1
|
Chen HY, Chen LY, Lou SZ, Lin CL. Changes in postural sway and cortical activities after napping. PLoS One 2025; 20:e0320926. [PMID: 40202976 PMCID: PMC11981209 DOI: 10.1371/journal.pone.0320926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
Lowered arousal state after napping may lead to poorer standing balance and the need to recalibrate the sensory organization system. This study aimed to examine the changes in postural sway and sensory associated cortical activities immediately after waking from a nap. A convenience sample of young adults (7 males and 5 females, 21.0 ± 2.3 yr.) was recruited. Before and after a 50-min lying-down nap, participants were asked to stand quietly with eyes open/closed on a firm/foam surface, and electroencephalography (EEG) in theta, alpha, beta, and gamma bands in sensory association areas was recorded. All participants self-reported that they fell asleep during the 50-min period provisioned for nap (Karolinska Napiness Scale before nap 4.2 ± 1.1, after nap 5.7 ± 0.8). The average time taken to finish data collection after waking the participants was 19.0 ± 4.0 minutes. The results showed less postural sway (t11 = 2.726, p = 0.02) and increased frequency of postural sway (t11 = -3.339, p = 0.007) after nap in the eyes-open firm-surface condition. The EEG results revealed decreased activity in the alpha (F1,9 = 15.540, p = 0.003) and gamma (F1,9 = 6.626, p = 0.030) bands in the right parietal area after nap, and increased beta power in the left occipital area (Z = -2.241, p = 0.025). In conclusion, after waking from a nap, healthy adults show increased changes in direction of postural sway which is effective in decreasing postural sway in eyes-open firm-surface condition. Even in healthy adults without worsen postural performance after nap, the EEG results suggested a decrease of efficacy in dealing with sensory challenges within twenty minutes post napping. This study contributes to the understanding of the mechanisms underlying changes in balance control after napping, which might help fall prevention programs for the elderly.
Collapse
Affiliation(s)
- Hui-Ya Chen
- Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan, Taiwan
| | - Li-Yuan Chen
- Department of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Zon Lou
- Department of Occupational Therapy, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Ling Lin
- Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
2
|
Piskin D, Cobani G, Lehmann T, Büchel D, Baumeister J. Cortical changes associated with an anterior cruciate ligament injury may retrograde skilled kicking in football: preliminary EEG findings. Sci Rep 2025; 15:2208. [PMID: 39820802 PMCID: PMC11739489 DOI: 10.1038/s41598-025-86196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance declines and premature career endings. Emerging evidence suggests that ACLi should be viewed not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The objective of the present study was to compare kicking performance and associated cortical activity between injured and healthy players. Ten reconstructed and 15 healthy players performed a kicking task. Kicking biomechanics were recorded using wearable inertial measurement unit sensors. Cortical activity was captured with a 64-electrode mobile electroencephalography. Multiscale entropy (MSE) analysis of biomechanics revealed increased variability in foot external rotation among injured players. Source-derived event-related spectral perturbations indicated significant differences in posterior alpha and frontal theta oscillations between the two groups. Furthermore, kick-related complexity of these regions as indexed by MSE was reduced in injured players at medium and coarse scales. Our findings suggest sensorimotor changes during kicking in injured players, which may necessitate compensatory strategies involving augmented attention at the cost of processing visuospatial information. This conflict may hinder the integration of task-relevant information across distributed networks. Our study provides preliminary insights into the neurophysiological implications of ACLi within football context and underscores the potential for prospective research.
Collapse
Affiliation(s)
- Daghan Piskin
- Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
| | - Gjergji Cobani
- Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Tim Lehmann
- Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Daniel Büchel
- Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Jochen Baumeister
- Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| |
Collapse
|
3
|
Campbell AJ, Anijärv TE, Pace T, Treacy C, Lagopoulos J, Hermens DF, Levenstein JM, Andrews SC. Resting-state EEG correlates of sustained attention in healthy ageing: Cross-sectional findings from the LEISURE study. Neurobiol Aging 2024; 144:68-77. [PMID: 39288668 DOI: 10.1016/j.neurobiolaging.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
While structural and biochemical brain changes are well-documented in ageing, functional neuronal network differences, as indicated by electrophysiological markers, are less clear. Moreover, age-related changes in sustained attention and their associated electrophysiological correlates are still poorly understood. To address this, we analysed cross-sectional baseline electroencephalography (EEG) and cognitive data from the Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE). Participants were 96 healthy older adults, aged 50-84. We examined resting-state EEG periodic (individual alpha frequency [IAF], aperiodic-adjusted individual alpha power [aIAP]) and aperiodic (exponent and offset) activity, and their associations with age and sustained attention. Results showed associations between older age and slower IAF, but not aIAP or global aperiodic exponent and offset. Additionally, hierarchical linear regression revealed that after controlling for demographic variables, faster IAF was associated with better Sustained Attention to Response Task performance, and mediation analysis confirmed IAF as a mediator between age and sustained attention performance. These findings indicate that IAF may be an important marker of ageing, and a slower IAF may signal diminished cognitive processing capacity for sustained attention in older adults.
Collapse
Affiliation(s)
- Alicia J Campbell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Toomas Erik Anijärv
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Thomas Pace
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ciara Treacy
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare Ltd, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jacob M Levenstein
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Sophie C Andrews
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
4
|
Monteiro PHM, Marcori AJ, da Conceição NR, Monteiro RLM, Coelho DB, Teixeira LA. Cortical activity in body balance tasks as a function of motor and cognitive demands: A systematic review. Eur J Neurosci 2024; 60:6556-6587. [PMID: 39429043 DOI: 10.1111/ejn.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Technological tools, like electroencephalography and functional near-infrared spectroscopy, have deepened our understanding of cortical regions involved in balance control. In this systematic literature review, we aimed to identify the prevalent cortical areas activated during balance tasks with specific motor or cognitive demands. Our search strategy encompassed terms related to balance control and cortical activity, yielding 2250 results across five databases. After screening, 67 relevant articles were included in the review. Results indicated that manipulations of visual and/or somatosensory information led to prevalent activity in the parietal, frontal and temporal regions; manipulations of the support base led to prevalent activity of the parietal and frontal regions; both balance-cognitive dual-tasking and reactive responses to extrinsic perturbations led to prevalent activity in the frontal and central regions. These findings deepen our comprehension of the cortical regions activated to manage the complex demands of maintaining body balance in the performance of tasks posing specific requirements. By understanding these cortical activation patterns, researchers and clinicians can develop targeted interventions for balance-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
5
|
O'Keeffe R, Shirazi SY, Vecchio AD, Ibaaez J, Mrachacz-Kersting N, Bighamian R, Rizzo JR, Farina D, Atashzar SF. Low-Frequency Motor Cortex EEG Predicts Four Rates of Force Development. IEEE TRANSACTIONS ON HAPTICS 2024; 17:900-912. [PMID: 39008387 DOI: 10.1109/toh.2024.3428308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The movement-related cortical potential (MRCP) is a low-frequency component of the electroencephalography (EEG) signal that originates from the motor cortex and surrounding cortical regions. As the MRCP reflects both the intention and execution of motor control, it has the potential to serve as a communication interface between patients and neurorehabilitation robots. In this study, we investigated the EEG signal recorded centered at the Cz electrode with the aim of decoding four rates of force development (RFD) during isometric contractions of the tibialis anterior muscle. The four levels of RFD were defined with respect to the maximum voluntary contraction (MVC) of the muscle as follows: Slow (20% MVC/s), Medium (30% MVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three feature sets were assessed for describing the EEG traces in the classification process. These included: (i) MRCP Morphological Characteristics in the -band, such as timing and amplitude; (ii) MRCP Statistical Characteristics in the -band, such as standard deviation, mean, and kurtosis; and (iii) Wideband Time-frequency Features in the 0.1-90 Hz range. The four levels of RFD were accurately classified using a support vector machine. When utilizing the Wideband Time-frequency Features, the accuracy was 83% 9% (mean SD). Meanwhile, when using the MRCP Statistical Characteristics, the accuracy was 78% 12% (mean SD). The analysis of the MRCP waveform revealed that it contains highly informative data on the planning, execution, completion, and duration of the isometric dorsiflexion task. The temporal analysis emphasized the importance of the -band in translating to motor command, and this has promising implications for the field of neural engineering systems.
Collapse
|
6
|
Ebrahimi N, Kordi Yoosefinejad A, Rojhani-Shirazi Z, Nami M, Kamali AM. Quantitative Electroencephalography and Balance Test Correlations in Patients with Chronic Patellofemoral Pain. J Biomed Phys Eng 2024; 14:389-396. [PMID: 39175554 PMCID: PMC11336049 DOI: 10.31661/jbpe.v0i0.2108-1383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/16/2021] [Indexed: 08/24/2024]
Abstract
Background Quantitative Electroencephalography (QEEG) is a tool helping better understand the electrical activity of the brain and a non-invasive method to assess cortical activity. To date, the brain activity of patients with chronic patellofemoral pain (PFP) has not been investigated. Objective The current study aimed to investigate the effect of PFP on higher levels of the central nervous system by assessing the correlation between QEEG and modified excursion balance test (mSEBT) in patients with PFP. Material and Methods Twenty-two patients with chronic PFP participated in this observational study. Their cortical electrical activity was recorded in a resting state with their eyes open, via a 32-channel QEEG. C3, C4, and Cz were considered as regions of interest. In addition to QEEG, the balance performance of the participants was evaluated via mSEBT. Results The obtained findings revealed a negative and moderate to high correlation between theta absolute power and posteromedial direction of mSEBT in C4 (P 0.000, r -0.68), Cz (P 0.001, r -0.66), and C3 (P 0.000, r -0.70). Additionally, a significantly close correlation is between alpha absolute power in C3 (P 0.001, r -0.70), C4 (P 0.000, r -0.71), and Cz (P 0.000, r -0.74) and the posteromedial direction of mSEBT. No significant correlations were between the other two directions of mSEBT, alpha, and theta. Conclusion According to our results, balance impairment in patients with chronic PFP correlated with their QEEG neurodynamics. Moreover, our findings demonstrated the efficiency of QEEG as a neuromodulation method for patients with PFP.
