Washington, DC, United States
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Joe Hays
- U.S. Naval Research Laboratory, Spacecraft Engineering Department, Washington, DC, United States
| |
Collapse
|
7
|
Rappaport MB, Corbally CJ. Neuroplasticity as a Foundation for Decision-Making in Space. NEUROSCI 2022; 3:457-475. [PMID: 39483427 PMCID: PMC11523684 DOI: 10.3390/neurosci3030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2024] Open
Abstract
This is an exploratory review of two very recent, intersecting segments of space science: neuroplasticity in space, and decision-making in space. The high level of neuroplasticity in humans leads to unfortunate neurological and physical deconditioning while the body adjusts to the new space environment. However, neuroplasticity may also allow recovery and continued functioning of decision-making at a level necessary for mission completion. Cosmic radiation, microgravity, heightened levels of carbon dioxide in spacecraft, and other factors are being explored as root causes of neurological and physical deconditioning in space. The goal of this paper is to explore some of the lines of causation that show how these factors affect the capacity of humans to make decisions in space. Either alone or in groups, it remains essential that humans retain an ability to make decisions that will save lives, protect equipment, complete missions, and return safely to Earth. A final section addresses healthcare, medical intervention, and remediation that could help to "harness" neuroplasticity before, during, and after spaceflight. The dual nature of human neuroplasticity renders it both a cause of problems and also potentially the foundation of remediation. The future of research on both neuroplasticity and human decision-making promises to be full of surprises, both welcome and otherwise. It is an exciting time in research on space medicine.
Collapse
|
8
|
Wilder L, Semendeferi K. Infant Brain Development and Plasticity from an Evolutionary Perspective. EVOLUTIONARY PSYCHOLOGY 2022. [DOI: 10.1007/978-3-030-76000-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Cytomegalovirus Infection in Infancy May Increase the Risk of Subsequent Epilepsy and Autism Spectrum Disorder in Childhood. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8111040. [PMID: 34828752 PMCID: PMC8622587 DOI: 10.3390/children8111040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus, and CMV-associated diseases range from mild illness in immunologically normal hosts to life-threatening diseases in newborns and immunocompromised children. This study investigated the association between childhood CMV infection and subsequent epilepsy or neurodevelopmental disorders, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). A retrospective analysis was performed on data for 69 children with confirmed CMV infections (CMV infection group) and 292 patients with other infections (control group) between 1 January 2006 to 31 December 2012. The results indicated that the CMV infection group had a higher risk of epilepsy in comparison to the control (odds ratio (OR), 16.4; 95% CI (confidence interval), 3.32–80.7; p = 0.001). Epilepsy risk increased in younger children (age 0–2) with CMV infection when compared to the control group (OR, 32.6; 95% CI, 3.84–276; p = 0.001). The ASD risk was also determined to be higher in the CMV infection group (OR, 17.9; 95% CI, 1.96–162; p = 0.01). The ADHD risk between the groups was not significant. This study suggests that CMV infection in infancy may increase the risk of subsequent epilepsy and ASD, especially in infants younger than 2 years, but is not associated with ADHD.
Collapse
|
10
|
Rezaul Karim AKM, Proulx MJ, de Sousa AA, Likova LT. Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain. PSYCHOLOGY & NEUROSCIENCE 2021; 14:298-334. [PMID: 36937077 PMCID: PMC10019101 DOI: 10.1037/pne0000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.
