1
|
Murray SO, Seczon DL, Pettet M, Rea HM, Woodard KM, Kolodny T, Webb SJ. Increased alpha power in autistic adults: Relation to sensory behaviors and cortical volume. Autism Res 2025; 18:56-69. [PMID: 39555754 DOI: 10.1002/aur.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Alpha-band (~10 Hz) neural oscillations, crucial for gating sensory information, may offer insights into the atypical sensory experiences characteristic of autism spectrum disorder (ASD). We investigated alpha-band EEG activity in autistic adults (n = 29) compared with a nonautistic group (n = 23) under various stimulus-driven and resting-state conditions. The autistic group showed consistently higher alpha amplitude across all time points. In addition, there was proportionally more suppression of alpha at stimulus onset in the autistic group, and alpha amplitude in this stimulus-onset period correlated with sensory behaviors. Recent research suggests a link between subcortical structures' volume and cortical alpha magnitude. Prompted by this, we explored the association between alpha power and the volume of subcortical structures and total cortical volume in ASD. Our findings indicate a significant correlation with total cortical volume and a group by hippocampal volume interaction, pointing to the potential role of anatomical structural characteristics as potential modulators of cortical alpha oscillations in ASD. Overall, the results highlight altered alpha in autistic individuals as potentially contributing to the heightened sensory symptoms in autistic compared with nonautistic adults.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Daniela L Seczon
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Mark Pettet
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Hannah M Rea
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
| | - Kristin M Woodard
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Arutiunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with Autism Spectrum Disorder. Brain Struct Funct 2024; 229:1225-1242. [PMID: 38683212 DOI: 10.1007/s00429-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The neurobiology of Autism Spectrum Disorder (ASD) is hypothetically related to the imbalance between neural excitation (E) and inhibition (I). Different studies have revealed that alpha-band (8-12 Hz) activity in magneto- and electroencephalography (MEG and EEG) may reflect E and I processes and, thus, can be of particular interest in ASD research. Previous findings indicated alterations in event-related and baseline alpha activity in different cortical systems in individuals with ASD, and these abnormalities were associated with core and co-occurring conditions of ASD. However, the knowledge on auditory alpha oscillations in this population is limited. This MEG study investigated stimulus-induced (Event-Related Desynchronization, ERD) and baseline alpha-band activity (both periodic and aperiodic) in the auditory cortex and also the relationships between these neural activities and behavioral measures of children with ASD. Ninety amplitude-modulated tones were presented to two groups of children: 20 children with ASD (5 girls, Mage = 10.03, SD = 1.7) and 20 typically developing controls (9 girls, Mage = 9.11, SD = 1.3). Children with ASD had a bilateral reduction of alpha-band ERD, reduced baseline aperiodic-adjusted alpha power, and flattened aperiodic exponent in comparison to TD children. Moreover, lower raw baseline alpha power and aperiodic offset in the language-dominant left auditory cortex were associated with better language skills of children with ASD measured in formal assessment. The findings highlighted the alterations of E / I balance metrics in response to basic auditory stimuli in children with ASD and also provided evidence for the contribution of low-level processing to language difficulties in ASD.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, United States of America.
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
- University of Otago, Dunedin, New Zealand
| | - Makar Fedorov
- Center for Language and Brain, HSE University, Nizhny Novgorod, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Arutiunian V, Arcara G, Buyanova I, Buivolova O, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Event-Related Desynchronization of MEG Alpha-Band Oscillations during Simultaneous Presentation of Audio and Visual Stimuli in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:1313. [PMID: 37759914 PMCID: PMC10526124 DOI: 10.3390/brainsci13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha-band (8-12 Hz) event-related desynchronization (ERD) or a decrease in alpha power in electro- and magnetoencephalography (EEG and MEG) reflects the involvement of a neural tissue in information processing. It is known that most children with autism spectrum disorder (ASD) have difficulties in information processing, and, thus, investigation of alpha oscillations is of particular interest in this population. Previous studies have demonstrated alterations in this neural activity in individuals with ASD; however, little is known about alpha ERD during simultaneous presentation of auditory and visual stimuli in children with and without ASD. As alpha oscillations are intimately related to attention, and attention deficit is one of the common co-occurring conditions of ASD, we predict that children with ASD can have altered alpha ERD in one of the sensory domains. In the present study, we used MEG to investigate alpha ERD in groups of 20 children with ASD and 20 age-matched typically developing controls. Simple amplitude-modulated tones were presented together with a fixation cross appearing on the screen. The results showed that children with ASD had a bilateral reduction in alpha-band ERD in the auditory but not visual cortex. Moreover, alterations in the auditory cortex were associated with a higher presence of autistic traits measured in behavioral assessment.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 70 Via Alberoni, Lido, 30126 Venice, Italy;
| | - Irina Buyanova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Olga Buivolova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, 2A Shelepikhinaskaya Naberezhnaya, 123290 Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Scientific Research and Practical Center of Pediatric Psychoneurology, 74 Michurinskiy Prospekt, 119602 Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
- Institute of Linguistics, Russian Academy of Sciences, 1/1 Bolshoy Kislovsky Ln, 125009 Moscow, Russia
| |