Collapse
Affiliation(s)
- Naghmeh Ebrahimi
- Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kordi Yoosefinejad
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rojhani-Shirazi
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Neuroscience Center, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge 084301103, Panama
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
- Academy of Health, Senses Cultural Foundation, Sacramento, CA 66006, USA
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Pardis, Tehran, Iran
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Mohammad Kamali
- Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
| |
Collapse
|
7
|
Sabater-Gárriz Á, Montoya P, Riquelme I. Enhanced EEG power density during painful stretching in individuals with cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 150:104760. [PMID: 38795555 DOI: 10.1016/j.ridd.2024.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Pain perception mechanisms in cerebral palsy remain largely unclear. AIMS This study investigates brain activity in adults with cerebral palsy during painful and non-painful stretching to elucidate their pain processing characteristics. METHODS AND PROCEDURES Twenty adults with cerebral palsy and 20 controls underwent EEG in three conditions: rest, non-painful stretching, and painful stretching. Time-frequency power density of theta, alpha, and beta waves in somatosensory and frontal cortices was analyzed, alongside baseline pressure pain thresholds. OUTCOMES AND RESULTS Cerebral palsy individuals exhibited higher theta, alpha, and beta power density in both cortices during painful stretching compared to rest, and lower during non-painful stretching. Controls showed higher power density during non-painful stretching but lower during painful stretching. Cerebral palsy individuals had higher pain sensitivity, with those more sensitive experiencing greater alpha power density. CONCLUSIONS AND IMPLICATIONS These findings confirm alterations in the cerebral processing of pain in individuals with cerebral palsy. This knowledge could enhance future approaches to the diagnosis and treatment of pain in this vulnerable population.
Collapse
Affiliation(s)
- Álvaro Sabater-Gárriz
- Balearic ASPACE Foundation, Marratxí, Spain; Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Pedro Montoya
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Inmaculada Riquelme
- Health Research Institute of the Balearic Islands (IUNICS-IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain; Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma de Mallorca, Spain.
| |
Collapse
|
8
|
Claußen L, Heidelbach T. Resistance exercising on unstable surface leads to Pupil Dilation. BMC Sports Sci Med Rehabil 2024; 16:62. [PMID: 38439063 PMCID: PMC10913668 DOI: 10.1186/s13102-024-00858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Chronic resistance training and acute resistance exercises improve physical performance and can enhance cognitive performance. However, there is still uncertainty about the mechanism(s) responsible for cognitive improvement following resistance training and exercise. Recent findings suggest that resistance exercise has metabolic as well as cognitive demands, which potentially activate similar neural circuitry associated with higher-order cognitive function tasks. Exercising on unstable devices increases the coordinative and metabolic demands and thus may further increase cognitive activation during resistance exercise. The measurement of pupil diameter could provide indications of cognitive activation and arousal during resistance exercise. Pupil dilation is linked to the activity in multiple neuromodulatory systems (e.g., activation of the locus coeruleus and the release of the neurotransmitter norepinephrine (LC-NE system)), which are involved in supporting processes for executive control. Therefore, the purpose of this study was to compare the cognitive activation measured by pupil diameter during an acute bout of resistance exercise on stable and unstable surfaces. METHODS 18 participants (23.5 ± 1.5 years; 10 females) performed ten kettlebell squats in a preferred repetition velocity in stable and unstable (BOSU® Balance Trainer) ground conditions. Pupil diameter was recorded with eye tracking glasses (SMI ETG) during standing (baseline) and during squatting. Raw pupil data were cleaned of artifacts (missing values were linearly interpolated) and subjected to a subtractive baseline correction. A student t-test was used to compare mean pupil diameter between ground conditions. RESULTS The mean pupil diameter was significantly greater during squats in the unstable condition than in the stable condition, t (17) = -2.63, p =.018, Cohen's dZ = -0.62; stable: 0.49 ± 0.32 mm; unstable: 0.61 ± 0.25 mm). CONCLUSION As indicated by pupil dilation, the use of unstable devices can increase the cognitive activation and effort during acute bouts of resistance exercise. Since pupil dilation is only an indirect method, further investigations are necessary to describe causes and effects of neuromodulatory system activity during resistance exercise. Resistance training with and without surface instability can be recommended to people of all ages as a physically and cognitively challenging training program contributing to the preservation of both physical and cognitive functioning.
Collapse
Affiliation(s)
- Lisa Claußen
- Institute of Sports and Sport Science, University of Kassel, Kassel, Germany.
| | - Tabea Heidelbach
- Institute of Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
9
|
Arnett AB, Guiney H, Bakir-Demir T, Trudgen A, Schierding W, Reid V, O'Sullivan J, Gluckman P, Reese E, Poulton R. Resting EEG correlates of neurodevelopment in a socioeconomically and linguistically diverse sample of toddlers: Wave 1 of the Kia Tīmata Pai best start New Zealand study. Dev Cogn Neurosci 2024; 65:101336. [PMID: 38157733 PMCID: PMC10790011 DOI: 10.1016/j.dcn.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Development of communication and self-regulation skills is fundamental to psychosocial maturation in childhood. The Kia Tīmata Pai Best Start (KTP) longitudinal study aims to promote these skills through interventions delivered at early childcare centers across New Zealand. In addition to evaluating effects of the interventions on behavioral and cognitive outcomes, the study utilizes electroencephalography (EEG) to characterize cortical development in a subsample of participating children. Here, we present results of the baseline resting EEG assessment with 193 children aged 15 to 33 months. We identified EEG correlates of individual differences in demographics, communication abilities, and temperament. We obtained communication and behavior ratings from multiple informants, and we applied contemporary analytic methods to the EEG data. Periodic spectral power adjusted for aperiodic activity was most closely associated with demographic, language, and behavioral measures. As in previous studies, gamma power was positively associated with verbal language. Alpha power was positively associated with effortful control. Nonverbal and verbal language measures showed distinct associations with EEG indices, as did the three temperament domains. Our results identified a number of candidate EEG measurements for use as longitudinal markers of optimal cortical development and response to interventions in the KTP cohort.
Collapse
Affiliation(s)
- Anne B Arnett
- Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Pediatrics, Harvard Medical School, Cambridge, MA, USA.
| | - Hayley Guiney
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | - Anita Trudgen
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Vincent Reid
- School of Psychology, University of Waikato, Hamilton, New Zealand
| | | | - Peter Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Elaine Reese
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Mackenzie AK, Baker J, Daly RC, Howard CJ. Peak occipital alpha frequency mediates the relationship between sporting expertise and multiple object tracking performance. Brain Behav 2024; 14:e3434. [PMID: 38383037 PMCID: PMC10881284 DOI: 10.1002/brb3.3434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Multiple object tracking (MOT) is often used as a lab-based paradigm for investigating goal-driven attention as an indicator for "real-world" attention in tasks such as sport. When exploring MOT performance in the context of sporting expertise, we typically observe that individuals with sporting expertise outperform non-sporting individuals. There are a number of general explanations for performance differences such as cognitive transfer effects; however, the potential neurophysiological mechanisms explaining the relationship between sporting expertise and performance differences in MOT are not clear. Based on the role occipital alpha (posterior oscillations usually around 8-12 Hz) has been shown to have in visuospatial attention, the aim of this study was to examine whether individual differences in occipital peak alpha frequency (PAF) mediate the relationship between sporting expertise and performance in two object tracking tasks: a standard MOT task and a visuomotor-controlled object tracking task (multiple object avoidance [MOA]). METHOD Using electroencephalography (EEG), participants, who either played sport competitively or did not, had their posterior PAF measured at rest (eyes closed) across a 2-min window. They completed the two tasks separately from the resting EEG measures. RESULTS Those who engaged in sport performed better in the MOT and MOA tasks and had higher PAF. Higher PAF predicted superior MOT performance. The mediation analysis revealed that sporting individuals had significantly higher PAF, and this was in turn related to superior MOT performance. CONCLUSIONS It is suggested that PAF is a possible neurophysiological mediating mechanism as to why sporting individuals have superior MOT performance. There was no evidence that PAF mediated the relationship between sporting expertise and visuomotor MOA performance. Explanations and implications are discussed, and unanswered questions are proposed.
Collapse
Affiliation(s)
| | - Joshua Baker
- Department of PsychologyUniversity of EssexColchesterUK
| | - Rosie C. Daly
- NTU PsychologyNottingham Trent UniversityNottinghamUK
| | | |
Collapse
|
11
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Vidaurre C, Gurunandan K, Idaji MJ, Nolte G, Gómez M, Villringer A, Müller KR, Nikulin VV. Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings. Neuroimage 2023; 276:120178. [PMID: 37236554 DOI: 10.1016/j.neuroimage.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.