Collapse
|
11
|
Friedrich P, Forkel SJ, Amiez C, Balsters JH, Coulon O, Fan L, Goulas A, Hadj-Bouziane F, Hecht EE, Heuer K, Jiang T, Latzman RD, Liu X, Loh KK, Patil KR, Lopez-Persem A, Procyk E, Sallet J, Toro R, Vickery S, Weis S, Wilson CRE, Xu T, Zerbi V, Eickoff SB, Margulies DS, Mars RB, Thiebaut de Schotten M. Imaging evolution of the primate brain: the next frontier? Neuroimage 2021; 228:117685. [PMID: 33359344 PMCID: PMC7116589 DOI: 10.1016/j.neuroimage.2020.117685] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Fadila Hadj-Bouziane
- Lyon Neuroscience Research Center, ImpAct Team, INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, United States
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Kep Kee Loh
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Alizée Lopez-Persem
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Jerome Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roberto Toro
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Neuroscience department, Institut Pasteur, UMR 3571, CNRS, Université de Paris, Paris 75015, France
| | - Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Ting Xu
- Child Mind Institute, New York, United States
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon B Eickoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Daniel S Margulies
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
12
|
Turner JH, Schutt RK, Keshavan MS. Biology and American Sociology, Part II: Developing a Unique Evolutionary Sociology. THE AMERICAN SOCIOLOGIST 2020; 51:470-505. [PMID: 32836293 PMCID: PMC7275132 DOI: 10.1007/s12108-020-09448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In sociology's formative period between 1830 and 1930, evolutionary analysis organized much theorizing and research. This line of work ended abruptly in the 1920s but, over the last decades, has come back into the discipline somewhat piecemeal with the reintroduction of more sophisticated stage models of societal evolution, functional analysis, human ecological analysis, and other new lines of evolutionary inquiry outlined in this paper. Our goal is to demonstrate that revitalized paradigms of the past can still be useful with modest reconceptualization, while at the same time new intellectual movements in the other social sciences, especially economics and psychology, incorporating evolutionary ideas from biology provide sociology with an opportunity to develop its own approach to evolutionary analysis that avoids the problems that let to the demise of this line of inquiry in the 1920s, as well as the problems of other social sciences applying their more narrowly focus models to sociological problems. Indeed, sociology can become a leader in the social sciences in developing more sophisticated theoretical and methodological approaches to incorporating biology and evolutionary analysis into the social sciences. When presented in a new, more sophisticated guise, old approaches like functionalism, stage models of societal evolution, and ecological models can be seen as still having a great deal of explanatory power, while revealing a progressive and future orientation that should appeal to all contemporary sociologists. It is time, then, for sociology to remember its past in order to move into the future.
Collapse
Affiliation(s)
| | - Russell K. Schutt
- Department of Psychiatry and Clinical Research Scientist I, University of Massachusetts Boston and Lecturer, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | | |
Collapse
|
13
|
Pu J, Gao T, Zheng R, Fang Y, Ruan Y, Jin C, Shen T, Tian J, Zhang B. Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts. Brain Res Bull 2020; 159:9-15. [PMID: 32156628 DOI: 10.1016/j.brainresbull.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders, and mainly characterized by the progressive degeneration of dopaminergic (DA) neurons in the midbrain substantia nigra and non-DA neurons in many other parts of the brain. Previous studies have shown that several genes associated with the causes of PD can influence neurite outgrowth. Mutations of PRKN (encoding parkin, an E3 ubiquitin ligase) are the most frequent cause of recessively inherited PD. The lack of a PD phenotype in Prkn-knockout mice may imply a unique vulnerability of neurons to parkin mutations. METHODS CRISPR/Cas9 technology was used to target random mutations into exon3 of PRKN in human fibroblasts cell line MRC-5. The induced DA neurons were achieved from direct conversion of fibroblasts (with or without PRKN mutations) via a cocktail of transcriptional factors (Ascl1, Nurr1, Lmx1a, miRNA124, p53 shRNA) and chemicals (CHIR99021, Purmorphamine, TGFβ3, BDNF, GDNF, NGF and Y27632). RESULTS Herein, we successfully established human neuronal cell models with parkin mutations from fibroblast-reprogrammed neurons. In these neurons, not only were the induced ratio and number of mature neurons markedly decreased, but also the complexity of the neuronal processes, measured by total neurite length and number of terminals, was greatly reduced, in TH+ and TH-neurons with PRKN mutations. CONCLUSIONS The results suggest that parkin not only maintains the morphological complexity of human neurons, but also influences maturation and differentiation in the fibroblast reprogramming process.
Collapse
Affiliation(s)
- Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yang Ruan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chongyao Jin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ting Shen
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
14
|
Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution using organoid models. Brain Res 2020; 1729:146582. [PMID: 31809699 PMCID: PMC7058376 DOI: 10.1016/j.brainres.2019.146582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Primate brains vary dramatically in size and organization, but the genetic and developmental basis for these differences has been difficult to study due to lack of experimental models. Pluripotent stem cells and brain organoids provide a potential opportunity for comparative and functional studies of evolutionary differences, particularly during the early stages of neurogenesis. However, many challenges remain, including isolating stem cell lines from additional great ape individuals and species to capture the breadth of ape genetic diversity, improving the reproducibility of organoid models to study evolved differences in cell composition and combining multiple brain regions to capture connectivity relationships. Here, we describe strategies for identifying evolved developmental differences between humans and non-human primates and for isolating the underlying cellular and genetic mechanisms using comparative analyses, chimeric organoid culture, and genome engineering. In particular, we focus on how organoid models could ultimately be applied beyond studies of progenitor cell evolution to decode the origin of recent changes in cellular organization, connectivity patterns, myelination, synaptic development, and physiology that have been implicated in human cognition.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew T Schmitz