Collapse
|
4
|
Wakim KM, Foxe JJ, Molholm S. Cued motor processing in autism and typical development: A high-density electrical mapping study of response-locked neural activity in children and adolescents. Eur J Neurosci 2023; 58:2766-2786. [PMID: 37340622 DOI: 10.1111/ejn.16063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Motor atypicalities are common in autism spectrum disorder (ASD) and are often evident prior to classical ASD symptoms. Despite evidence of differences in neural processing during imitation in autistic individuals, research on the integrity and spatiotemporal dynamics of basic motor processing is surprisingly sparse. To address this need, we analysed electroencephalography (EEG) data recorded from a large sample of autistic (n = 84) and neurotypical (n = 84) children and adolescents while they performed an audiovisual speeded reaction time (RT) task. Analyses focused on RTs and response-locked motor-related electrical brain responses over frontoparietal scalp regions: the late Bereitschaftspotential, the motor potential and the reafferent potential. Evaluation of behavioural task performance indicated greater RT variability and lower hit rates in autistic participants compared to typically developing age-matched neurotypical participants. Overall, the data revealed clear motor-related neural responses in ASD, but with subtle differences relative to typically developing participants evident over fronto-central and bilateral parietal scalp sites prior to response onset. Group differences were further parsed as a function of age (6-9, 9-12 and 12-15 years), sensory cue preceding the response (auditory, visual and bi-sensory audiovisual) and RT quartile. Group differences in motor-related processing were most prominent in the youngest group of children (age 6-9), with attenuated cortical responses observed for young autistic participants. Future investigations assessing the integrity of such motor processes in younger children, where larger differences may be present, are warranted.
Collapse
Affiliation(s)
- Kathryn-Mary Wakim
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
5
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Bhat A. fNIRS-Based Differences in Cortical Activation during Tool Use, Pantomimed Actions, and Meaningless Actions between Children with and without Autism Spectrum Disorder (ASD). Brain Sci 2023; 13:876. [PMID: 37371356 DOI: 10.3390/brainsci13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Children with autism spectrum disorder (ASD) have difficulties with tool use and pantomime actions. The current study utilized functional near-infrared spectroscopy (fNIRS) to examine the neural mechanisms underlying these gestural difficulties. Thirty-one children with and without ASD (age (mean ± SE) = 11.0 ± 0.6) completed a naturalistic peg-hammering task using an actual hammer (hammer condition), pantomiming hammering actions (pantomime condition), and performing meaningless actions with similar joint motions (meaningless condition). Children with ASD exhibited poor praxis performance (praxis error: TD = 17.9 ± 1.7; ASD = 27.0 ± 2.6, p < 0.01), which was significantly correlated with their cortical activation (R = 0.257 to 0.543). Both groups showed left-lateralized activation, but children with ASD demonstrated more bilateral activation during all gestural conditions. Compared to typically developing children, children with ASD showed hyperactivation of the inferior parietal lobe and hypoactivation of the middle/inferior frontal and middle/superior temporal regions. Our findings indicate intact technical reasoning (typical left-IPL activation) but atypical visuospatial and proprioceptive processing (hyperactivation of the right IPL) during tool use in children with ASD. These results have important implications for clinicians and researchers, who should focus on facilitating/reducing the burden of visuospatial and proprioceptive processing in children with ASD. Additionally, fNIRS-related biomarkers could be used for early identification through early object play/tool use and to examine neural effects following gesture-based interventions.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Children's Hospital, Wilmington, DE 19803, USA
| | - Daisuke Tsuzuki
- Department of Information Science, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
- Interdisciplinary Neuroscience Graduate (ING) Program, Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Pavlenko VB, Kaida AI, Klinkov VN, Mikhailova AA, Orekhova LS, Portugalskaya AA. Features of reactivity of the EEG mu rhythm in children with autism spectrum disorders in helping behavior situations. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2023. [DOI: 10.24075/brsmu.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
One of the subjects being discussed by the professional community currently is the role possibly played by the mirror neuron system (MNS) in the violation of social behavior of children with autism spectrum disorders (ASD). The MNS is known to shape the perception of emotions of others and understanding and imitation of their actions. Mu rhythm desynchronization in EEG is considered to be the indicator of the MNS activation. The purpose of this study was to identify the features of reactivity of the EEG mu rhythm within an individually determined frequency range in preschoolers with ASD in situations requiring instrumental, emotional and altruistic helping behavior (HB). The study involved children 4–7 years old with ASD (n = 26) and their normally developing peers without the condition (n = 37). Although in most cases, HB was more pronounced in the group of normally developing children, the differences between the groups are significant only for altruistic HP (p < 0.01), and for the situation requiring complex altruistic and emotional HP it approaches significance (p = 0.09). Evaluation of the mu rhythm reactivity indices showed that the tasks invoking complex altruistic and emotional HB bring this indicator down significantly in children with ASD compared to the group of normally developing participants, as shown by the central leads of the left and right hemispheres and the parietal lead of the right hemisphere (C3: p = 0.02 ; C4: p = 0.03; P4: p = 0.03). It is assumed that the detected features stem from the impaired functioning of the MNS and the downstream regulation to the MNS from prefrontal cortex and other areas of the neocortex. The data obtained can be used in development of EEG biofeedback training protocols for children with ASD.