Collapse
Affiliation(s)
- C Vidaurre
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Tecnalia Research and Innovation, Neuroengineering Group, Health Unit, Donostia, Spain; Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.
| | - K Gurunandan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - M Jamshidi Idaji
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - G Nolte
- Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Gómez
- Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K-R Müller
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
13
|
Jacob D, Guerrini L, Pescaglia F, Pierucci S, Gelormini C, Minutolo V, Fratini A, Di Lorenzo G, Petersen H, Gargiulo P. Adaptation strategies and neurophysiological response in early-stage Parkinson's disease: BioVRSea approach. Front Hum Neurosci 2023; 17:1197142. [PMID: 37529404 PMCID: PMC10389765 DOI: 10.3389/fnhum.2023.1197142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction There is accumulating evidence that many pathological conditions affecting human balance are consequence of postural control (PC) failure or overstimulation such as in motion sickness. Our research shows the potential of using the response to a complex postural control task to assess patients with early-stage Parkinson's Disease (PD). Methods We developed a unique measurement model, where the PC task is triggered by a moving platform in a virtual reality environment while simultaneously recording EEG, EMG and CoP signals. This novel paradigm of assessment is called BioVRSea. We studied the interplay between biosignals and their differences in healthy subjects and with early-stage PD. Results Despite the limited number of subjects (29 healthy and nine PD) the results of our work show significant differences in several biosignals features, demonstrating that the combined output of posturography, muscle activation and cortical response is capable of distinguishing healthy from pathological. Discussion The differences measured following the end of the platform movement are remarkable, as the induced sway is different between the two groups and triggers statistically relevant cortical activities in α and θ bands. This is a first important step to develop a multi-metric signature able to quantify PC and distinguish healthy from pathological response.
Collapse
Affiliation(s)
- Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Lorena Guerrini
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Engineering, University of Campania L. Vanvitelli, Aversa, Italy
| | - Federica Pescaglia
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Simona Pierucci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carmine Gelormini
- Department of Civil Engineering and Computer Science Engineering, Tor Vergata University of Rome, Rome, Italy
| | - Vincenzo Minutolo
- Department of Engineering, University of Campania L. Vanvitelli, Aversa, Italy
| | - Antonio Fratini
- Engineering for Health Research Centre, Aston University, Birmingham, United Kingdom
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Hannes Petersen
- Department of Anatomy, University of Iceland, Reykjavik, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
14
|
Rizzato A, Benazzato M, Cognolato M, Grigoletto D, Paoli A, Marcolin G. Different neuromuscular control mechanisms regulate static and dynamic balance: A center-of-pressure analysis in young adults. Hum Mov Sci 2023; 90:103120. [PMID: 37364344 DOI: 10.1016/j.humov.2023.103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
The analysis of the center of pressure (CoP) trajectory, derived from force platforms, is a widely accepted measure to investigate postural balance control. The CoP trajectory could be analyzed as a physiological time-series through a general stochastic modeling framework (i.e., Stabilogram Diffusion Analysis (SDA)). Critical point divides short-term from long-term regions and diffusion coefficients reflect the level of stochastic activity of the CoP. Sample Entropy (SampEn) allows quantifying the CoP complexity in terms of regularity. Thus, this study aimed to understand whether SDA and SampEn could discriminate the neuromuscular control mechanisms underpinning static and dynamic postural tasks. Static balance control and its relationship with dynamic balance control were investigated through the CoP velocity (Mean Velocity) and the area of the 95th percentile ellipse (Area95). Balance was assessed in 15 subjects (age: 23.13 ± 0.99 years; M = 9) over a force platform under two conditions: static (ST) and dynamic, both in anterior-posterior (DAP) and medio-lateral (DML) directions. During the DAP and DML, subjects stood on an unstable board positioned over a force platform. Short-term SDA diffusion coefficients and critical points were lower in ST than in DAP and DML (p < 0.05). SampEn values resulted greater in ST than in DAP and DML (p < 0.001). As expected, lower values of Area95 (p < 0.001) and Mean Velocity (p < 0.001) were detected in the easiest condition, the ST, compared to DAP and DML. No significant correlations between static and dynamic balance performances were detected. Moreover, differences in the diffusion coefficients were detected comparing DAP and DML (p < 0.05). In the anterior-posterior direction, the critical point occurred at relatively small intervals in DML compared to DAP (p < 0.001) and ST (p < 0.001). In the medio-lateral direction, the critical point differed only between DAP and DML (p < 0.05). Overall, SDA analysis pointed out a less tightly regulated neuromuscular control system in the dynamic tasks, with closed-loop corrective feedback mechanisms called into play at different time intervals in the three conditions. SampEn results reflected more attention and, thus, less automatic control mechanisms in the dynamic conditions, particularly in the medio-lateral task. The different neuromuscular control mechanisms that emerged in the static and dynamic balance tasks encourage using both static and dynamic tests for a more comprehensive balance performance assessment.
Collapse
Affiliation(s)
- Alex Rizzato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Matteo Cognolato
- Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland
| | - Davide Grigoletto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
15
|
Wang D, Zhou J, Huang Y, Yu H. Identifying the changes in the cortical activity of various brain regions for different balance tasks: A review. NeuroRehabilitation 2023:NRE220285. [PMID: 37125575 DOI: 10.3233/nre-220285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Balance support is critical to a person's overall function and health. Previous neuroimaging studies have shown that cortical structures play an essential role in postural control. OBJECTIVE This review aims to identify differences in the pattern of neural activity induced by balance tasks with different balance control requirements. METHODS Seventy-four articles were selected from the field of balance training and were examined based on four brain function detection technologies. RESULTS In general, most studies focused on the activity changes of various cortical areas during training at different difficulty levels, but more and more attention has also begun to focus on the functional changes of other cortical and deep subcortical structures. Our analysis also revealed the neglect of certain task types. CONCLUSION Based on these results, we identify and discuss future research directions that may contribute to a clear understanding of neural functional plasticity under different tasks.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Jiankang Zhou
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| |
Collapse
|
16
|
Stokkermans M, Solis-Escalante T, Cohen MX, Weerdesteyn V. Distinct cortico-muscular coupling between step and stance leg during reactive stepping responses. Front Neurol 2023; 14:1124773. [PMID: 36998772 PMCID: PMC10043329 DOI: 10.3389/fneur.2023.1124773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Balance recovery often relies on successful stepping responses, which presumably require precise and rapid interactions between the cerebral cortex and the leg muscles. Yet, little is known about how cortico-muscular coupling (CMC) supports the execution of reactive stepping. We conducted an exploratory analysis investigating time-dependent CMC with specific leg muscles in a reactive stepping task. We analyzed high density EEG, EMG, and kinematics of 18 healthy young participants while exposing them to balance perturbations at different intensities, in the forward and backward directions. Participants were instructed to maintain their feet in place, unless stepping was unavoidable. Muscle-specific Granger causality analysis was conducted on single step- and stance-leg muscles over 13 EEG electrodes with a midfrontal scalp distribution. Time-frequency Granger causality analysis was used to identify CMC from cortex to muscles around perturbation onset, foot-off and foot strike events. We hypothesized that CMC would increase compared to baseline. In addition, we expected to observe different CMC between step and stance leg because of their functional role during the step response. In particular, we expected that CMC would be most evident for the agonist muscles while stepping, and that CMC would precede upregulation in EMG activity in these muscles. We observed distinct Granger gain dynamics over theta, alpha, beta, and low/high-gamma frequencies during the reactive balance response for all leg muscles in each step direction. Interestingly, between-leg differences in Granger gain were almost exclusively observed following the divergence of EMG activity. Our results demonstrate cortical involvement in the reactive balance response and provide insights into its temporal and spectral characteristics. Overall, our findings suggest that higher levels of CMC do not facilitate leg-specific EMG activity. Our work is relevant for clinical populations with impaired balance control, where CMC analysis may elucidate the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mitchel Stokkermans
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Teodoro Solis-Escalante
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
| | - Michael X. Cohen
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Sint Maartenskliniek Research, Nijmegen, Netherlands
| |
Collapse
|
17
|
Corbin-Berrigan LA, Teel E, Vinet SA, P De Koninck B, Guay S, Beaulieu C, De Beaumont L. The Use of Electroencephalography as an Informative Tool in Assisting Early Clinical Management after Sport-Related Concussion: a Systematic Review. Neuropsychol Rev 2023; 33:144-159. [PMID: 32577950 DOI: 10.1007/s11065-020-09442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/07/2020] [Indexed: 12/21/2022]
Abstract
Sport-related concussion (SRC) is managed primarily through serial clinical evaluations throughout recovery. However, studies suggest that clinical measures may not be suitable to detect subtle alterations in functioning and are limited by numerous internal and external factors. Electroencephalography (EEG) has been used for over eight decades to discern altered function following illnesses and injuries, including traumatic brain injury. This study evaluated the associations between EEG measures and clinical presentation within three-months following SRC. A systematic review of the literature was performed in Medline, Embase, PsycINFO, CINAHL and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines, yielding a total of 13 peer-reviewed articles. Most studies showed low to moderate bias and moderate to high quality. The majority of the existing literature on the impact of concussion within the first 3 months post-injury suggests that individuals with concussion show altered brain function, with EEG abnormalities outlasting clinical dysfunction. Of all EEG biomarkers evaluated, P300 shows the most promise and should be explored further. Despite the relatively high quality of included articles, significant limitations are still present within this body of literature, including potential conflicts of interest and proprietary algorithms, making it difficult to draw strong and meaningful conclusions on the use of EEG in the early stages of SRC. Therefore, further exploration of the relationship between EEG measures and acute clinical presentation is warranted to determine if EEG provides additional benefits over current clinical assessments and is a feasible tool in clinical settings.