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sebastian Torres Montoya
- Health Co-creation Laboratory, Medellin General Hospital, Medellin, Antioquia, Colombia; Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex A Pollen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Rodrigues MA, Sanford SR, Rogers MP, Lee KMN, Wilson MA, Amos J, Hunter CD, Clancy KBH. From maternal tending to adolescent befriending: The adolescent transition of social support. Am J Primatol 2019; 82:e23050. [PMID: 31531899 DOI: 10.1002/ajp.23050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
Attachment theory holds that parental relationships have lifelong effects on offspring social lives. The tend-and-befriend hypothesis posits that female friendships among humans evolved as part of a primate-wide coping mechanism to mediate stress by relying on social support. Here we bridge developmental and evolutionary frameworks to examine adolescent girls' perception of their reliance on female friendship for social support, how perceptions of parental relationships affect peer relationships, and the extent to which parent and peer relationships buffer depressive symptoms. We predict perceived maternal relationship quality will be positively associated with close female friendships, and maternal relationships, paternal relationships, and female friendship will buffer depressive symptoms. Participants were adolescent girls from a summer science camp (N = 95). Participants filled out demographic information, social network surveys, the Parent-Adolescent Communication Scale, and the Center for Epidemiology Depression Scale. Data was analyzed with Pearson's correlations, t tests, and path analysis. Adolescent girls with few female friends, compared with girls who had more than two very close female friends, experienced more depressive symptoms (t = 3.382, p = .001, D = 0.784). Adolescent girls with few female friends experienced more depressive symptoms compared to girls with two or more very close female friends (t = 3.382, p = .001, D = 0.784). Stronger maternal and paternal relationships were associated with having more female friends (maternal: t = -3.213, p = .003, D = 0.837; paternal: t = -2.432; p = .017). In the path analysis model, only maternal relationship quality significantly predicted female friendship category (β = .33, CR = 2.770, p < .006). Furthermore, participants with two or more very close female friends and higher paternal relationship quality had significantly fewer depressive symptoms (friends; β = -.19, CR = -2.112, p = .035; paternal: β = -.33, CR = -3.220, p < .001), and older participants had more depressive symptoms (β = .17, CR = -1.931, p = .036). These results provide additional support for the tend-and-befriend hypothesis, suggesting that maternal tending sets the stage for close female friendships.
Collapse
Affiliation(s)
- Michelle A Rodrigues
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois
| | - Summer R Sanford
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois.,Animas High School, Durango, Colorado
| | - Mary P Rogers
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | - Katharine M N Lee
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois
| | - Meredith A Wilson
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois
| | - Jennifer Amos
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Illinois
| | - Carla D Hunter
- Department of Psychology, University of Illinois, Urbana-Champaign, Illinois
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois
| |
Collapse
|
16
|
Bryant KL, Glasser MF, Li L, Jae-Cheol Bae J, Jacquez NJ, Alarcón L, Fields A, Preuss TM. Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex 2019; 118:223-243. [PMID: 30910223 PMCID: PMC6697630 DOI: 10.1016/j.cortex.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
Abstract
There is evidence for enlargement of association cortex in humans compared to other primate species. Expansion of temporal association cortex appears to have displaced extrastriate cortex posteriorly and inferiorly in humans compared to macaques. However, the details of the organization of these recently expanded areas are still being uncovered. Here, we used diffusion tractography to examine the organization of extrastriate and temporal association cortex in chimpanzees, humans, and macaques. Our goal was to characterize the organization of visual and auditory association areas with respect to their corresponding primary areas (primary visual cortex and auditory core) in humans and chimpanzees. We report three results: (1) Humans, chimpanzees, and macaques show expected retinotopic organization of primary visual cortex (V1) connectivity to V2 and to areas immediately anterior to V2; (2) In contrast to macaques, chimpanzee and human V1 shows apparent connectivity with lateral, inferior, and anterior temporal regions, beyond the retinotopically organized extrastriate areas; (3) Also in contrast to macaques, chimpanzee and human auditory core shows apparent connectivity with temporal association areas, with some important differences between humans and chimpanzees. Diffusion tractography reconstructs diffusion patterns that reflect white matter organization, but does not definitively represent direct anatomical connectivity. Therefore, it is important to recognize that our findings are suggestive of species differences in long-distance white matter organization rather than demonstrations of direct connections. Our data support the conclusion that expansion of temporal association cortex, and the resulting posterior displacement of extrastriate cortex, occurred in the human lineage after its separation from the chimpanzee lineage. It is possible, however, that some expansion of the temporal lobe occurred prior to the separation of humans and chimpanzees, reflected in the reorganization of long white matter tracts in the temporal lobe that connect occipital areas to the fusiform gyrus, middle temporal gyrus, and anterior temporal lobe.