Collapse
Affiliation(s)
- VB Pavlenko
- Vernadsky Crimean Federal University, Simferopol, Russia
| | - AI Kaida
- Vernadsky Crimean Federal University, Simferopol, Russia
| | - VN Klinkov
- Vernadsky Crimean Federal University, Simferopol, Russia
| | - AA Mikhailova
- Vernadsky Crimean Federal University, Simferopol, Russia
| | - LS Orekhova
- Vernadsky Crimean Federal University, Simferopol, Russia
| | | |
Collapse
|
7
|
Desaunay P, Clochon P, Doidy F, Hinault T, Lambrechts A, Wantzen P, Wallois F, Mahmoudzadeh M, Guile JM, Guénolé F, Baleyte JM, Eustache F, Bowler DM, Guillery-Girard B. Intact memory storage but impaired retrieval in visual memory in autism: New insights from an electrophysiological study. Autism Res 2023; 16:99-105. [PMID: 36317823 DOI: 10.1002/aur.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
In a recent study on visual episodic memory (Desaunay, Clochon, et al., 2020), we have shown event-related potentials (ERPs) differences associated with priming (150-300 msec), familiarity (350-470 msec), and recollection (600-700 msec), in young people with autism spectrum disorders (ASD) compared with typical development (TD). To go further into the study of the processes of storage and retrieval of the memory trace, we re-analyzed Desaunay, Clochon, et al's data using time-frequency analysis, that is, event-related synchronization and desynchronization (ERS/ERD). This allows a decomposition of the spectral power within frequency bands associated with these ERPs. We focused both on the same time windows and the same regions of interest as previously published. We mainly identified, in ASD compared with TD, reduced ERS in low-frequencies (delta, theta) in early time-windows, and non-significant differences in ERD in higher frequencies (alpha, beta1) in all time-windows. Reduced ERS during recognition confirmed previously reported diminution of priming effects and difficulties in manipulation and retrieval of both semantic and episodic information. Conversely, preserved ERD corroborates a preservation of memory storage processes. These observations are consistent with a cognitive model of memory in ASD, that suggests difficulties in cognitive operations or executive demand at retrieval, subsequent to successful long-term storage of information. LAY SUMMARY: We assessed the EEG synchronization and desynchronization, during visual episodic recognition. We observed, in youth with Autism, reduced synchronization in low-frequencies (delta, theta), suggesting reduced access to and manipulation of long-term stored information. By contrast, non-significant differences in desynchronization at higher frequencies (alpha, beta frequency bands), that support long-term stored semantic and episodic information, suggested preserved memory traces.
Collapse
Affiliation(s)
- Pierre Desaunay
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Patrice Clochon
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Franck Doidy
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Anna Lambrechts
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Prany Wantzen
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Fabrice Wallois
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Mahdi Mahmoudzadeh
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Jean-Marc Guile
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Fabian Guénolé
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Jean-Marc Baleyte
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, Hôpital Universitaire de Créteil, Créteil, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Bérengère Guillery-Girard
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| |
Collapse
|
8
|
Ippolito G, Bertaccini R, Tarasi L, Di Gregorio F, Trajkovic J, Battaglia S, Romei V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022; 10:biomedicines10123189. [PMID: 36551945 PMCID: PMC9775381 DOI: 10.3390/biomedicines10123189] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations (7-13 Hz) are the dominant rhythm in both the resting and active brain. Accordingly, translational research has provided evidence for the involvement of aberrant alpha activity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia, major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes at play, not to mention recent technical and methodological advances in this domain. Herein, we seek to address this issue by reviewing the literature gathered on this topic over the last ten years. For each neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger the associated symptomatology, as well as a summary of the most relevant studies and scientific contributions issued throughout the last decade. We conclude with some advice and recommendations that might improve future inquiries within this field.
