1
|
Seblani M, Brezun JM, Féron F, Hoquet T. Rethinking plasticity: Analysing the concept of "destructive plasticity" in the light of neuroscience definitions. Eur J Neurosci 2024; 60:4798-4812. [PMID: 39092545 DOI: 10.1111/ejn.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
As a multilevel and multidisciplinary field, neuroscience is designed to interact with various branches of natural and applied sciences as well as with humanities and philosophy. The continental tradition in philosophy, particularly over the past 20 years, tended to establish strong connections with biology and neuroscience findings. This cross fertilization can however be impeded by conceptual intricacies, such as those surrounding the concept of plasticity. The use of this concept has broadened as scientists applied it to explore an ever-growing range of biological phenomena. Here, we examine the consequences of this ambiguity in an interdisciplinary context through the analysis of the concept of "destructive plasticity" in the philosophical writings of Catherine Malabou. The term "destructive plasticity" was coined by Malabou in 2009 to refer to all processes leading to psycho-cognitive and emotional alterations following traumatic or nontraumatic brain injuries or resulting from neurodevelopmental disorders. By comparing it with the neuroscientific definitions of plasticity, we discuss the epistemological obstacles and possibilities related to the integration of this concept into neuroscience. Improving interdisciplinary exchanges requires an advanced and sophisticated manipulation of neurobiological concepts. These concepts are not only intended to guide research programmes within neuroscience but also to organize and frame the dialogue between different theoretical backgrounds.
Collapse
Affiliation(s)
- Mostafa Seblani
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| | - Jean-Michel Brezun
- Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM), CNRS, Aix Marseille Univ, UMR 7287, Campus Scientifique de Luminy, Marseille Cedex 09, France
| | - François Féron
- Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille University, UMR 7051, Marseille Cedex 5, France
| | - Thierry Hoquet
- Department of Philosophy, University Paris Nanterre, Nanterre Cedex, France
| |
Collapse
|
2
|
Zaretskaya N, Fink E, Arsenovic A, Ischebeck A. Fast and functionally specific cortical thickness changes induced by visual stimulation. Cereb Cortex 2023; 33:2823-2837. [PMID: 35780393 DOI: 10.1093/cercor/bhac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Structural characteristics of the human brain serve as important markers of brain development, aging, disease progression, and neural plasticity. They are considered stable properties, changing slowly over time. Multiple recent studies reported that structural brain changes measured with magnetic resonance imaging (MRI) may occur much faster than previously thought, within hours or even minutes. The mechanisms behind such fast changes remain unclear, with hemodynamics as one possible explanation. Here we investigated the functional specificity of cortical thickness changes induced by a flickering checkerboard and compared them to blood oxygenation level-dependent (BOLD) functional MRI activity. We found that checkerboard stimulation led to a significant thickness increase, which was driven by an expansion at the gray-white matter boundary, functionally specific to V1, confined to the retinotopic representation of the checkerboard stimulus, and amounted to 1.3% or 0.022 mm. Although functional specificity and the effect size of these changes were comparable to those of the BOLD signal in V1, thickness effects were substantially weaker in V3. Furthermore, a comparison of predicted and measured thickness changes for different stimulus timings suggested a slow increase of thickness over time, speaking against a hemodynamic explanation. Altogether, our findings suggest that visual stimulation can induce structural gray matter enlargement measurable with MRI.
Collapse
Affiliation(s)
- Natalia Zaretskaya
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Erik Fink
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
| | - Ana Arsenovic
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| |
Collapse
|
3
|
Bogado Lopes J, Senko AN, Bahnsen K, Geisler D, Kim E, Bernanos M, Cash D, Ehrlich S, Vernon AC, Kempermann G. Individual behavioral trajectories shape whole-brain connectivity in mice. eLife 2023; 12:e80379. [PMID: 36645260 PMCID: PMC9977274 DOI: 10.7554/elife.80379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
It is widely assumed that our actions shape our brains and that the resulting connections determine who we are. To test this idea in a reductionist setting, in which genes and environment are controlled, we investigated differences in neuroanatomy and structural covariance by ex vivo structural magnetic resonance imaging in mice whose behavioral activity was continuously tracked for 3 months in a large, enriched environment. We confirmed that environmental enrichment increases mouse hippocampal volumes. Stratifying the enriched group according to individual longitudinal behavioral trajectories, however, revealed striking differences in mouse brain structural covariance in continuously highly active mice compared to those whose trajectories showed signs of habituating activity. Network-based statistics identified distinct subnetworks of murine structural covariance underlying these differences in behavioral activity. Together, these results reveal that differentiated behavioral trajectories of mice in an enriched environment are associated with differences in brain connectivity.