Collapse
Affiliation(s)
- Katherine L Bryant
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, MO, USA
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Jason Jae-Cheol Bae
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; College of Medicine, American University of Antigua, USA
| | - Nadine J Jacquez
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Laura Alarcón
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Archie Fields
- Department of Philosophy, University of Calgary, Calgary, Alberta, Canada
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Abstract
Human brain organoids, generated from pluripotent stem cells, have emerged as a promising technique for modeling early stages of human neurodevelopment in controlled laboratory conditions. Although the applications for disease modeling in a dish have become routine, the use of these brain organoids as evolutionary tools is only now getting momentum. Here, we will review the current state of the art on the use of brain organoids from different species and the molecular and cellular insights generated from these studies. Besides, we will discuss how this model might be beneficial for human health and the limitations and future perspectives of this technology.
Collapse
Affiliation(s)
- Alysson R. Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
- UCSD Stem Cell Programme, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
18
|
Ma C, Bao AM, Yan XX, Swaab DF. Progress in Human Brain Banking in China. Neurosci Bull 2019; 35:179-182. [PMID: 30843142 PMCID: PMC6426891 DOI: 10.1007/s12264-019-00350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chao Ma
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center; Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Ai-Min Bao
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013, China
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Guichard E, Peona V, Malagoli Tagliazucchi G, Abitante L, Jagoda E, Musella M, Ricci M, Rubio-Roldán A, Sarno S, Luiselli D, Pettener D, Taccioli C, Pagani L, Garcia-Perez JL, Boattini A. Impact of non-LTR retrotransposons in the differentiation and evolution of anatomically modern humans. Mob DNA 2018; 9:28. [PMID: 30147753 PMCID: PMC6094920 DOI: 10.1186/s13100-018-0133-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background Transposable elements are biologically important components of eukaryote genomes. In particular, non-LTR retrotransposons (N-LTRrs) played a key role in shaping the human genome throughout evolution. In this study, we compared retrotransposon insertions differentially present in the genomes of Anatomically Modern Humans, Neanderthals, Denisovans and Chimpanzees, in order to assess the possible impact of retrotransposition in the differentiation of the human lineage. Results We first identified species-specific N-LTRrs and established their distribution in present day human populations. These analyses shortlisted a group of N-LTRr insertions that were found exclusively in Anatomically Modern Humans. These insertions are associated with an increase in the number of transcriptional/splicing variants of those genes they inserted in. The analysis of the functionality of genes containing human-specific N-LTRr insertions reflects changes that occurred during human evolution. In particular, the expression of genes containing the most recent N-LTRr insertions is enriched in the brain, especially in undifferentiated neurons, and these genes associate in networks related to neuron maturation and migration. Additionally, we identified candidate N-LTRr insertions that have likely produced new functional variants exclusive to modern humans, whose genomic loci show traces of positive selection. Conclusions Our results strongly suggest that N-LTRr impacted our differentiation as a species, most likely inducing an increase in neural complexity, and have been a constant source of genomic variability all throughout the evolution of the human lineage. Electronic supplementary material The online version of this article (10.1186/s13100-018-0133-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Etienne Guichard
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valentina Peona
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.,2Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Lucia Abitante
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Evelyn Jagoda
- 4Human Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Margherita Musella
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Ricci
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alejandro Rubio-Roldán
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain
| | - Stefania Sarno
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- 6Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Davide Pettener
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cristian Taccioli
- 7Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Pd Italy
| | - Luca Pagani
- 8Department of Biology, University of Padova, 35131 Padova, Italy.,9Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Jose Luis Garcia-Perez
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU UK
| | - Alessio Boattini
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin. Sci Rep 2018; 8:10705. [PMID: 30013126 PMCID: PMC6048020 DOI: 10.1038/s41598-018-29058-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Human KLK8/neuropsin, a kallikrein-related serine peptidase, is mostly expressed in skin and the hippocampus regions of the brain, where it regulates memory formation by synaptic remodeling. Substrate profiles of recombinant KLK8 were analyzed with positional scanning using fluorogenic tetrapeptides and the proteomic PICS approach, which revealed the prime side specificity. Enzyme kinetics with optimized substrates showed stimulation by Ca2+ and inhibition by Zn2+, which are physiological regulators. Crystal structures of KLK8 with a ligand-free active site and with the inhibitor leupeptin explain the subsite specificity and display Ca2+ bound to the 75-loop. The variants D70K and H99A confirmed the antagonistic role of the cation binding sites. Molecular docking and dynamics calculations provided insights in substrate binding and the dual regulation of activity by Ca2+ and Zn2+, which are important in neuron and skin physiology. Both cations participate in the allosteric surface loop network present in related serine proteases. A comparison of the positional scanning data with substrates from brain suggests an adaptive recognition by KLK8, based on the tertiary structures of its targets. These combined findings provide a comprehensive picture of the molecular mechanisms underlying the enzyme activity of KLK8.