Collapse
Affiliation(s)
- Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Jelena Trajkovic
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
9
|
Birba A, Fittipaldi S, Cediel Escobar JC, Gonzalez Campo C, Legaz A, Galiani A, Díaz Rivera MN, Martorell Caro M, Alifano F, Piña-Escudero SD, Cardona JF, Neely A, Forno G, Carpinella M, Slachevsky A, Serrano C, Sedeño L, Ibáñez A, García AM. Multimodal Neurocognitive Markers of Naturalistic Discourse Typify Diverse Neurodegenerative Diseases. Cereb Cortex 2022; 32:3377-3391. [PMID: 34875690 PMCID: PMC9376869 DOI: 10.1093/cercor/bhab421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.
Collapse
Affiliation(s)
- Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Judith C Cediel Escobar
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
- Departamento de Estudios Psicológicos, Facultad de Derecho y Ciencias Sociales, Universidad Icesi, Cali 1234567, Colombia
| | - Cecilia Gonzalez Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustina Legaz
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET, C1060AAF Buenos Aires, Argentina
| | - Mariano N Díaz Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Agency of Scientific and Technological Promotion, C1425FQD Buenos Aires, Argentina
| | - Miquel Martorell Caro
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | | | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
| | - Alejandra Neely
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
| | - Gonzalo Forno
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- School of Psychology, Universidad de los Andes, 7620001 Santiago, Chile
- Alzheimer's and other cognitive disorders group, Institute of Neurosciences, University of Barcelona, 8007 Barcelona, Spain
| | - Mariela Carpinella
- Unidad de Neurociencias, Instituto Conci Carpinella, 5000 Córdoba, Argentina
- Facultad de Medicina, Universidad Católica de Cuyo Sede San Luis, 5700 San Luis, Argentina
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, 7800003 Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador & University of Chile, 7500000 Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, 7690000 Santiago, Chile
| | - Cecilia Serrano
- Unidad de Neurología Cognitiva, Hospital César Milstein, C1221AC Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 8431166 Santiago, Chile
| |
Collapse
|
10
|
Shao J, Zhang F, Chen C, Wang Y, Wang Q, Zhou J. Brain Network for Exploring the Change of Brain Neurotransmitter 5-Hydroxytryptamine of Autism Children by Resting-State EEG. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5451277. [PMID: 35502411 PMCID: PMC9056263 DOI: 10.1155/2022/5451277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
The study was aimed at understanding the brain network and the change rule of brain neurotransmitter 5-hydroxytryptamine (5-HT) in autism children through resting-state electroencephalogram (EEG). 20 autistic children in hospital were selected and defined as the observation group. Meanwhile, 20 healthy children were defined as the control group. EEG signals were collected for the two groups. Fuzzy C-means (FCM) algorithm was used to extract features of EEG signals, and DTF was applied for the causal association between multichannel EEG signals. The two groups were compared for the average function value and regional efficiency of the brain neurotransmitter 5-HT. The results showed that the classification accuracy of frontal F7 channel, left frontal FP1 channel, and temporal T6 channel was 95.2%, 95.3%, and 91.2%, respectively. The average of high beta frequency band, low beta frequency band, theta frequency band, and alpha frequency band in the control group was significantly higher than that in the observation group under the optimal threshold (P < 0.05). Compared with normal subjects (34.27), the average function of 5-HT in the brain was 20.13 in patients with low function and 45.74 in patients with hyperfunction. In conclusion, FCM algorithm can feature extraction of EEG signals, especially in the frontal F7 channel, the left frontal FP1 channel, and the TEMPORAL T6 channel, which has high classification accuracy and can well express the EEG signals of autistic children. The level of 5-HT in autistic children is lower than that in healthy people, and it is closely related to loneliness and depression.
Collapse
Affiliation(s)
- Jun Shao
- Department of Physical Diagnostics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Fan Zhang
- Department of Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Chuanzhi Chen
- Department of Nuclear Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Ye Wang
- Department of Physical Diagnostics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Qiang Wang
- Department of Cardiology, Mudanjiang Medical University, Second Affiliated Hospital, Mudanjiang, 157000 Heilongjiang, China
| | - Jie Zhou
- Department of Fever Clinics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| |
Collapse
|
11
|
Luo Y, Adamek JH, Crocetti D, Mostofsky SH, Ewen JB. Dissociation in Neural Correlates of Hyperactive/Impulsive vs. Inattentive Symptoms in Attention-Deficit/Hyperactivity Disorder. Front Neurosci 2022; 16:893239. [PMID: 35812240 PMCID: PMC9256983 DOI: 10.3389/fnins.2022.893239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders characterized in current diagnostic criteria by two dominant symptoms, inattention and hyperactivity/impulsivity. Here, we show that task-related alpha (8-12 Hz) interhemispheric connectivity changes, as assessed during a unimanual finger-tapping task, is correlated with inattentive symptom severity (r = 0.55, p = 0.01) but not with severity of hyperactive/impulsive symptoms. Prior published analyses of the same dataset have already show that alpha event-related desynchronization (ERD) in the hemisphere contralateral to unimanual tapping is related to hyperactive/impulsive symptom severity (r = 0.43, p = 0.04) but not to inattentive symptom severity. Our findings demonstrate a neurobiological dissociation in ADHD symptom severity, with implications for understanding the structure of endophenotypes in the disorder as well as for biomarker development.