Collapse
Affiliation(s)
- Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Michel Bernanos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Eating Disorder Treatment and Research CenterDresdenGermany
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's CollegeLondonUnited Kingdom
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| |
Collapse
|
4
|
Czyż SH, Marusiak J, Klobušiaková P, Sajdlová Z, Rektorová I. Neuroplasticity in Motor Learning Under Variable and Constant Practice Conditions-Protocol of Randomized Controlled Trial. Front Hum Neurosci 2022; 16:773730. [PMID: 35370573 PMCID: PMC8967977 DOI: 10.3389/fnhum.2022.773730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background There is numerous literature on mechanisms underlying variability of practice advantages. Literature includes both behavioral and neuroimaging studies. Unfortunately, no studies are focusing on practice in constant conditions to the best of our knowledge. Hence it is essential to assess possible differences in mechanisms of neuroplasticity between constant vs. variable practice conditions. The primary objectives of the study described in this protocol will be: (1) to determine the brain's structural and functional changes following constant and variable practice conditions in motor learning (structural and functional magnetic resonance imaging, MRI); (2) to determine the EEG activation and connectivity between cognitive, sensory, and motor cerebral cortex areas (central, temporal, parietal, occipital) in constant and variable practice conditions and as a function of practice time. Methods The study will follow the interventional (experimental) design with two arms (parallel groups). Fifty participants will be randomly assigned to two groups practicing in constant (CG) and variable conditions (VG). CG will be practicing only one pattern of step isometric contractions during unimanual index finger abduction, i.e., 90 trials in all training sessions, whereas VG will practice three different patterns. Each will be practiced 30 times per session in variable conditions. Resting-state fMRI, EEG (cortical networking), and motor task proficiency will be examined before (pre-) and after practice (post- and retentions tests). Discussion Findings will enhance our understanding of structural and functional neural changes following practice in constant and variable conditions. Therefore, the study can be considered pure (basic) research (clinical research in healthy individuals). Clinical Trial Registration Study registered at clinicaltrials.gov (ID# NCT04921072) on 9 June 2021. Last version update: 21 December 2021.The protocol has been prepared according to the complete SPIRIT checklist (http://www.spirit-statement.org/), although the item order has been modified in order to comply with the manuscript structure.
Collapse
Affiliation(s)
- Stanisław H. Czyż
- Faculty of Physical Education and Sports, Wrocław University of Health and Sport Sciences, Wrocław, Poland
- Faculty of Sport Studies, Masaryk University, Brno, Czechia
- Physical Activity, Sport and Recreation (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jarosław Marusiak
- Department of Kinesiology, Faculty of Physiotherapy, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Patrícia Klobušiaková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Faculty of Medicine, Masaryk University, and St. Anne’s University Hospital, Brno, Czechia
- Surgeon General Office of the Slovak Armed Forces, Ružomberok, Slovakia
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Faculty of Medicine, Masaryk University, and St. Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
5
|
Zufferey V, Gunten AV, Kherif F. Interactions between Personality, Depression, Anxiety and Cognition to Understand Early Stage of Alzheimer's Disease. Curr Top Med Chem 2021; 20:782-791. [PMID: 32066361 DOI: 10.2174/1568026620666200211110545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023]
Abstract
The multifaceted nature of Alzheimer's disease (AD) and Mild cognitive impairment (MCI) can lead to wide inter-individual differences in disease manifestation in terms of brain pathology and cognition. The lack of understanding of phenotypic diversity in AD arises from a difficulty in understanding the integration of different levels of network organization (i.e. genes, neurons, synapses, anatomical regions, functions) and in inclusion of other information such as neuropsychiatric characteristics, personal history, information regarding general health or subjective cognitive complaints in a coherent model. Non-cognitive factors, such as personality traits and behavioral and psychiatric symptoms, can be informative markers of early disease stage. It is known that personality can affect cognition and behavioral symptoms. The aim of the paper is to review the different types of interactions existing between personality, depression/anxiety, and cognition and cognitive disorders at behavioral and brain/genetic levels.