Collapse
Affiliation(s)
- Laurie-Ann Corbin-Berrigan
- Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada
| | | | | | - Béatrice P De Koninck
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada.,Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Guay
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada.,Université de Montréal, Montréal, Quebec, Canada
| | | | - Louis De Beaumont
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada. .,Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
18
|
Buccellato A, Zang D, Zilio F, Gomez-Pilar J, Wang Z, Qi Z, Zheng R, Xu Z, Wu X, Bisiacchi P, Del Felice A, Mao Y, Northoff G. Disrupted relationship between intrinsic neural timescales and alpha peak frequency during unconscious states - A high-density EEG study. Neuroimage 2023; 265:119802. [PMID: 36503159 DOI: 10.1016/j.neuroimage.2022.119802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Our brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain's capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial alignment to the environment's temporal input stochastics, through relating different neural timescales, as one key predisposing factor of consciousness.
Collapse
Affiliation(s)
- Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy.
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Ontario K1Z7K4, Canada; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, Zhejiang Province, China.
| |
Collapse
|
19
|
Kahya M, Gouskova NA, Lo OY, Zhou J, Cappon D, Finnerty E, Pascual-Leone A, Lipsitz LA, Hausdorff JM, Manor B. Brain activity during dual-task standing in older adults. J Neuroeng Rehabil 2022; 19:123. [PMID: 36369027 PMCID: PMC9652829 DOI: 10.1186/s12984-022-01095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background In older adults, the extent to which performing a cognitive task when standing diminishes postural control is predictive of future falls and cognitive decline. The neurophysiology of such “dual-tasking” and its effect on postural control (i.e., dual-task cost) in older adults are poorly understood. The purpose of this study was to use electroencephalography (EEG) to examine the effects of dual-tasking when standing on brain activity in older adults. We hypothesized that compared to single-task “quiet” standing, dual-task standing would decrease alpha power, which has been linked to decreased motor inhibition, as well as increase the ratio of theta to beta power, which has been linked to increased attentional control. Methods Thirty older adults without overt disease completed four separate visits. Postural sway together with EEG (32-channels) were recorded during trials of standing with and without a concurrent verbalized serial subtraction dual-task. Postural control was measured by average sway area, velocity, and path length. EEG metrics included absolute alpha-, theta-, and beta-band powers as well as theta/beta power ratio, within six demarcated regions-of-interest: the left and right anterior, central, and posterior regions of the brain. Results Most EEG metrics demonstrated moderate-to-high between-day test–retest reliability (intra-class correlation coefficients > 0.70). Compared with quiet standing, dual-tasking decreased alpha-band power particularly in the central regions bilaterally (p = 0.002) and increased theta/beta power ratio in the anterior regions bilaterally (p < 0.001). A greater increase in theta/beta ratio from quiet standing to dual-tasking in numerous demarcated brain regions correlated with greater dual-task cost (i.e., absolute increase, indicative of worse performance) to postural sway metrics (r = 0.45–0.56, p < 0.01). Lastly, participants who exhibited greater alpha power during dual-tasking in the anterior-right (r = 0.52, p < 0.01) and central-right (r = 0.48, p < 0.01) regions had greater postural sway velocity during dual-tasking. Conclusion In healthy older adults, alpha power and theta/beta power ratio change with dual-task standing. The change in theta/beta power ratio in particular may be related to the ability to regulate standing postural control when simultaneously performing unrelated, attention-demanding cognitive tasks. Modulation of brain oscillatory activity might therefore be a novel target to minimize dual-task cost in older adults.
Collapse
|
20
|
Formaggio E, Bertuccelli M, Rubega M, Di Marco R, Cantele F, Gottardello F, De Giuseppe M, Masiero S. Brain oscillatory activity in adolescent idiopathic scoliosis. Sci Rep 2022; 12:17266. [PMID: 36241666 PMCID: PMC9568615 DOI: 10.1038/s41598-022-19449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
Pathophysiology of Adolescent Idiopathic Scoliosis (AIS) is not yet completely understood. This exploratory study aims to investigate two aspects neglected in clinical practice: a defective postural central nervous system control in AIS, and alterations of body schema due to scoliosis spinal deformities. We recorded EEG data and balance data in four different standing positions in 14 adolescents with AIS and in 14 controls. A re-adaptation of the Image Marking Procedure (IMP) assessed body schema alterations on the horizontal (Body Perception Indices (BPIs)) and vertical direction (interacromial and bisiliac axes inclinations). Our results revealed no differences in balance control between groups; higher EEG alpha relative power over sensorimotor areas ipsilateral to the side of the curve and a significant increase of theta relative power localized over the central areas in adolescents with AIS. The difference in BPI shoulder and BPI waist significantly differed between the two groups. The inclinations of the perceived interacromial axes in adolescents with AIS was opposite to the real inclination. Increased theta activity and alpha lateralization observed may be a compensatory strategy to overcome sensorimotor dysfunction mirrored by altered body schema. Scoliosis onset might be preceded by sensorimotor control impairments that last during curve progression.
Collapse
Affiliation(s)
- Emanuela Formaggio
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Margherita Bertuccelli
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| | - Maria Rubega
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Roberto Di Marco
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy ,grid.5611.30000 0004 1763 1124Present Address: Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesca Cantele
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Federica Gottardello
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Michela De Giuseppe
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Stefano Masiero
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, Italy ,grid.5608.b0000 0004 1757 3470Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| |
Collapse
|
21
|
Scurry AN, Szekely B, Murray NG, Jiang F. Older adults with a history of falling exhibit altered cortical oscillatory mechanisms during continuous postural maintenance. J Clin Transl Res 2022; 8:390-402. [PMID: 36518547 PMCID: PMC9741932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
Background and Aim The significant risk of falling in older adults 65 years or older presents a substantial problem for these individuals, their caretakers, and the health-care system at large. As the proportion of older adults in the United States is only expected to grow over the next few decades, a better understanding of physiological and cortical changes that make an older adult more susceptible to a fall is crucial. Prior studies have displayed differences in postural dynamics and stability in older adults with a fall history (FH) and those who are non-fallers (NF), suggesting surplus alterations that occur in some older adults (i.e., FH group) in addition to the natural aging process. Methods The present study measured postural dynamics while the FH, NF, and young adult (YA) groups performed continuous postural maintenance. In addition, electroencephalography activity was recorded while participants performed upright postural stance to examine any group differences in cortical areas involved in postural control. Results As expected, older participants (FH and NF) exhibited worse postural stability, as evidenced by increased excursion, compared to the YA group. Further, while NF and YA show increased alpha activity in occipital areas during the most demanding postural task (eyes closed), the FH group did not show any differences in occipital alpha power between postural tasks. Conclusions As alpha activity reflects suppression of bottom-up processing and thus diversion of cognitive resources toward postural centers during more demanding postural maintenance, deficits in this regulatory function in the FH group are a possible impaired cortical mechanism putting these individuals at greater fall risk. Relevance for Patients Impaired inhibitory function in older adults may impact postural control and increase their risk of falling. Interventions that aim at addressing cortical processing deficits may improve postural stability and facilitate independent living in this population.
Collapse
Affiliation(s)
- Alexandra N. Scurry
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States
| | - Brian Szekely
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States
| | - Nicholas G. Murray
- 2School of Public Health, University of Nevada, Reno, Nevada 89557, United States
| | - Fang Jiang
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States,Corresponding author: Fang Jiang Department of Psychology, University of Nevada, Reno, Nevada 89557, United States.
| |
Collapse
|
22
|
Strang CC, Harris A, Moody EJ, Reed CL. Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits. Front Neurosci 2022; 16:950539. [PMID: 35992926 PMCID: PMC9389406 DOI: 10.3389/fnins.2022.950539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.
Collapse
Affiliation(s)
| | - Alison Harris
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
- *Correspondence: Alison Harris,
| | - Eric J. Moody
- Wyoming Institute for Disabilities (WIND), University of Wyoming, Laramie, WY, United States
| | - Catherine L. Reed
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| |
Collapse
|
23
|
Cortical Correlates of Increased Postural Task Difficulty in Young Adults: A Combined Pupillometry and EEG Study. SENSORS 2022; 22:s22155594. [PMID: 35898095 PMCID: PMC9330778 DOI: 10.3390/s22155594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
The pupillary response reflects mental effort (or cognitive workload) during cognitive and/or motor tasks including standing postural control. EEG has been shown to be a non-invasive measure to assess the cortical involvement of postural control. The purpose of this study was to understand the effect of increasing postural task difficulty on the pupillary response and EEG outcomes and their relationship in young adults. Fifteen adults completed multiple trials of standing: eyes open, eyes open while performing a dual-task (auditory two-back), eyes occluded, and eyes occluded with a dual-task. Participants stood on a force plate and wore an eye tracker and 256-channel EEG cap during the conditions. The power spectrum was analyzed for absolute theta (4−7 Hz), alpha (8−13 Hz), and beta (13−30 Hz) frequency bands. Increased postural task difficulty was associated with greater pupillary response (p < 0.001) and increased posterior region alpha power (p = 0.001) and fronto-central region theta/beta power ratio (p = 0.01). Greater pupillary response correlated with lower posterior EEG alpha power during eyes-occluded standing with (r = −0.67, p = 0.01) and without (r = −0.69, p = 0.01) dual-task. A greater pupillary response was associated with lower CoP displacement in the anterior−posterior direction during dual-task eyes-occluded standing (r = −0.60, p = 0.04). The pupillary response and EEG alpha power appear to capture similar cortical processes that are increasingly utilized during progressively more challenging postural task conditions. As the pupillary response also correlated with task performance, this measurement may serve as a valuable stand-alone or adjunct tool to understand the underlying neurophysiological mechanisms of postural control.
Collapse
|
24
|
Coldea A, Veniero D, Morand S, Trajkovic J, Romei V, Harvey M, Thut G. Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance. Front Neurosci 2022; 16:886342. [PMID: 35784849 PMCID: PMC9247279 DOI: 10.3389/fnins.2022.886342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy—but not awareness ratings—depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling.