Collapse
Affiliation(s)
- Yu Luo
- Kennedy Krieger Institute, Baltimore, MD, United States.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jack H Adamek
- Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Williams OOF, Coppolino M, Perreault ML. Sex differences in neuronal systems function and behaviour: beyond a single diagnosis in autism spectrum disorders. Transl Psychiatry 2021; 11:625. [PMID: 34887388 PMCID: PMC8660826 DOI: 10.1038/s41398-021-01757-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is associated with functional brain alterations that underlie the expression of behaviour. Males are diagnosed up to four times more than females, and sex differences have been identified in memory, cognitive flexibility, verbal fluency, and social communication. Unfortunately, there exists a lack of information on the sex-dependent mechanisms of ASD, as well as biological markers to distinguish sex-specific symptoms in ASD. This can often result in a standardized diagnosis for individuals across the spectrum, despite significant differences in the various ASD subtypes. Alterations in neuronal connectivity and oscillatory activity, such as is observed in ASD, are highly coupled to behavioural states. Yet, despite the well-identified sexual dimorphisms that exist in ASD, these functional patterns have rarely been analyzed in the context of sex differences or symptomology. This review summarizes alterations in neuronal oscillatory function in ASD, discusses the age, region, symptom and sex-specific differences that are currently observed across the spectrum, and potential targets for regulating neuronal oscillatory activity in ASD. The need to identify sex-specific biomarkers, in order to facilitate specific diagnostic criteria and allow for more targeted therapeutic approaches for ASD will also be discussed.
Collapse
Affiliation(s)
| | | | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
13
|
Ewen JB, Puts NA, Mostofsky SH, Horn PS, Gilbert DL. Associations between Task-Related Modulation of Motor-Evoked Potentials and EEG Event-Related Desynchronization in Children with ADHD. Cereb Cortex 2021; 31:5526-5535. [PMID: 34231840 PMCID: PMC8568000 DOI: 10.1093/cercor/bhab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolaas A Puts
- Neurodevelopmental Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Stewart H Mostofsky
- Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald L Gilbert
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Lidstone DE, Miah FZ, Poston B, Beasley JF, Mostofsky SH, Dufek JS. Children with Autism Spectrum Disorder Show Impairments During Dynamic Versus Static Grip-force Tracking. Autism Res 2020; 13:2177-2189. [PMID: 32830457 DOI: 10.1002/aur.2370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/07/2022]
Abstract
Impairments in visuomotor integration (VMI) may contribute to anomalous development of motor, as well as social-communicative, skills in children with autism spectrum disorder (ASD). However, it is relatively unknown whether VMI impairments are specific to children with ASD versus children with other neurodevelopmental disorders. As such, this study addressed the hypothesis that children with ASD, but not those in other clinical control groups, would show greater deficits in high-VMI dynamic grip-force tracking versus low-VMI static presentation. Seventy-nine children, aged 7-17 years, participated: 22 children with ASD, 17 children with fetal alcohol spectrum disorder (FASD), 18 children with Attention-Deficit Hyperactivity Disorder (ADHD), and 22 typically developing (TD) children. Two grip-force tracking conditions were examined: (1) a low-VMI condition (static visual target) and (2) a high-VMI condition (dynamic visual target). Low-frequency force oscillations <0.5 Hz during the visuomotor task were also examined. Two-way ANCOVAs were used to examine group x VMI and group x frequency effects (α = 0.05). Children with ASD showed a difficulty, above that seen in the ADHD/FASD groups, tracking dynamic, but not static, visual stimuli as compared to TD children. Low-frequency force oscillations <0.25 Hz were also significantly greater in the ASD versus the TD group. This study is the first to report VMI deficits during dynamic versus static grip-force tracking and increased proportion of force oscillations <0.25 Hz during visuomotor tracking in the ASD versus TD group. Dynamic VMI impairments may be a core psychophysiologic feature that could contribute to impaired development of motor and social-communicative skills in ASD. LAY SUMMARY: Children with autism spectrum disorder (ASD) show difficulties using dynamic visual stimuli to guide their own movements compared to their typically developing (TD) peers. It is unknown whether children without a diagnosis of ASD, but with other neurological disorders, show similar difficulties processing dynamic visual stimuli. In this study, we showed that children with ASD show a difficulty using dynamic, but not static, visual stimuli to guide movement that may explain atypical development of motor and social skills.