Collapse
Affiliation(s)
- Valérie Zufferey
- Laboratoire de Recherche en Neuroimagerie (LREN), Departement des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Universite de Lausanne, 1011 Lausanne, Switzerland.,Service Universitaire de Psychiatrie de l'Age Avance (SUPAA), Centre Hospitalier Universitaire Vaudois, 1008 Prilly-Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Armin von Gunten
- Service Universitaire de Psychiatrie de l'Age Avance (SUPAA), Centre Hospitalier Universitaire Vaudois, 1008 Prilly-Lausanne, Switzerland
| | - Ferath Kherif
- Laboratoire de Recherche en Neuroimagerie (LREN), Departement des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Universite de Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Matuszewski J, Kossowski B, Bola Ł, Banaszkiewicz A, Paplińska M, Gyger L, Kherif F, Szwed M, Frackowiak RS, Jednoróg K, Draganski B, Marchewka A. Brain plasticity dynamics during tactile Braille learning in sighted subjects: Multi-contrast MRI approach. Neuroimage 2020; 227:117613. [PMID: 33307223 DOI: 10.1016/j.neuroimage.2020.117613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/11/2023] Open
Abstract
A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.
Collapse
Affiliation(s)
- Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Anna Banaszkiewicz
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Lucien Gyger
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | | | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Draganski
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Banaszkiewicz A, Matuszewski J, Bola Ł, Szczepanik M, Kossowski B, Rutkowski P, Szwed M, Emmorey K, Jednoróg K, Marchewka A. Multimodal imaging of brain reorganization in hearing late learners of sign language. Hum Brain Mapp 2020; 42:384-397. [PMID: 33098616 PMCID: PMC7776004 DOI: 10.1002/hbm.25229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/17/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022] Open
Abstract
The neural plasticity underlying language learning is a process rather than a single event. However, the dynamics of training-induced brain reorganization have rarely been examined, especially using a multimodal magnetic resonance imaging approach, which allows us to study the relationship between functional and structural changes. We focus on sign language acquisition in hearing adults who underwent an 8-month long course and five neuroimaging sessions. We assessed what neural changes occurred as participants learned a new language in a different modality-as reflected by task-based activity, connectivity changes, and co-occurring structural alterations. Major changes in the activity pattern appeared after just 3 months of learning, as indicated by increases in activation within the modality-independent perisylvian language network, together with increased activation in modality-dependent parieto-occipital, visuospatial and motion-sensitive regions. Despite further learning, no alterations in activation were detected during the following months. However, enhanced coupling between left-lateralized occipital and inferior frontal regions was observed as the proficiency increased. Furthermore, an increase in gray matter volume was detected in the left inferior frontal gyrus which peaked at the end of learning. Overall, these results showed complexity and temporal distinctiveness of various aspects of brain reorganization associated with learning of new language in different sensory modality.
Collapse
Affiliation(s)
- Anna Banaszkiewicz
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Institute of Psychology, Jagiellonian University, Kraków, Poland.,Department of Psychology, Harvard University, Boston, Massachusetts, USA
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Rutkowski
- Section for Sign Linguistics, Faculty of Polish Studies, University of Warsaw, Warsaw, Poland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Karen Emmorey
- Laboratory for Language and Cognitive Neuroscience, San Diego State University, San Diego, California, USA
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Kandilarova S, Stoyanov D, Stoeva M, Latypova A, Kherif F. Functional MRI in Depression—Multivariate Analysis of Emotional Task. J Med Biol Eng 2020; 40:535-544. [DOI: 10.1007/s40846-020-00547-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
|
9
|
Selective recruitment of cortical neurons by electrical stimulation. PLoS Comput Biol 2019; 15:e1007277. [PMID: 31449517 PMCID: PMC6742409 DOI: 10.1371/journal.pcbi.1007277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/12/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Despite its critical importance in experimental and clinical neuroscience, at present there is no systematic method to predict which neural elements will be activated by a given stimulation regime. Here we develop a novel approach to model the effect of cortical stimulation on spiking probability of neurons in a volume of tissue, by applying an analytical estimate of stimulation-induced activation of different cell types across cortical layers. We utilize the morphology and properties of axonal arborization profiles obtained from publicly available anatomical reconstructions of the twelve main categories of neocortical neurons to derive the dependence of activation probability on cell type, layer and distance from the source. We then propagate this activity through the local network incorporating connectivity, synaptic and cellular properties. Our work predicts that (a) intracranial cortical stimulation induces selective activation across cell types and layers; (b) superficial anodal stimulation is more effective than cathodal at cell activation; (c) cortical surface stimulation focally activates layer I axons, and (d) there is an optimal stimulation intensity capable of eliciting cell activation lasting beyond the end of stimulation. We conclude that selective effects of cortical electrical stimulation across cell types and cortical layers are largely driven by their different axonal arborization and myelination profiles. Brain stimulation is widely used to probe the neural system to learn about its properties, to normalize dysfunction (e.g., deep brain stimulation for Parkinsonian patients), or to manipulate brain activity, including enhancing memory and learning. Despite its critical importance in experimental and clinical neuroscience, at present there are no systematic methods to predict which neural elements of the brain will be activated by a given stimulation regime. To address this question, we propose a novel theoretical framework that models the effect of cortical stimulation on the spiking probability of a neuron based on its location, type and morphology. Our study predicts that short-lived superficial electrical stimulation has the ability to trigger spiking in layer IV pyramidal cells, and to evoke network activity that could persist for hundreds of milliseconds. It further predicts a much higher spiking response to anodal stimulation compared to cathodal one, as the existence of an optimal stimulation intensity, capable of inducing a maximal response in a population of cortical cells. The results of our study can be directly taken into account in planning future electrical stimulation experiments.