Collapse
|
22
|
Münger E, Montiel-Castro AJ, Langhans W, Pacheco-López G. Reciprocal Interactions Between Gut Microbiota and Host Social Behavior. Front Integr Neurosci 2018; 12:21. [PMID: 29946243 PMCID: PMC6006525 DOI: 10.3389/fnint.2018.00021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Animals harbor an extensive, dynamic microbial ecosystem in their gut. Gut microbiota (GM) supposedly modulate various host functions including fecundity, metabolism, immunity, cognition and behavior. Starting by analyzing the concept of the holobiont as a unit of selection, we highlight recent findings suggesting an intimate link between GM and animal social behavior. We consider two reciprocal emerging themes: (i) that GM influence host social behavior; and (ii) that social behavior and social structure shape the composition of the GM across individuals. We propose that, throughout a long history of coevolution, GM may have become involved in the modulation of their host’s sociality to foster their own transmission, while in turn social organization may have fine-tuned the transmission of beneficial endosymbionts and prevented pathogen infection. We suggest that investigating these reciprocal interactions can advance our understanding of sociality, from healthy and impaired social cognition to the evolution of specific social behaviors and societal structure.
Collapse
Affiliation(s)
- Emmanuelle Münger
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | - Wolfgang Langhans
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gustavo Pacheco-López
- Health Sciences Department, Metropolitan Autonomous University (UAM), Lerma, Mexico.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Lee M, Ban JJ, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease. Brain Res 2018; 1691:87-93. [PMID: 29625119 DOI: 10.1016/j.brainres.2018.03.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
Adipose-derived stem cells (ADSC) have a therapeutic potential for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Exosomes are extracellular vesicles secreted from various types of cells, and stem cell-derived exosomes are known to have beneficial effects in many diseases. Many studies have suggested that amyloid beta (Aβ) peptides have a pivotal role in AD progression, by mitochondrial dysfunction of neuronal cells. We examined the therapeutic potential of exosomes derived from ADSCs (ADSC-Exo) in preventing the disease phenotypes induced by the Aβ cascade in an AD in vitro model. Neuronal stem cells (NSCs) from the brains of TG2576 AD mice were used to examine the effects of ADSC-Exo on AD phenotypes. NSCs from AD mice can be grown as a neurosphere and differentiated. Differentiated NSCs of TG2576 mice showed increase of Aβ42 and Aβ40 levels, and Aβ42/40 ratio. Apoptotic molecules such as p53, Bax and caspase-3 were increased and Bcl2, an anti-apoptotic molecule, was decreased in AD cells compared with wild-type littermate cells. Lower viable cell population and higher necrotic cells were examined in AD neuronal cells. ELISA result showed that ADSC-Exo treatment resulted in reduced Aβ42 levels, Aβ40 levels, and the Aβ42/40 ratio of AD cells. Increased apoptotic molecules, p53, Bax, pro-caspase-3 and cleaved-caspase-3, and decreased Bcl-2 protein level were normalized by ADSC-Exo treatment. Flow cytometry analysis revealed that increased cell apoptosis of AD neuronal cells was reduced by ADSC-Exo. In addition, neurite growth, which is impaired by Aβ in the brains of patients with AD, was augmented by ADSC-Exo treatment. Taken together, these findings implicate the disease-modulating effects of ADSC-Exo in the transgenic mice-derived AD in vitro model, and ADSC-Exo can be a therapeutic source to ameliorate the progression of Aβ-induced neuronal death and AD.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience and Protein Metabolism Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
25
|
Affiliation(s)
- Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the Human Nervous System Function, Structure, and Development. Cell 2017; 170:226-247. [PMID: 28708995 DOI: 10.1016/j.cell.2017.06.036] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations.
Collapse
Affiliation(s)
- André M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kyle A Meyer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Yu HP, Zhang N, Zhang T, Wang ZL, Li N, Tang HH, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. Activation of NPFF 2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of ERK signaling pathway. Peptides 2016; 86:24-32. [PMID: 27669639 DOI: 10.1016/j.peptides.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
Neurite outgrowth is an important process in neural regeneration and plasticity, especially after neural injury, and recent evidence indicates that several Gαi/o protein-coupled receptors play an important role in neurite outgrowth. The neuropeptide (NP)FF system contains two Gαi/o protein-coupled receptors, NPFF1 and NPFF2 receptors, which are mainly distributed in the central nervous system. The aim of the present study was to determine whether the NPFF system is involved in neurite outgrowth in Neuro 2A cells. We showed that Neuro 2A cells endogenously expressed NPFF2 receptor, and the NPFF2 receptor agonist dNPA inhibited cyclic adenosine monophosphate (cAMP) production stimulated by forskolin in Neuro 2A cells. We also demonstrated that NPFF and dNPA dose-dependently induced neurite outgrowth in Neuro 2A cells, which was completely abolished by the NPFF receptor antagonist RF9. Pretreatment with mitogen-activated protein kinase inhibitors PD98059 and U0126 decreased dNPA-induced neurite outgrowth. In addition, dNPA increased phosphorylation of extracellular signal-regulated kinase (ERK) in Neuro 2A cells, which was completely antagonized by pretreatment with U0126. Our results suggest that activation of NPFF2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of the ERK signaling pathway. Moreover, NPFF2 receptor may be a potential therapeutic target for neural injury and degeneration in the future.