Collapse
Affiliation(s)
- Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Faria Z Miah
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Julie F Beasley
- Univerisity of Nevada, Las Vegas Medicine Ackerman Autism Center, Las Vegas, Nevada, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
15
|
Wilson RB, Elashoff D, Gouelle A, Smith BA, Wilson AM, Dickinson A, Safari T, Hyde C, Jeste SS. Quantitative Gait Analysis in Duplication 15q Syndrome and Nonsyndromic ASD. Autism Res 2020; 13:1102-1110. [PMID: 32282133 DOI: 10.1002/aur.2298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023]
Abstract
Motor impairments occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD) and in individuals with ASD without a genetic diagnosis (nonsyndromic ASD). In particular, abnormalities in gait in ASD have been linked to language delay, ASD severity, and likelihood of having a genetic disorder. Quantitative measures of motor function can improve our ability to evaluate motor differences in individuals with syndromic and nonsyndromic ASD with varying levels of intellectual disability and adaptive skills. To evaluate this methodology, we chose to use quantitative gait analysis to study duplication 15q syndrome (dup15q syndrome), a genetic disorder highly penetrant for motor delays, intellectual disability, and ASD. We evaluated quantitative gait variables in individuals with dup15q syndrome (n = 39) and nonsyndromic ASD (n = 21) and compared these data to a reference typically developing cohort. We found a gait pattern of slow pace, poor postural control, and large gait variability in dup15q syndrome. Our findings improve characterization of motor function in dup15q syndrome and nonsyndromic ASD. Quantitative gait analysis can be used as a translational method and can improve our identification of clinical endpoints to be used in treatment trials for these syndromes. Autism Res 2020, 13: 1102-1110. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Motor impairments, particularly abnormalities in walking, occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD). Here, using quantitative gait analysis, we find that individuals with duplication 15q syndrome have an atypical gait pattern that differentiates them from typically developing and nonsyndromic ASD individuals. Our findings improve motor characterization in dup15q syndrome and nonsyndromic ASD.
Collapse
Affiliation(s)
- Rujuta B Wilson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, Los Angeles, California, USA
| | - Arnaud Gouelle
- Gait and Balance Academy, Protokinetics, Havertown, Pennsylvania, USA.,Laboratory Performance, Sante, Metrologie, Societe (PSMS), UFR STAPS, Reims, France
| | - Beth A Smith
- Division of Biokinesiology and Physical Therapy and Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Andrew M Wilson
- Greater Los Angeles VA HealthCare System, Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tabitha Safari
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Carly Hyde
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shafali S Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Birba A, Beltrán D, Martorell Caro M, Trevisan P, Kogan B, Sedeño L, Ibáñez A, García AM. Motor-system dynamics during naturalistic reading of action narratives in first and second language. Neuroimage 2020; 216:116820. [PMID: 32278096 PMCID: PMC7412856 DOI: 10.1016/j.neuroimage.2020.116820] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Do embodied semantic systems play different roles depending on when and how well a given language was learned? Emergent evidence suggests that this is the case for isolated, decontextualized stimuli, but no study has addressed the issue considering naturalistic narratives. Seeking to bridge this gap, we assessed motor-system dynamics in 26 Spanish-English bilinguals as they engaged in free, unconstrained reading of naturalistic action texts (ATs, highlighting the characters’ movements) and neutral texts (NTs, featuring low motility) in their first and second language (L1, L2). To explore functional connectivity spread over each reading session, we recorded ongoing high-density electroencephalographic signals and subjected them to functional connectivity analysis via a spatial clustering approach. Results showed that, in L1, AT (relative to NT) reading involved increased connectivity between left and right central electrodes consistently implicated in action-related processes, as well as distinct source-level modulations in motor regions. In L2, despite null group-level effects, enhanced motor-related connectivity during AT reading correlated positively with L2 proficiency and negatively with age of L2 learning. Taken together, these findings suggest that action simulations during unconstrained narrative reading involve neural couplings between motor-sensitive mechanisms, in proportion to how consolidated a language is. More generally, such evidence addresses recent calls to test the ecological validity of motor-resonance effects while offering new insights on their relation with experiential variables.