Collapse
|
10
|
Hulbert JC, Anderson MC. What doesn't kill you makes you stronger: Psychological trauma and its relationship to enhanced memory control. J Exp Psychol Gen 2018; 147:1931-1949. [PMID: 30024184 PMCID: PMC6277128 DOI: 10.1037/xge0000461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Control processes engaged in halting the automatic retrieval of unwanted memories have been shown to reduce the later recallability of the targets of suppression. Like other cognitive skills that benefit from practice, we hypothesized that memory control is similarly experience dependent, such that individuals with greater real-life experience at stopping retrieval would exhibit better inhibitory control over unwanted memories. Across two experiments, we found that college students reporting a greater history of trauma exhibited more suppression-induced forgetting of both negative and neutral memories than did those in a matched group who had reported experiencing little to no trauma. The association was especially evident on a test of suppression-induced forgetting involving independent retrieval cues that are designed to better isolate the effects of inhibitory control on memory. Participants reporting more trauma demonstrated greater generalized forgetting of suppressed material. These findings raise the possibility that, given proper training, individuals can learn to better manage intrusive experiences, and are broadly consistent with the view that moderate adversity can foster resilience later in life. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
11
|
|
12
|
Tétreault P, Baliki MN, Baria AT, Bauer WR, Schnitzer TJ, Apkarian AV. Inferring distinct mechanisms in the absence of subjective differences: Placebo and centrally acting analgesic underlie unique brain adaptations. Hum Brain Mapp 2018; 39:2210-2223. [PMID: 29417694 DOI: 10.1002/hbm.23999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
Development and maintenance of chronic pain is associated with structural and functional brain reorganization. However, few studies have explored the impact of drug treatments on such changes. The extent to which long-term analgesia is related to brain adaptations and its effects on the reversibility of brain reorganization remain unclear. In a randomized placebo-controlled clinical trial, we contrasted pain relief (3-month treatment period), and anatomical (gray matter density [GMD], assessed by voxel-based morphometry) and functional connectivity (resting state fMRI nodal degree count [DC]) adaptations, in 39 knee osteoarthritis (OA) patients (22 females), randomized to duloxetine (DLX, 60 mg once daily) or placebo. Pain relief was equivalent between treatment types. However, distinct circuitry (GMD and DC) could explain pain relief in each group: up to 85% of variance for placebo analgesia and 49% of variance for DLX analgesia. No behavioral measures (collected at entry into the study) could independently explain observed analgesia. Identified circuitry were outside of nociceptive circuitry and minimally overlapped with OA-abnormal or placebo response predictive brain regions. Mediation analysis revealed that changes in GMD and DC can influence each other across remote brain regions to explain observed analgesia. Therefore, we can conclude that distinct brain mechanisms underlie DLX and placebo analgesia in OA. The results demonstrate that even in the absence of differences in subjective pain relief, pharmacological treatments can be differentiated from placebo based on objective brain biomarkers. This is a crucial step to untangling mechanisms and advancing personalized therapy approaches for chronic pain.