Collapse
Affiliation(s)
- Andra Coldea
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Morand
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jelena Trajkovic
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Dipartimento di Psicologia, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Vincenzo Romei
- Dipartimento di Psicologia, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Monika Harvey
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Gregor Thut,
| |
Collapse
|
25
|
Gebel A, Busch A, Stelzel C, Hortobágyi T, Granacher U. Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults. Front Hum Neurosci 2022; 16:871930. [PMID: 35774482 PMCID: PMC9237223 DOI: 10.3389/fnhum.2022.871930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations.
Collapse
Affiliation(s)
- Arnd Gebel
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
- *Correspondence: Arnd Gebel,
| | - Aglaja Busch
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
- University Outpatient Clinic, Sports Medicine and Sports Orthopedics, University of Potsdam, Potsdam, Germany
- Physiotherapy, Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland
| | | | - Tibor Hortobágyi
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
- University Medical Center Groningen, Center for Human Movement Sciences, University of Groningen, Groningen, Netherlands
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- Department of Sport Biology, Institute of Sport Science and Physical Education, University of Pécs, Pécs, Hungary
- Department of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
26
|
Visser A, Büchel D, Lehmann T, Baumeister J. Continuous table tennis is associated with processing in frontal brain areas: an EEG approach. Exp Brain Res 2022; 240:1899-1909. [PMID: 35467129 PMCID: PMC9142473 DOI: 10.1007/s00221-022-06366-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Coordinative challenging exercises in changing environments referred to as open-skill exercises seem to be beneficial on cognitive function. Although electroencephalographic research allows to investigate changes in cortical processing during movement, information about cortical dynamics during open-skill exercise is lacking. Therefore, the present study examines frontal brain activation during table tennis as an open-skill exercise compared to cycling exercise and a cognitive task. 21 healthy young adults conducted three blocks of table tennis, cycling and n-back task. Throughout the experiment, cortical activity was measured using 64-channel EEG system connected to a wireless amplifier. Cortical activity was analyzed calculating theta power (4-7.5 Hz) in frontocentral clusters revealed from independent component analysis. Repeated measures ANOVA was used to identify within subject differences between conditions (table tennis, cycling, n-back; p < .05). ANOVA revealed main-effects of condition on theta power in frontal (p < .01, ηp2 = 0.35) and frontocentral (p < .01, ηp2 = 0.39) brain areas. Post-hoc tests revealed increased theta power in table tennis compared to cycling in frontal brain areas (p < .05, d = 1.42). In frontocentral brain areas, theta power was significant higher in table tennis compared to cycling (p < .01, d = 1.03) and table tennis compared to the cognitive task (p < .01, d = 1.06). Increases in theta power during continuous table tennis may reflect the increased demands in perception and processing of environmental stimuli during open-skill exercise. This study provides important insights that support the beneficial effect of open-skill exercise on brain function and suggest that using open-skill exercise may serve as an intervention to induce activation of the frontal cortex.
Collapse
Affiliation(s)
- Anton Visser
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany.
| | - D Büchel
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| | - T Lehmann
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| | - J Baumeister
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| |
Collapse
|
27
|
Sawai S, Fujikawa S, Murata S, Abiko T, Nakano H. Dominance of Attention Focus and Its Electroencephalogram Activity in Standing Postural Control in Healthy Young Adults. Brain Sci 2022; 12:538. [PMID: 35624924 PMCID: PMC9138695 DOI: 10.3390/brainsci12050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Attention focus changes performance, and external focus (EF) improves performance compared to internal focus (IF). However, recently, the dominance of attention focus, rather than the effectiveness of unilateral EF, has been examined. Although the positive effects of EF on standing postural control have been reported, the dominance of attention focus has not yet been examined. Therefore, the purpose of this study was to examine the dominance of attention focus and its neural mechanism in standing postural control using electroencephalography (EEG). A standing postural control task under IF and EF conditions was performed on healthy young men. Gravity center sway and cortical activity simultaneously using a stabilometer and an EEG were measured. Participants were classified into IF-dominant and EF-dominant groups according to their index of postural stability. The EEG was analyzed, and cortical activity in the theta-wave band was compared between the IF-dominant and EF-dominant groups. Significant neural activity was observed in the left parietal lobe of the IF-dominant group in the IF condition, and in the left frontal lobe of the EF-dominant group in the EF condition (p < 0.05). Differences in EEG activity between IF-dominant and EF-dominant groups, in standing postural control, were detected. This contributes to the development of training methods that consider attentional focus dominance in postural control.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto 605-0981, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Teppei Abiko
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan; (S.S.); (S.M.); (T.A.)
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan;
| |
Collapse
|
28
|
Goel R, Nakagome S, Paloski WH, Contreras-Vidal JL, Parikh PJ. Assessment of Biomechanical Predictors of Occurrence of Low-Amplitude N1 Potentials Evoked by Naturally Occurring Postural Instabilities. IEEE Trans Neural Syst Rehabil Eng 2022; 30:476-485. [PMID: 35201989 PMCID: PMC11047164 DOI: 10.1109/tnsre.2022.3154707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Naturally occurring postural instabilities that occur while standing and walking elicit specific cortical responses in the fronto-central regions (N1 potentials) followed by corrective balance responses to prevent falling. However, no framework could simultaneously track different biomechanical parameters preceding N1s, predict N1s, and assess their predictive power. Here, we propose a framework and show its utility by examining cortical activity (through electroencephalography [EEG]), ground reaction forces, and head acceleration in the anterior-posterior (AP) direction. Ten healthy young adults carried out a balance task of standing on a support surface with or without sway referencing in the AP direction, amplifying, or dampening natural body sway. Using independent components from the fronto-central cortical region obtained from subject-specific head models, we first robustly validated a prior approach on identifying low-amplitude N1 potentials before early signs of balance corrections. Then, a machine learning algorithm was used to evaluate different biomechanical parameters obtained before N1 potentials, to predict the occurrence of N1s. When different biomechanical parameters were directly compared, the time to boundary (TTB) was found to be the best predictor of the occurrence of upcoming low-amplitude N1 potentials during a balance task. Based on these findings, we confirm that the spatio-temporal characteristics of the center of pressure (COP) might serve as an essential parameter that can facilitate the early detection of postural instability in a balance task. Extending our framework to identify such biomarkers in dynamic situations like walking might improve the implementation of corrective balance responses through brain-machine-interfaces to reduce falls in the elderly.
Collapse
|
29
|
Sherman DA, Lehmann T, Baumeister J, Grooms DR, Norte GE. Somatosensory perturbations influence cortical activity associated with single-limb balance performance. Exp Brain Res 2022; 240:407-420. [PMID: 34767059 DOI: 10.1007/s00221-021-06260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
To determine the association between cortical activity and postural control performance changes with differing somatosensory perturbations. Healthy individuals (n = 15) performed a single-limb balance task under four conditions: baseline, unstable surface (foam), transcutaneous electrical nerve stimulation (TENS) applied to the stance-limb knee, and combined foam + TENS. Cortical activity was recorded with electroencephalography (EEG) and postural sway via triaxial force plate. EEG signals were decomposed, localized, and clustered to generate power spectral density in theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in anatomical clusters. Postural sway signals were analyzed with center of pressure (COP) sway metrics (e.g., area, distance, velocity). Foam increased theta power in the frontal and central clusters (d = 0.77 to 1.16), decreased alpha-2 power in bilateral motor, right parietal, and occipital clusters (d = - 0.89 to - 2.35) and increased sway area, distance, and velocity (d = 1.09-2.57) relative to baseline. Conversely, TENS decreased central theta power (d = - 0.60), but increased bilateral motor, left parietal, and occipital alpha-2 power (d = 0.51-1.40), with similar to baseline balance performance. In combination, foam + TENS attenuated sway velocity detriments and cortical activity caused by the foam condition alone. There were weak and moderate associations between percent increased central theta and occipital activity and increased sway velocity. Somatosensory perturbations changed patterns of cortical activity during a single-limb balance task in a manner suggestive of sensory re-weighting to pertinent sensory feedback. Across conditions decreased cortical activity in pre-motor and visual regions were associated with reduced sway velocity.
Collapse
Affiliation(s)
- David A Sherman
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, 2801 W. Bancroft St., HH 2505E, Mail Stop 119, Toledo, OH, 43606, USA.
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Dustin R Grooms
- Division of Physical Therapy, Division of Athletic Training, Ohio Musculoskeletal and Neurological Institute, College of Health Sciences and Professions, Ohio University, Athens, OH, 45701, USA
| | - Grant E Norte
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, 2801 W. Bancroft St., HH 2505E, Mail Stop 119, Toledo, OH, 43606, USA
| |
Collapse
|
30
|
EEG based cortical investigation for the limit of stability analysis in transfemoral amputees: A comparison with able-bodied individuals. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
An YW, Kang Y, Jun HP, Chang E. Anterior Cruciate Ligament Reconstructed Patients Who Recovered Normal Postural Control Have Dissimilar Brain Activation Patterns Compared to Healthy Controls. BIOLOGY 2022; 11:biology11010119. [PMID: 35053116 PMCID: PMC8773195 DOI: 10.3390/biology11010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary We report that patients with anterior cruciate ligament reconstruction have similar postural control but different cortical activation patterns in several regions of the brain when compared to healthy controls. This is significant because dissimilar cortical activation patterns indicate that neural adaptation in the brain is responsible for motor coordination, possibly due to altered proprioception, despite having a surgical reconstruction after an anterior cruciate ligament injury. Such neuroplasticity in ACLR patients may imply compensatory neural protective mechanisms in order to sustain postural control, which is a fundamental functional skill in daily activities. We believe that our findings will elucidate other researchers and clinicians about the effects of a peripheral joint injury on the brain’s function during postural control. Abstract Postural control, which is a fundamental functional skill, reflects integration and coordination of sensory information. Damaged anterior cruciate ligament (ACL) may alter neural activation patterns in the brain, despite patients’ surgical reconstruction (ACLR). However, it is unknown whether ACLR patients with normal postural control have persistent neural adaptation in the brain. Therefore, we explored theta (4–8 Hz) and alpha-2 (10–12 Hz) oscillation bands at the prefrontal, premotor/supplementary motor, primary motor, somatosensory, and primary visual cortices, in which electrocortical activation is highly associated with goal-directed decision-making, preparation of movement, motor output, sensory input, and visual processing, respectively, during first 3 s of a single-leg stance at two different task complexities (stable/unstable) between ACLR patients and healthy controls. We observed that ACLR patients showed similar postural control ability to healthy controls, but dissimilar neural activation patterns in the brain. To conclude, we demonstrated that ACLR patients may rely on more neural sources on movement preparation in conjunction with sensory feedback during the early single-leg stance period relative to healthy controls to maintain postural control. This may be a compensatory protective mechanism to accommodate for the altered sensory inputs from the reconstructed knee and task complexity. Our study elucidates the strategically different brain activity utilized by ACLR patients to sustain postural control.