Collapse
Affiliation(s)
- Hong-Ping Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
28
|
Lew CH, Brown C, Bellugi U, Semendeferi K. Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Res 2016; 10:99-112. [PMID: 27520580 DOI: 10.1002/aur.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022]
Abstract
Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline Horton Lew
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| | - Chelsea Brown
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093.,Graduate Program in Neuroscience and Behavior, Building 251, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute for Biological Studies, 10010 N, Torrey Pines Rd, La Jolla, CA, 92037
| | - Katerina Semendeferi
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| |
Collapse
|
29
|
Dale R, Kello CT, Schoenemann PT. Seeking Synthesis: The Integrative Problem in Understanding Language and Its Evolution. Top Cogn Sci 2016; 8:371-81. [PMID: 26988387 DOI: 10.1111/tops.12199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/01/2015] [Accepted: 06/02/2015] [Indexed: 11/28/2022]
Abstract
We discuss two problems for a general scientific understanding of language, sequences and synergies: how language is an intricately sequenced behavior and how language is manifested as a multidimensionally structured behavior. Though both are central in our understanding, we observe that the former tends to be studied more than the latter. We consider very general conditions that hold in human brain evolution and its computational implications, and identify multimodal and multiscale organization as two key characteristics of emerging cognitive function in our species. This suggests that human brains, and cognitive function specifically, became more adept at integrating diverse information sources and operating at multiple levels for linguistic performance. We argue that framing language evolution, learning, and use in terms of synergies suggests new research questions, and it may be a fruitful direction for new developments in theory and modeling of language as an integrated system.
Collapse
Affiliation(s)
- Rick Dale
- Cognitive & Information Sciences, University of California, Merced
| | | | | |
Collapse
|
30
|
Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells. PLoS One 2016; 11:e0148691. [PMID: 26859291 PMCID: PMC4747593 DOI: 10.1371/journal.pone.0148691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Stem-cell-based therapies are regarded as promising treatments for neurological disorders, and adipose-derived stem cells (ASCs) are a feasible source of clinical application of stem cell. Recent studies have shown that stem cells have a therapeutic potential for use in the treatment of various illnesses through paracrine action. To examine the effects of cell components of ASCs on neural stem cells (NSCs), we treated cell-free extracts of ASCs (CFE-ASCs) containing various components with brain-derived NSCs. To elucidate the effects of CFE-ASCs in NSC proliferation, we treated mouse subventricular zone-derived cultured NSCs with various doses of CFE-ASCs. As a result, CFE-ASCs were found to induce the proliferation of NSCs under conditions of growth factor deprivation in a dose-dependent manner (p<0.01). CFE-ASCs increase the expression of neuron and astrocyte differentiation markers including Tuj-1 (p<0.05) and glial fibrillary acidic protein (p<0.01) without altering the cell’s fate in differentiating NSCs. In addition, treatment with CFE-ASCs induces an increase in neurite numbers (p<0.01) and lengths of NSCs (p<0.05). Furthermore, CFE-ASCs rescue the hydrogen peroxide-induced reduction of NSCs’ viability (p<0.05) and neurite branching (p<0.01). Findings from our study indicate that CFE-ASCs support the survival, proliferation and differentiation of NSCs accompanied with neurite outgrowth, suggesting that CFE-ASCs can modulate neurogenesis in the central nervous system.
Collapse
|
31
|
Salto R, Vílchez JD, Girón MD, Cabrera E, Campos N, Manzano M, Rueda R, López-Pedrosa JM. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells. PLoS One 2015; 10:e0135614. [PMID: 26267903 PMCID: PMC4534402 DOI: 10.1371/journal.pone.0135614] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.