Collapse
Affiliation(s)
- Pascal Tétreault
- Department of Physiology, Feinberg School of Medicine, Chicago, Illinois, 60611
| | - Marwan N Baliki
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Chicago, Illinois, 60611.,Shirley Ryan AbilityLab, Chicago, Illinois, 60611
| | - Alexis T Baria
- Department of Physiology, Feinberg School of Medicine, Chicago, Illinois, 60611
| | - William R Bauer
- Department of Neuroscience, University of Toledo, Toledo, Ohio, 43614-2598
| | - Thomas J Schnitzer
- Department of Rheumatology, Feinberg School of Medicine, Chicago, Illinois, 60611
| | - A Vania Apkarian
- Department of Physiology, Feinberg School of Medicine, Chicago, Illinois, 60611.,Anesthesiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611
| |
Collapse
|
13
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Cerasa A, Sarica A, Martino I, Fabbricatore C, Tomaiuolo F, Rocca F, Caracciolo M, Quattrone A. Increased cerebellar gray matter volume in head chefs. PLoS One 2017; 12:e0171457. [PMID: 28182712 PMCID: PMC5300254 DOI: 10.1371/journal.pone.0171457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/21/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. METHODS Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. RESULTS Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. CONCLUSIONS We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question.
Collapse
Affiliation(s)
- Antonio Cerasa
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Alessia Sarica
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Iolanda Martino
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Carmelo Fabbricatore
- Istituto Istruzione Superiore “Mancini”, Cosenza, Italy
- Federazione Italiana Cuochi, Rome, Italy
| | - Francesco Tomaiuolo
- Fondazione Volterra Ricerche “Auxilium Vitae”, Volterra, Italy
- Unità Operativa di Psicologia Clinica, Azienda Ospedaliero Universitaria, Pisa, Italy
| | - Federico Rocca
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Manuela Caracciolo
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Aldo Quattrone
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
- Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
15
|
Debowska W, Wolak T, Nowicka A, Kozak A, Szwed M, Kossut M. Functional and Structural Neuroplasticity Induced by Short-Term Tactile Training Based on Braille Reading. Front Neurosci 2016; 10:460. [PMID: 27790087 PMCID: PMC5061995 DOI: 10.3389/fnins.2016.00460] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022] Open
Abstract
Neuroplastic changes induced by sensory learning have been recognized within the cortices of specific modalities as well as within higher ordered multimodal areas. The interplay between these areas is not fully understood, particularly in the case of somatosensory learning. Here we examined functional and structural changes induced by short-term tactile training based of Braille reading, a task that requires both significant tactile expertise and mapping of tactile input onto multimodal representations. Subjects with normal vision were trained for 3 weeks to read Braille exclusively by touch and scanned before and after training, while performing a same-different discrimination task on Braille characters and meaningless characters. Functional and diffusion-weighted magnetic resonance imaging sequences were used to assess resulting changes. The strongest training-induced effect was found in the primary somatosensory cortex (SI), where we observed bilateral augmentation in activity accompanied by an increase in fractional anisotropy (FA) within the contralateral SI. Increases of white matter fractional anisotropy were also observed in the secondary somatosensory area (SII) and the thalamus. Outside of somatosensory system, changes in both structure and function were found in i.e., the fusiform gyrus, the medial frontal gyri and the inferior parietal lobule. Our results provide evidence for functional remodeling of the somatosensory pathway and higher ordered multimodal brain areas occurring as a result of short-lasting tactile learning, and add to them a novel picture of extensive white matter plasticity.
Collapse
Affiliation(s)
- Weronika Debowska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsaw, Poland; CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center, The Institute of Physiology and Pathology of Hearing Warsaw, Poland
| | - Anna Nowicka
- Laboratory of Psychophysiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Anna Kozak
- Department of Psychology, University of Social Sciences and Humanities Warsaw, Poland
| | - Marcin Szwed
- Department of Psychology, Jagiellonian University Cracow, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsaw, Poland; Department of Psychology, University of Social Sciences and HumanitiesWarsaw, Poland
| |
Collapse
|
16
|
Vandermosten M, Price CJ, Golestani N. Plasticity of white matter connectivity in phonetics experts. Brain Struct Funct 2016; 221:3825-33. [PMID: 26386692 PMCID: PMC5009160 DOI: 10.1007/s00429-015-1114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/27/2015] [Indexed: 11/03/2022]
Abstract
Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.