Collapse
Affiliation(s)
- Yong Woo An
- Department of Health and Human Sciences, Loyola Marymount University, Los Angeles, CA 90045, USA;
| | - Yangmi Kang
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Hyung-Pil Jun
- Department of Physical Education, Dong-A University, Busan 03722, Korea;
| | - Eunwook Chang
- Department of Kinesiology, Inha University, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-8185; Fax: +82-32-860-8188
| |
Collapse
|
32
|
Individual alpha peak frequency is slower in schizophrenia and related to deficits in visual perception and cognition. Sci Rep 2021; 11:17852. [PMID: 34497330 PMCID: PMC8426382 DOI: 10.1038/s41598-021-97303-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 12/02/2022] Open
Abstract
The brain at rest generates cycles of electrical activity that have been shown to be abnormal in people with schizophrenia. The alpha rhythm (~ 10 Hz) is the dominant resting state electrical cycle and each person has a propensity toward a particular frequency of oscillation for this rhythm. This individual alpha peak frequency (IAPF) is hypothesized to be central to visual perceptual processes and may have downstream influences on cognitive functions such as attention, working memory, or problem solving. In the current study we sought to determine whether IAPF was slower in schizophrenia, and whether lower IAPF predicted deficits in visual perception and cognition that are often observed in schizophrenia. Eyes-closed resting state EEG activity, visual attention, and global cognitive functioning were assessed in individuals with schizophrenia (N = 104) and a group of healthy controls (N = 101). Compared to controls, the schizophrenia group showed slower IAPF and was associated with poorer discrimination of visual targets and nontargets on a computerized attention task, as well as impaired global cognition measured using neuropsychological tests across groups. Notably, disruptions in visual attention fully mediated the relationship between IAPF and global cognition across groups. The current findings demonstrate that slower alpha oscillatory cycling accounts for global cognitive deficits in schizophrenia by way of impairments in perceptual discrimination measured during a visual attention task.
Collapse
|
33
|
Janssens SEW, Sack AT, Ten Oever S, de Graaf TA. Calibrating rhythmic stimulation parameters to individual EEG markers: the consistency of individual alpha frequency in practical lab settings. Eur J Neurosci 2021; 55:3418-3437. [PMID: 34363269 PMCID: PMC9541964 DOI: 10.1111/ejn.15418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually-calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres, and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short EEG measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on four days (between-sessions), with multiple measurements over an hour on one day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10Hertz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hertz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hertz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre , Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
34
|
Chen YC, Huang CC, Zhao CG, Hwang IS. Visual Effect on Brain Connectome That Scales Feedforward and Feedback Processes of Aged Postural System During Unstable Stance. Front Aging Neurosci 2021; 13:679412. [PMID: 34366825 PMCID: PMC8339373 DOI: 10.3389/fnagi.2021.679412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
Older adults with degenerative declines in sensory systems depend strongly on visual input for postural control. By connecting advanced neural imaging and a postural control model, this study investigated the visual effect on the brain functional network that regulates feedback and feedforward processes of the postural system in older adults under somatosensory perturbations. Thirty-six older adults conducted bilateral stance on a foam surface in the eyes-open (EO) and eyes-closed (EC) conditions while their center of pressure (COP) and scalp EEG were recorded. The stochastic COP trajectory was modeled with non-linear stabilogram diffusion analysis (SDA) to characterize shifts in postural control in a continuum of feedback and feedforward processes. The EEG network was analyzed with the phase-lag index (PLI) and minimum spanning tree (MST). The results indicated that visual input rebalanced feedforward and feedback processes for postural sway, resulting in a greater critical point of displacement (CD), short-term effective diffusion coefficients (Ds) and short-term exponent (Hs), but the smaller critical point of time (CT) and long-term exponent (Hl) for the EC state. The EC network demonstrated stronger frontoparietal-occipital connectivity but weaker fronto-tempo-motor connectivity of the theta (4–7 Hz), alpha (8–12 Hz), and beta (13–35 Hz) bands than did the EO network. MST analysis revealed generally greater leaf fraction and maximal betweenness centrality (BCmax) and kappa of the EC network, as compared with those of the EO network. In contrast, the EC network exhibited a smaller diameter and average eccentricity than those of the EO network. The modulation of long-term negative feedback gain of the aged postural system with visual occlusion was positively correlated with leaf fraction, BCmax, and kappa, but negatively correlated with the diameter and average eccentricity for all EEG sub-bands. In conclusion, the aged brain functional network in older adults is tuned to visual information for modulating long-term negative feedback of the postural system under somatosensory perturbations.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Chun Huang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Guang Zhao
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Relationship between individual alpha peak frequency and attentional performance in a multiple object tracking task among ice-hockey players. PLoS One 2021; 16:e0251443. [PMID: 34043652 PMCID: PMC8158945 DOI: 10.1371/journal.pone.0251443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Individual alpha peak frequency (IAPF), the discrete frequency with the highest power value in the alpha oscillation range of the electroencephalogram, is a stable neurophysiological marker and is closely associated with various cognitive functions, including aspects of attention and working memory. However, the relationship between IAPF and attentional performance as well as the effects of engaging attention on IAPF are unknow. Here, we examined whether IAPF values were associated with attentional performance by evaluating accuracy during the performance of a multiple object tracking (MOT) task, a well-established paradigm for investigating goal-driven attention in dynamic environments, and whether engagement in the task affected IAPF values. In total, 18 elite players and 20 intermediate players completed the study. Resting electroencephalogram recordings were obtained for 120 s while players kept their eyes open and an additional 120 s while players’ eyes were closed, before and again after performing the MOT task. Tracking accuracy in the MOT task and IAPF values before and after the MOT task were analyzed. As expected, tracking accuracies were higher in elite players than in intermediate-level players. Baseline IAPF values were significantly and positively correlated with the accuracy of target tracking in the MOT task. IAPF values were higher in elite than intermediate players in both the eyes open and closed conditions and both before and after MOT task performance. Interindividual IAPF values did not differ before and after the MOT task. These findings indicate that IAPF is a stable marker, without intraindividual changes associated with engagement in the MOT task. Elite players had higher IAPF values and exhibited more accurate MOT performance than intermediate-level players; thus, baseline IAPF values may be useful to predict attentional performance in the MOT task among athletes.
Collapse
|
36
|
Hülsdünker T, Mierau A. Visual Perception and Visuomotor Reaction Speed Are Independent of the Individual Alpha Frequency. Front Neurosci 2021; 15:620266. [PMID: 33897344 PMCID: PMC8060564 DOI: 10.3389/fnins.2021.620266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
While the resting-state individual alpha frequency (IAF) is related to the cognitive performance and temporal resolution of visual perception, it remains unclear how it affects the neural correlates of visual perception and reaction processes. This study aimed to unravel the relation between IAF, visual perception, and visuomotor reaction time. One hundred forty-eight (148) participants (28 non-athletes, 39 table tennis players, and 81 badminton players) investigated in three previous studies were considered. During a visuomotor reaction task, the visuomotor reaction time (VMRT) and EMG onset were determined. In addition, a 64-channel EEG system identified the N2, N2-r, and BA6 negativity potentials representing the visual and motor processes related to visuomotor reactions. Resting-state individual alpha frequency (IAF) in visual and motor regions was compared based on sport experience (athletes vs. non-athletes), discipline (badminton vs. table tennis), and reaction performance (fast vs. medium vs. slow reaction time). Further, the differences in the IAF were determined in relation to the speed of neural visual (high vs. medium vs. low N2/N2-r latency) and motor (high vs. medium vs. low BA6 negativity latency). Group comparisons did not reveal any difference in the IAF between athletes and non-athletes (p = 0.352, η p 2 = 0.02) or badminton and table tennis players (p = 0.221, η p 2 = 0.02). Similarly, classification based on the behavioral or neural performance indicators did not reveal any effects on the IAF (p ≥ 0.158, η p 2 ≤ 0.027). IAF was not correlated to any of the behavioral or neural parameters (r ≤ 0.10, p ≥ 0.221). In contrast to behavioral results on cognitive performance and visual temporal resolution, the resting state IAF seemed unrelated to the visual perception and visuomotor reaction speed in simple reaction tasks. Considering the previous results on the correlations between the IAF, cognitive abilities, and temporal sampling of visual information, the results suggest that a higher IAF may facilitate the amount and frequency but not the speed of information transfer.