Collapse
Affiliation(s)
- Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- * E-mail:
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Elena Cabrera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
32
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
33
|
Telias M, Ben-Yosef D. Modeling neurodevelopmental disorders using human pluripotent stem cells. Stem Cell Rev Rep 2015; 10:494-511. [PMID: 24728983 DOI: 10.1007/s12015-014-9507-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDs) are impairments that affect the development and growth of the brain and the central nervous system during embryonic and early postnatal life. Genetically manipulated animals have contributed greatly to the advancement of ND research, but many of them differ considerably from the human phenotype. Cellular in vitro models are also valuable, but the availability of human neuronal cells is limited and their lifespan in culture is short. Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, comprise a powerful tool for studying developmentally regulated diseases, including NDs. We reviewed all recent studies in which hPSCs were used as in vitro models for diseases and syndromes characterized by impairment of neurogenesis or synaptogenesis leading to intellectual disability and delayed neurodevelopment. We analyzed their methodology and results, focusing on the data obtained following in vitro neural differentiation and gene expression and profiling of the derived neurons. Electrophysiological recording of action potentials, synaptic currents and response to neurotransmitters is pivotal for validation of the neuronal fate as well as for assessing phenotypic dysfunctions linked to the disease in question. We therefore focused on the studies which included electrophysiological recordings on the in vitro-derived neurons. Finally, we addressed specific issues that are critical for the advancement of this area of research, specifically in providing a reliable human pre-clinical research model and drug screening platform.
Collapse
Affiliation(s)
- Michael Telias
- The Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
34
|
Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 2014; 4:147. [PMID: 25401092 PMCID: PMC4212686 DOI: 10.3389/fcimb.2014.00147] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.
Collapse
Affiliation(s)
- Roman M Stilling
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt University Nashville, TN, USA
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department of Psychiatry, University College Cork Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| |
Collapse
|
35
|
Telias M, Segal M, Ben-Yosef D. Electrical maturation of neurons derived from human embryonic stem cells. F1000Res 2014; 3:196. [PMID: 25309736 PMCID: PMC4184377 DOI: 10.12688/f1000research.4943.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/20/2022] Open
Abstract
In-vitro neuronal differentiation of human pluripotent stem cells has become a widely used tool in disease modeling and prospective regenerative medicine. Most studies evaluate neurons molecularly and only a handful of them use electrophysiological tools to directly indicate that these are genuine neurons. Therefore, the specific timing of development of intrinsic electrophysiological properties and synaptic capabilities remains poorly understood. Here we describe a systematic analysis of developing neurons derived in-vitro from human embryonic stem cells (hESCs). We show that hESCs differentiated in-vitro into early embryonic neurons, displaying basically mature morphological and electrical features as early as day 37. This early onset of action potential discharges suggests that first stages of neurogenesis in humans are already associated with electrical maturation. Spike frequency, amplitude, duration, threshold and after hyperpolarization were found to be the most predictive parameters for electrical maturity. Furthermore, we were able to detect spontaneous synaptic activity already at these early time-points, demonstrating that neuronal connectivity can develop concomitantly with the gradual process of electrical maturation. These results highlight the functional properties of hESCs in the process of their development into neurons. Moreover, our results provide practical tools for the direct measurement of functional maturity, which can be reproduced and implemented for stem cell research of neurogenesis in general, and neurodevelopmental disorders in particular.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, 64239, Israel ; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 64239, Israel
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel-Aviv, 64239, Israel ; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 64239, Israel
| |
Collapse
|
36
|
Ao X, Liu Y, Qin M, Li C, Chen X, Xiao L, Liu J. Expression of Dbn1 during mouse brain development and neural stem cell differentiation. Biochem Biophys Res Commun 2014; 449:81-7. [PMID: 24814707 DOI: 10.1016/j.bbrc.2014.04.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 11/25/2022]
Abstract
Dbn1 is a newly discovered gene in the drebrin gene family of mice. Previous studies have reported that Dbn1 is specifically expressed in the mouse brain suggesting its potential role in brain development. However, a detailed analysis of Dbn1 expression during mouse brain development has not been demonstrated. Here, we describe the expression pattern of Dbn1 and the coexpression of Dbn1 and actin during the development of the mouse brain from embryonic day 14 (E14) to adulthood and during the differentiation of neural stem cells (NSCs), as determined using immunohistochemistry, double-labeling immunofluorescence, and quantitative real-time polymerase chain reaction. During mouse brain development, Dbn1 expression level was high at E14, attenuated postnatally, reached its highest point at postnatal day 7 (P7), and showed a very low level at adulthood. Imaging data showed that Dbn1 was mainly expressed in the hippocampus, ventricular zone, and cortex, where NSCs are densely distributed, and that the intracellular distribution of Dbn1 was predominantly located in the cytoplasm edges and neurites. Moreover, the signal for colocalization of Dbn1 with actin was intense at E14, P0, and P7, but it was weak at adulthood. During NSC differentiation, Dbn1 mRNA expression increased after the onset of differentiation and reached its highest point at 3days, followed by a decrease in expression. The imaging data showed that Dbn1 was increasingly expressed in the extending neurites in accordance with the cell morphological changes that occur during differentiation. Furthermore, obvious colocalization signals of Dbn1 with actin were found in the neurites and dendritic spines. Collectively, these results suggest that Dbn1 may play a key role in mouse brain development and may regulate NSC differentiation by filamentous actin.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China; The Battalion 5 of Cadet Brigade, PLA, Third Military Medical University, Chongqing 400038, China