Collapse
Affiliation(s)
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Narly Golestani
- Brain and Language Lab, Department of Clinical Neuroscience, Campus Biotech, University of Geneva, 9 Chemin des Mines, 1202, Geneva, Switzerland.
| |
Collapse
|
17
|
Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. Neuroimage 2016; 131:55-72. [DOI: 10.1016/j.neuroimage.2015.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
|
18
|
Taubert M, Mehnert J, Pleger B, Villringer A. Rapid and specific gray matter changes in M1 induced by balance training. Neuroimage 2016; 133:399-407. [PMID: 26994831 DOI: 10.1016/j.neuroimage.2016.03.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023] Open
Abstract
Training-induced changes in cortical structure can be observed non-invasively with magnetic resonance imaging (MRI). While macroscopic changes were found mainly after weeks to several months of training in humans, imaging of motor cortical networks in animals revealed rapid microstructural alterations after a few hours of training. We used MRI to test the hypothesis of immediate and specific training-induced alterations in motor cortical gray matter in humans. We found localized increases in motor cortical thickness after 1h of practice in a complex balancing task. These changes were specific to motor cortical effector representations primarily responsible for balance control in our task (lower limb and trunk) and these effects could be confirmed in a replication study. Cortical thickness changes (i) linearly increased across the training session, (ii) occurred independent of alterations in resting cerebral blood flow and (iii) were not triggered by repetitive use of the lower limbs. Our findings show that motor learning triggers rapid and specific gray matter changes in M1.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jan Mehnert
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Mind and Brain Institute at Berlin School of Mind and Brain, Charite´ and Humboldt University, Berlin, Germany
| |
Collapse
|
19
|
Lorio S, Kherif F, Ruef A, Melie-Garcia L, Frackowiak R, Ashburner J, Helms G, Lutti A, Draganski B. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. Hum Brain Mapp 2016; 37:1801-15. [PMID: 26876452 PMCID: PMC4855623 DOI: 10.1002/hbm.23137] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
The high gray‐white matter contrast and spatial resolution provided by T1‐weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1‐weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1‐weighted images (R1 (=1/T1), R2*, and PD) in a large cohort of healthy subjects (n = 120, aged 18–87 years). Synthetic T1‐weighted images were calculated from these quantitative maps and used to extract morphometry features—gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue—myelination, iron, and water content—on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801–1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Lorio
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Ferath Kherif
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Anne Ruef
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Lester Melie-Garcia
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Richard Frackowiak
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, UCL, London, United Kingdom
| | - Gunther Helms
- Department of Clinical Sciences, Lund University, Medical Radiation Physics, Lund, Sweden
| | - Antoine Lutti
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Bodgan Draganski
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Miller MI, Trouvé A, Younes L. Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson. Annu Rev Biomed Eng 2015; 17:447-509. [PMID: 26643025 DOI: 10.1146/annurev-bioeng-071114-040601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.
Collapse
Affiliation(s)
- Michael I Miller
- Center of Imaging Science.,Department of Biomedical Engineering.,Kavli Neuroscience Discovery Institute, and
| | - Alain Trouvé
- CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France;
| | - Laurent Younes
- Center of Imaging Science.,Department of Applied Mathematics, The John Hopkins University, Baltimore, Maryland 21218; ,
| |
Collapse
|
21
|
In-vivo brain neuroimaging provides a gateway for integrating biological and clinical biomarkers of Alzheimer's disease. Curr Opin Neurol 2015; 28:351-7. [DOI: 10.1097/wco.0000000000000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Paul Wittgenstein's right arm and his phantom: the saga of a famous concert pianist and his amputation. PROGRESS IN BRAIN RESEARCH 2015. [PMID: 25684295 DOI: 10.1016/bs.pbr.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Reports of postamputation pain and problems linked to phantom limbs have increased in recent years, particularly in relation to war-related amputations. These problems are still poorly understood and are considered rather mysterious, and they are difficult to treat. In addition, they may shed light on brain physiology and neuropsychology. Functional neuroimaging techniques now enable us to better understand their pathophysiology and to consider new rehabilitation techniques. Several artists have suffered from postamputation complications and this has influenced not only their personal life but also their artistic work. Paul Wittgenstein (1887-1961), a pianist whose right arm was amputated during the First World War, became a famous left-handed concert performer. His case provides insight into Post-World War I musical and political history. More specifically, the impact on the artistic life of this pianist illustrates various postamputation complications, such as phantom limb, stump pain, and especially moving phantom. The phantom movements of his right hand helped him develop the dexterity of his left hand. Wittgenstein played piano works that were written especially for him (the most famous being Ravel's Concerto for the Left Hand) and composed some of his own. Additionally, several famous composers had previously written for the left hand.
Collapse
|