Collapse
Affiliation(s)
- Thorben Hülsdünker
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Andreas Mierau
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
37
|
Seidel-Marzi O, Hähner S, Ragert P, Carius D. Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced Slackliners. FRONTIERS IN NEUROERGONOMICS 2021; 2:644490. [PMID: 38235235 PMCID: PMC10790949 DOI: 10.3389/fnrgo.2021.644490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2024]
Abstract
The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susanne Hähner
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Büchel D, Lehmann T, Ullrich S, Cockcroft J, Louw Q, Baumeister J. Stance leg and surface stability modulate cortical activity during human single leg stance. Exp Brain Res 2021; 239:1193-1202. [PMID: 33570677 PMCID: PMC8068619 DOI: 10.1007/s00221-021-06035-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Mobile Electroencephalography (EEG) provides insights into cortical contributions to postural control. Although changes in theta (4–8 Hz) and alpha frequency power (8–12 Hz) were shown to reflect attentional and sensorimotor processing during balance tasks, information about the effect of stance leg on cortical processing related to postural control is lacking. Therefore, the aim was to examine patterns of cortical activity during single-leg stance with varying surface stability. EEG and force plate data from 21 healthy males (22.43 ± 2.23 years) was recorded during unipedal stance (left/right) on a stable and unstable surface. Using source-space analysis, power spectral density was analyzed in the theta, alpha-1 (8–10 Hz) and alpha-2 (10–12 Hz) frequency bands. Repeated measures ANOVA with the factors leg and surface stability revealed significant interaction effects in the left (p = 0.045, ηp2 = 0.13) and right motor clusters (F = 16.156; p = 0.001, ηp2 = 0.41). Furthermore, significant main effects for surface stability were observed for the fronto-central cluster (theta), left and right motor (alpha-1), as well as for the right parieto-occipital cluster (alpha-1/alpha-2). Leg dependent changes in alpha-2 power may indicate lateralized patterns of cortical processing in motor areas during single-leg stance. Future studies may therefore consider lateralized patterns of cortical activity for the interpretation of postural deficiencies in unilateral lower limb injuries.
Collapse
Affiliation(s)
- Daniel Büchel
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany.
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Sarah Ullrich
- Department of Child and Adolescent Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - John Cockcroft
- Neuromechanics Unit, Stellenbosch University, Cape Town, South Africa
| | - Quinette Louw
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
39
|
Kagawa T, Makeig S, Miyakoshi M. Electroencephalographic Study on Sensory Integration in Visually Induced Postural Sway. J Cogn Neurosci 2020; 33:482-498. [PMID: 33284075 DOI: 10.1162/jocn_a_01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A periodically reversing optic flow animation, experienced while standing, induces an involuntary sway termed visually induced postural sway (VIPS). Interestingly, VIPS is suppressed during light finger touch to a stationary object. Here, we explored whether VIPS is mediated by parietal field activity in the dorsal visual stream as well as by activity in early visual areas, as has been suggested. We performed a mobile brain/body imaging study using high-density electroencephalographic recording from human participants (11 men and 3 women) standing during exposure to periodically reversing optic flow with and without light finger touch to a stable surface. We also performed recording their visuo-postural tracking movements as a typical visually guided movement to explore differences of cortical process of VIPS from the voluntary visuomotor process involving the dorsal stream. In the visuo-postural tracking condition, the participants moved their center of pressure in time with a slowly oscillating (expanding, shrinking) target rectangle. Source-resolved results showed that alpha band (8-13 Hz) activity in the medial and right occipital cortex during VIPS was modulated by the direction and velocity of optic flow and increased significantly during light finger touch. However, source-resolved potentials from the parietal association cortex showed no such modulation. During voluntary postural sway with feedback (but no visual flow) in which the dorsal stream is involved, sensorimotor areas produced more theta band (4-7 Hz) and less beta band (14-35 Hz) activity than during involuntary VIPS. These results suggest that VIPS involves cortical field dynamic changes in the early visual cortex rather than in the posterior parietal cortex of the visual dorsal stream.
Collapse
|
40
|
Schedler S, Tenelsen F, Wich L, Muehlbauer T. Effects of balance training on balance performance in youth: role of training difficulty. BMC Sports Sci Med Rehabil 2020; 12:71. [PMID: 33292455 PMCID: PMC7684745 DOI: 10.1186/s13102-020-00218-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cross-sectional studies have shown that balance performance can be challenged by the level of task difficulty (e.g., varying stance conditions, sensory manipulations). However, it remains unclear whether the application of different levels of task difficulty during balance training (BT) leads to altered adaptations in balance performance. Thus, we examined the effects of BT conducted under a high versus a low level of task difficulty on balance performance. METHODS Forty male adolescents were randomly assigned to a BT program using a low (BT-low: n = 20; age: 12.4 ± 2.0 yrs) or a high (BT-high: n = 20; age: 12.5 ± 2.5 yrs) level of balance task difficulty. Both groups trained for 7 weeks (2 sessions/week, 30-35 min each). Pre- and post-training assessments included measures of static (one-legged stance [OLS] time), dynamic (10-m gait velocity), and proactive (Y-Balance Test [YBT] reach distance, Functional Reach Test [FRT]; Timed-Up-and-Go Test [TUG]) balance. RESULTS Significant main effects of Test (i.e., pre- to post-test improvements) were observed for all but one balance measure (i.e., 10-m gait velocity). Additionally, a Test x Group interaction was detected for the FRT in favor of the BT-high group (Δ + 8%, p < 0.001, d = 0.35). Further, tendencies toward significant Test x Group interactions were found for the YBT anterior reach (in favor of BT-high: Δ + 9%, p < 0.001, d = 0.60) and for the OLS with eyes opened and on firm surface (in favor of BT-low: Δ + 31%, p = 0.003, d = 0.67). CONCLUSIONS Following 7 weeks of BT, enhancements in measures of static, dynamic, and proactive balance were observed in the BT-high and BT-low groups. However, BT-high appears to be more effective for increasing measures of proactive balance, whereas BT-low seems to be more effective for improving proxies of static balance. TRIAL REGISTRATION Current Controlled Trials ISRCTN83638708 (Retrospectively registered 19th June, 2020).
Collapse
Affiliation(s)
- Simon Schedler
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany.
| | - Florian Tenelsen
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany
| | - Laura Wich
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany
| | - Thomas Muehlbauer
- Division of Movement and Training Sciences/Biomechanics of Sport, University of Duisburg-Essen, Gladbecker Str. 182, 45141, Essen, Germany
| |
Collapse
|
41
|
Ghosn NJ, Palmer JA, Borich MR, Ting LH, Payne AM. Cortical Beta Oscillatory Activity Evoked during Reactive Balance Recovery Scales with Perturbation Difficulty and Individual Balance Ability. Brain Sci 2020; 10:E860. [PMID: 33207570 PMCID: PMC7697848 DOI: 10.3390/brainsci10110860] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Cortical beta oscillations (13-30 Hz) reflect sensorimotor processing, but are not well understood in balance recovery. We hypothesized that sensorimotor cortical activity would increase under challenging balance conditions. We predicted greater beta power when balance was challenged, either by more difficult perturbations or by lower balance ability. In 19 young adults, we measured beta power over motor cortical areas (electroencephalography, Cz electrode) during three magnitudes of backward support -surface translations. Peak beta power was measured during early (50-150 ms), late (150-250 ms), and overall (0-400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power. An ANOVA was used to compare peak beta power across perturbation magnitudes in each time bin. We further tested the association between perturbation-evoked beta power and individual balance ability measured in a challenging beam walking task. Beta power increased ~50 ms after perturbation, and to a greater extent in larger perturbations. Lower individual balance ability was associated with greater beta power in only the late (150-250 ms) time bin. These findings demonstrate greater sensorimotor cortical engagement under more challenging balance conditions, which may provide a biomarker for reduced automaticity in balance control that could be used in populations with neurological impairments.
Collapse
Affiliation(s)
- Nina J. Ghosn
- Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | | - Michael R. Borich
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| | - Lena H. Ting
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| | - Aiden M. Payne
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| |
Collapse
|
42
|
Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients. Brain Stimul 2020; 13:1743-1752. [DOI: 10.1016/j.brs.2020.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023] Open
|
43
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
44
|
Gebel A, Lehmann T, Granacher U. Balance task difficulty affects postural sway and cortical activity in healthy adolescents. Exp Brain Res 2020; 238:1323-1333. [PMID: 32328673 PMCID: PMC7237405 DOI: 10.1007/s00221-020-05810-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/11/2020] [Indexed: 11/28/2022]
Abstract
Electroencephalographic (EEG) research indicates changes in adults’ low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16–17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4–7 Hz) and alpha-2 (10–12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands.
Collapse
Affiliation(s)
- Arnd Gebel
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany.