| | - Yunlai Liu
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Maolin Qin
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Chengren Li
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Xingshu Chen
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Liu
- Department of Histology and Embryology, PLA, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
37
|
Barger N, Hanson KL, Teffer K, Schenker-Ahmed NM, Semendeferi K. Evidence for evolutionary specialization in human limbic structures. Front Hum Neurosci 2014; 8:277. [PMID: 24904348 PMCID: PMC4033018 DOI: 10.3389/fnhum.2014.00277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
Increasingly, functional and evolutionary research has highlighted the important contribution emotion processing makes to complex human social cognition. As such, it may be asked whether neural structures involved in emotion processing, commonly referred to as limbic structures, have been impacted in human brain evolution. To address this question, we performed an extensive evolutionary analysis of multiple limbic structures using modern phylogenetic tools. For this analysis, we combined new volumetric data for the hominoid (human and ape) amygdala and 4 amygdaloid nuclei, hippocampus, and striatum, collected using stereological methods in complete histological series, with previously published datasets on the amygdala, orbital and medial frontal cortex, and insula, as well as a non-limbic structure, the dorsal frontal cortex, for contrast. We performed a parallel analysis using large published datasets including many anthropoid species (human, ape, and monkey), but fewer hominoids, for the amygdala and 2 amygdaloid subdivisions, hippocampus, schizocortex, striatum, and septal nuclei. To address evolutionary change, we compared observed human values to values predicted from regressions run through (a) non-human hominoids and (b) non-human anthropoids, assessing phylogenetic influence using phylogenetic generalized least squares regression. Compared with other hominoids, the volumes of the hippocampus, the lateral nucleus of the amygdala, and the orbital frontal cortex were, respectively, 50, 37, and 11% greater in humans than predicted for an ape of human hemisphere volume, while the medial and dorsal frontal cortex were, respectively, 26 and 29% significantly smaller. Compared with other anthropoids, only human values for the striatum fell significantly below predicted values. Overall, the data present support for the idea that regions involved in emotion processing are not necessarily conserved or regressive, but may even be enhanced in recent human evolution.
Collapse
Affiliation(s)
- Nicole Barger
- Department of Anthropology, University of California San Diego La Jolla, CA, USA ; Psychiatry and Behavioral Sciences, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis Sacramento, CA, USA
| | - Kari L Hanson
- Department of Anthropology, University of California San Diego La Jolla, CA, USA
| | - Kate Teffer
- Department of Anthropology, University of California San Diego La Jolla, CA, USA
| | | | - Katerina Semendeferi
- Department of Anthropology, University of California San Diego La Jolla, CA, USA ; Neuroscience Graduate Program, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
38
|
Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA, Kelso J, Pääbo S, Meshorer E, Carmel L. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 2014; 344:523-7. [PMID: 24786081 DOI: 10.1126/science.1250368] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ancient DNA sequencing has recently provided high-coverage archaic human genomes. However, the evolution of epigenetic regulation along the human lineage remains largely unexplored. We reconstructed the full DNA methylation maps of the Neandertal and the Denisovan by harnessing the natural degradation processes of methylated and unmethylated cytosines. Comparing these ancient methylation maps to those of present-day humans, we identified ~2000 differentially methylated regions (DMRs). Particularly, we found substantial methylation changes in the HOXD cluster that may explain anatomical differences between archaic and present-day humans. Additionally, we found that DMRs are significantly more likely to be associated with diseases. This study provides insight into the epigenetic landscape of our closest evolutionary relatives and opens a window to explore the epigenomes of extinct species.
Collapse
Affiliation(s)
- David Gokhman
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Hagler DJ, Fischl B, Franz CE, Jak A, Lyons MJ, Neale MC, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS. The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness. Cereb Cortex 2014; 25:2127-37. [PMID: 24554725 DOI: 10.1093/cercor/bhu018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations.
Collapse
Affiliation(s)
- Eero Vuoksimaa
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Matthew S Panizzon
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Chi-Hua Chen
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Mark Fiecas
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Lisa T Eyler
- Department of Psychiatry Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Bruce Fischl
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carol E Franz
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Amy Jak
- Department of Psychiatry Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, MA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | - Ming T Tsuang
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory
| | - Anders M Dale
- Department of Radiology and Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - William S Kremen
- Department of Psychiatry Center for Behavioral Genomics Twin Research Laboratory Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|