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| |
Collapse
|
45
|
Barollo F, Frioriksdottir R, Edmunds KJ, Karlsson GH, Svansson HA, Hassan M, Fratini A, Petersen H, Gargiulo P. Postural Control Adaptation and Habituation During Vibratory Proprioceptive Stimulation: An HD-EEG Investigation of Cortical Recruitment and Kinematics. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1381-1388. [PMID: 32310777 DOI: 10.1109/tnsre.2020.2988585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the present work is to measure postural kinematics and power spectral variation from HD-EEG to assess changes in cortical activity during adaptation and habituation to postural perturbation. To evoke proprioceptive postural perturbation, vibratory stimulation at 85 Hz was applied to the calf muscles of 33 subjects over four 75-second stimulation periods. Stimulation was performed according to a pseudorandom binary sequence. Vibratory impulses were synchronized to high-density electroencephalography (HD-EEG, 256 channels). Changes in absolute spectral power (ASP) were analyzed over four frequency bands ( ∆ : 0.5-3.5 Hz; θ : 3.5-7.5 Hz; α : 7.5-12.5 Hz; β : 12.5-30 Hz). A force platform recorded torque actuated by the feet, and normalized sway path length (SPL) was computed as a construct for postural performance during each period. SPL values indicated improvement in postural performance over the trial periods. Significant variation in absolute power values (ASP) was found in assessing postural adaptation: an increase in θ band ASP in the frontal-central region for closed-eyes trials, an increase in θ and β band ASP in the parietal region for open-eyes trials. In habituation, no significant variations in ASP were observed during closed-eyes trials, whereas an increase in θ , α , and β band ASP was observed with open eyes. Furthermore, open-eyed trials generally yielded a greater number of significant ASP differences across all bands during both adaptation and habituation, suggesting that following cortical activity during postural perturbation may be up-regulated with the availability of visual feedback. These results altogether provide deeper insight into pathological postural control failure by exploring the dynamic changes in both cortical activity and postural kinematics during adaptation and habituation to proprioceptive postural perturbation.
Collapse
|
46
|
Piccolo C, Bakkum A, Marigold DS. Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking. PLoS One 2020; 15:e0231334. [PMID: 32275736 PMCID: PMC7147773 DOI: 10.1371/journal.pone.0231334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Subthreshold stochastic vestibular stimulation (SVS) is thought to enhance vestibular sensitivity and improve balance. However, it is unclear how SVS affects standing and walking when balance is challenged, particularly when the eyes are open. It is also unclear how different methods to determine stimulation intensity influence the effects. We aimed to determine (1) whether SVS affects stability when balance is challenged during eyes-open standing and overground walking tasks, and (2) how the effects differ based on whether optimal stimulation amplitude is derived from sinusoidal or cutaneous threshold techniques. Thirteen healthy adults performed balance-unchallenged and balance-challenged standing and walking tasks with SVS (0–30 Hz zero-mean, white noise electrical stimulus) or sham stimulation. For the balance-challenged condition, participants had inflatable rubber hemispheres attached to the bottom of their shoes to reduce the control provided by moving the center of pressure under their base of support. In different blocks of trials, we set SVS intensity to either 50% of participants’ sinusoidal (motion) threshold or 80% of participants’ cutaneous threshold. SVS reduced medial-lateral trunk velocity root mean square in the balance-challenged (p < 0.05) but not in the balance-unchallenged condition during standing. Regardless of condition, SVS decreased step-width variability and marginally increased gait speed when walking with the eyes open (p < 0.05). SVS intensity had minimal effect on the standing and walking measures. Taken together, our results provide insight into the effectiveness of SVS at improving balance-challenged, eyes-open standing and walking performance in healthy adults.
Collapse
Affiliation(s)
- Chiara Piccolo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda Bakkum
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel S. Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Bakkum A, Donelan JM, Marigold DS. Challenging balance during sensorimotor adaptation increases generalization. J Neurophysiol 2020; 123:1342-1354. [PMID: 32130079 DOI: 10.1152/jn.00687.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
From reaching to walking, real-life experience suggests that people can generalize between motor behaviors. One possible explanation for this generalization is that real-life behaviors often challenge our balance. We propose that the exacerbated body motions associated with balance-challenged whole body movements increase the value to the nervous system of using a comprehensive internal model to control the task. Because it is less customized to a specific task, a more comprehensive model is also a more generalizable model. Here we tested the hypothesis that challenging balance during adaptation would increase generalization of a newly learned internal model. We encouraged participants to learn a new internal model using prism lenses that created a new visuomotor mapping. Four groups of participants adapted to prisms while performing either a standing-based reaching or precision walking task, with or without a manipulation that challenged balance. To assess generalization after the adaptation phase, participants performed a single trial of each of the other groups' tasks without prisms. We found that both the reaching and walking balance-challenged groups showed significantly greater generalization to the equivalent, nonadapted task than the balance-unchallenged groups. Additionally, we found some evidence that all groups generalized across tasks, for example, from walking to reaching and vice versa, regardless of balance manipulation. Overall, our results demonstrate that challenging balance increases the degree to which a newly learned internal model generalizes to untrained movements.NEW & NOTEWORTHY Real-life experience indicates that people can generalize between motor behaviors. Here we show that challenging balance during the learning of a new internal model increases the degree of generalization to untrained movements for both reaching and walking tasks. These results suggest that the effects of challenging balance are not specific to the task but instead apply to motor learning more broadly.
Collapse
Affiliation(s)
- Amanda Bakkum
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel S Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
48
|
Deng Y, Choi I, Shinn-Cunningham B. Topographic specificity of alpha power during auditory spatial attention. Neuroimage 2020; 207:116360. [PMID: 31760150 PMCID: PMC9883080 DOI: 10.1016/j.neuroimage.2019.116360] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 11/13/2019] [Indexed: 01/31/2023] Open
Abstract
Visual and somatosensory spatial attention both induce parietal alpha (8-14 Hz) oscillations whose topographical distribution depends on the direction of spatial attentional focus. In the auditory domain, contrasts of parietal alpha power for leftward and rightward attention reveal qualitatively similar lateralization; however, it is not clear whether alpha lateralization changes monotonically with the direction of auditory attention as it does for visual spatial attention. In addition, most previous studies of alpha oscillation did not consider individual differences in alpha frequency, but simply analyzed power in a fixed spectral band. Here, we recorded electroencephalography in human subjects when they directed attention to one of five azimuthal locations. After a cue indicating the direction of an upcoming target sequence of spoken syllables (yet before the target began), alpha power changed in a task-specific manner. Individual peak alpha frequencies differed consistently between central electrodes and parieto-occipital electrodes, suggesting multiple neural generators of task-related alpha. Parieto-occipital alpha increased over the hemisphere ipsilateral to attentional focus compared to the contralateral hemisphere, and changed systematically as the direction of attention shifted from far left to far right. These results showing that parietal alpha lateralization changes smoothly with the direction of auditory attention as in visual spatial attention provide further support to the growing evidence that the frontoparietal attention network is supramodal.
Collapse
Affiliation(s)
- Yuqi Deng
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Barbara Shinn-Cunningham
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA,Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA,Corresponding author. Baker Hall 254G, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA. (B. Shinn-Cunningham)
| |
Collapse
|
49
|
Lehmann T, Büchel D, Cockcroft J, Louw Q, Baumeister J. Modulations of Inter-Hemispherical Phase Coupling in Human Single Leg Stance. Neuroscience 2020; 430:63-72. [PMID: 32027994 DOI: 10.1016/j.neuroscience.2020.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/12/2020] [Accepted: 01/19/2020] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Recent findings from neuroimaging studies provided initial insights into cortical contributions to postural control. These studies observed enhanced cortical activation and connectivity when task-difficulty and postural instability increased. However, little attention has been paid to the allocation of cortical networks appearing with a decreasing base of support from bipedal to single leg stance. Therefore, the aim of the present study was to investigate modulations of functional connectivity from bipedal to single leg stance. EXPERIMENTAL PROCEDURES Cortical activity during bipedal and single leg stance (left) was investigated in 15 male subjects using 128 channel mobile electroencephalography (EEG), while standing on a triaxial force plate. Power spectral density was calculated for theta (4-7 Hz), alpha-1 (8-10 Hz) and alpha-2 (10-12 Hz) frequency bands. Estimations of the phase lag index (PLI) were conducted as a measure of functional connectivity. Moreover, postural control was analyzed by the area of sway and sway velocity. RESULTS The results demonstrated a significantly increased area of sway and decreased alpha-2 power in single leg compared to bipedal stance. Furthermore, PLIs within the alpha-2 frequency band showed significantly decreased inter-hemispherical phase coupling in single leg stance, associated with connections involving the left motor region. DISCUSSION Altogether, the present findings may indicate modulations of cortical contributions in single leg compared to bipedal stance. The present data suggest that decreased inter-hemispherical functional connectivity, in conjunction with a global increase in cortical excitability, may indicate enhanced alertness and task-specific selective inhibition of motor networks in favor of postural control.
Collapse
Affiliation(s)
- Tim Lehmann
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany.
| | - Daniel Büchel
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - John Cockcroft
- Neuromechanics Unit, Stellenbosch University, Cape Town, South Africa
| | - Quinette Louw
- Department of Interdisciplinary Health Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, South Africa
| | - Jochen Baumeister
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany; Department of Interdisciplinary Health Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
50
|
Webster K, Ro T. Visual Modulation of Resting State α Oscillations. eNeuro 2020; 7:ENEURO.0268-19.2019. [PMID: 31836596 PMCID: PMC6944479 DOI: 10.1523/eneuro.0268-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Once thought to simply reflect passive cortical idling, recent studies have demonstrated that α oscillations play a causal role in cognition and perception. However, whether and how cognitive or sensory processes modulate various components of the α rhythm is poorly understood. Sensory input and resting states were manipulated in human subjects while electroencephalography (EEG) activity was recorded in three conditions: eyes-open fixating on a visual stimulus, eyes-open without visual input (darkness), and eyes-closed without visual input (darkness). We show that α power and peak frequency increase when visual input is reduced compared to the eyes open, fixating condition. These results suggest that increases in α power reflect a shift from an exteroceptive to interoceptive state and that increases in peak frequency following restricted visual input (darkness) may reflect increased sampling of the external environment in order to detect stimuli. They further demonstrate how sensory information modulates α and the importance of selecting an appropriate resting condition in studies of α.
Collapse
Affiliation(s)
| | - Tony Ro
- Program in Psychology
- Program in Biology
- Program in Cognitive Neuroscience, The Graduate Center of the City University of New York, New York, NY 10016
| |
Collapse
|