Collapse
Affiliation(s)
- Agustina Birba
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - David Beltrán
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Tenerife, 3820, Spain
| | - Miguel Martorell Caro
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | | | - Boris Kogan
- Institute of Basic and Applied Psychology and Technology (IPSIBAT), National University of Mar del Plata, Buenos Aires, Argentina; National Agency of Scientific and Technological Promotion (ANPCyT), Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Agustín Ibáñez
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina; Centre of Excellence in Cognition and Its Disorders, Australian Research Council (ARC), Sydney, NSW, 2109, Australia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, 7550344, Chile; Universidad Autónoma del Caribe, Barranquilla, 08002, Colombia
| | - Adolfo M García
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina; Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Harvy J, Ewen JB, Thakor N, Bezerianos A, Li J. Cortical Functional Connectivity during Praxis in Autism Spectrum Disorder. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:333-336. [PMID: 31945909 DOI: 10.1109/embc.2019.8857903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal functional connectivity was reported as one of the underlying characteristics of autism spectrum disorder (ASD). Considering the motor deficits in ASD, we utilized praxis to investigate the neural mechanisms of ASD during motor task. Since the previous functional connectivity studies reported divergent results, we explored the properties of the functional connectivity using graph metrics to address brain organization alterations of ASD. We proposed the use of eLORETA to investigate the cortical connectivity during praxis based on a cohort of 45 high-functioning ASD (HFA) children and 45 typically developing (TD) children. The between-group comparison revealed higher clustering coefficient and lower global efficiency for HFA relative to TD while the between-phase comparison suggested decreasing global efficiency, increasing characteristic path length for TD. Nodal metrics exhibited significant differences between groups in frontal and occipital regions. These regions also showed significant changes of nodal metrics and connection strengths between baseline and praxis execution for TD. However, there were no significant changes in global, nodal metrics and connection strengths between phases for HFA. Our study suggested that cortical connectivity in ASD exhibited lower overall efficiency and a deficit in reorganization, which deepens the understanding of abnormal brain organization in ASD.
Collapse
|
18
|
McAuliffe D, Hirabayashi K, Adamek JH, Luo Y, Crocetti D, Pillai AS, Zhao Y, Crone NE, Mostofsky SH, Ewen JB. Increased mirror overflow movements in ADHD are associated with altered EEG alpha/beta band desynchronization. Eur J Neurosci 2019; 51:1815-1826. [PMID: 31821643 DOI: 10.1111/ejn.14642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Children with ADHD show developmentally abnormal levels of mirror overflow-unintentional movements occurring symmetrically opposite of intentional movements. Because mirror overflow correlates with ADHD behavioral symptoms, the study of disinhibition in motor control may shed light on physiologic mechanisms underlying impaired behavioral/cognitive control. This is a case-controlled study of EEG recording from 25 children with ADHD and 25 typically developing (TD) controls performing unilateral sequential finger tapping, with overflow movements measured using electronic goniometers. Consistent with previously published findings, children with ADHD showed increased mirror overflow as compared with TD peers. EEG findings revealed less lateralized alpha modulation (event-related desynchronization; ERD) and decreased magnitude of beta ERD in ADHD; both alpha and beta ERD reflect cortical activation. Moderation analysis revealed a significant association between beta ERD and overflow, independent of diagnosis; and an equivocal (p = .08) effect of diagnosis on the relationship between alpha ERD and overflow, with a significant effect in children with ADHD but not TD children. These results suggest two mechanisms involved with mirror overflow: one reflected in beta ipsilateral to the intentional movement and relevant to both children with ADHD and controls, and the other seemingly more specific to ADHD (alpha, contralateral to movement).
Collapse
Affiliation(s)
| | | | | | - Yu Luo
- Kennedy Krieger Institute, Baltimore, MD, USA.,Beihan University, Beijing, China
| | | | - Ajay S Pillai
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Yi Zhao
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Ewen JB, Marvin AR, Law K, Lipkin PH. Epilepsy and Autism Severity: A Study of 6,975 Children. Autism Res 2019; 12:1251-1259. [PMID: 31124277 DOI: 10.1002/aur.2132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Epilepsy is known to occur in a higher-than-expected proportion of individuals with autism spectrum disorders (ASDs). Prior studies of this heterogeneous disorder have suggested that intelligence quotient (IQ) may drive this relationship. Because intellectual disability (ID) is, independently of ASD, a risk factor for epilepsy, current literature calls into question the long-understood unique relationship between ASD and epilepsy. Second, data have been unclear about whether developmental regression in ASD is associated with epilepsy. Using two cohorts from an online research registry, totaling 6,975 children with ASD, we examined the independent role of four ASD severity measures in driving the relationship with epilepsy: ID, language impairment, core ASD symptom severity, and motor dysfunction, controlling for two known relevant factors: age and sex. We also examined whether developmental regression and epilepsy have an independent statistical link. All four ASD severity factors showed independent statistical associations with epilepsy in one cohort, and three in the other. ID showed the largest relative risk (RR) in both cohorts. Effect sizes were modest. Regression similarly showed an independent statistical association with epilepsy, but with small effect size. Similar to previous work, ID showed the greatest contribution to RR for epilepsy among children with ASD. However, other ASD severity markers showed statistical associations, demonstrating that the ASD-epilepsy association is not reducible to the effect of ID. Inconsistencies in the literature may be due to underpowered studies, yet moving forward with larger-n studies, clinical significance and scientific relevance may be dictated by effect size and not merely statistical significance. Autism Res 2019, 12: 1251-1259. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Epilepsy is known to occur more often in individuals with autism spectrum disorders (ASDs) than is the case in the general population. The association between ASD and epilepsy is of interest because studying the two disorders in combination may help advance our understanding of genetic, molecular, and cellular mechanisms-as well as therapies-for both. Recent studies have suggested that intelligence quotient (IQ) alone in individuals with ASD may account for the increased prevalence of epilepsy. However, our approach was to look at a range of severity factors relevant to ASD and to look for correlations between each severity factor and epilepsy, within two large samples of children with ASD. In summary, we found that each severity factor-presence of intellectual disability, presence of language atypicalities, ASD-specific symptoms severity, and presence of motor issues-independently predicted a small increased risk for epilepsy, countering the argument that IQ alone is a risk factor. We also examined whether epilepsy is associated with developmental regression. Although severe epilepsy syndromes such as Landau-Kleffner syndrome are known to cause autistic-like symptoms following developmental regression, there is controversy about whether other forms of epilepsy are associated with the more common developmental regression seen in many young children with epilepsy. Indeed, we found a small association between epilepsy and developmental regression.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Alison R Marvin
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland
| | - Kiely Law
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul H Lipkin
- Department of Medical Informatics, Interactive Autism Network at Kennedy Krieger, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Bo J, Pang Y, Dong L, Xing Y, Xiang Y, Zhang M, Wright M, Shen B. Brief Report: Does Social Functioning Moderate the Motor Outcomes of a Physical Activity Program for Children with Autism Spectrum Disorders-A Pilot Study. J Autism Dev Disord 2019; 49:415-421. [PMID: 30136114 DOI: 10.1007/s10803-018-3717-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several recent studies revealed that physical activity programs that focus on fundamental motor skills could enhance both motor and social performance. The purpose of this pilot was to explore whether the social impairment of Autistic Spectrum Disorders (ASD) moderated the motor outcomes of a physical activity program. Nine children with ASD attended a 2-week program that adopted the Classroom Pivotal Response Teaching. Significant improvements on motor skills were found in all participants. Furthermore, children with more social impairment demonstrated greater motor improvement in comparison to those with less social problems. Findings suggest the importance of social factors on the outcomes of physical activity programs and the interplays between social and motor domains in ASD interventions.
Collapse
Affiliation(s)
- Jin Bo
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China.
- Department of Psychology, Eastern Michigan University, 341 MJ Science Building, Ypsilanti, MI, 48197, USA.
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - YanLi Pang
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
| | - Liangsan Dong
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
| | - Yu Xing
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
| | - Yuan Xiang
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
| | - Mingting Zhang
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
| | - Morgan Wright
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Shen
- School of Physical Education, Central China Normal University, Wuhan, People's Republic of China
- Division of Kinesiology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
21
|
Murias M, Major S, Compton S, Buttinger J, Sun JM, Kurtzberg J, Dawson G. Electrophysiological Biomarkers Predict Clinical Improvement in an Open-Label Trial Assessing Efficacy of Autologous Umbilical Cord Blood for Treatment of Autism. Stem Cells Transl Med 2018; 7:783-791. [PMID: 30070044 PMCID: PMC6216432 DOI: 10.1002/sctm.18-0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
This study was a phase I, single-center, and open-label trial of a single intravenous infusion of autologous umbilical cord blood in young children with autism spectrum disorder (ASD). Twenty-five children between the ages of 2 and 6 with a confirmed diagnosis of ASD and a qualified banked autologous umbilical cord blood unit were enrolled. Safety results and clinical outcomes measured at 6 and 12 months post-infusion have been previously published. The purpose of the present analysis was to explore whether measures of electroencephalography (EEG) theta, alpha, and beta power showed evidence of change after treatment and whether baseline EEG characteristics were predictive of clinical improvement. The primary endpoint was the parent-reported Vineland adaptive behavior scales-II socialization subscale score, collected at baseline, 6- and 12-month visits. In addition, the expressive one word picture vocabulary test 4 and the clinical global impression-improvement scale were administered. Electrophysiological recordings were taken during viewing of dynamic social and nonsocial stimuli at 6 and 12 months post-treatment. Significant changes in EEG spectral characteristics were found by 12 months post-infusion, which were characterized by increased alpha and beta power and decreased EEG theta power. Furthermore, higher baseline posterior EEG beta power was associated with a greater degree of improvement in social communication symptoms, highlighting the potential for an EEG biomarker to predict variation in outcome. Taken together, the results suggest that EEG measures may be useful endpoints for future ASD clinical trials. Stem Cells Translational Medicine 2018;7:783-791.
Collapse
Affiliation(s)
- Michael Murias
- Duke Institute for Brain SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke Center for Autism and Brain DevelopmentDuke UniversityDurhamNorth CarolinaUSA
| | - Samantha Major
- Duke Center for Autism and Brain DevelopmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Scott Compton
- Duke Center for Autism and Brain DevelopmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Jessica Buttinger
- Duke Center for Autism and Brain DevelopmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Jessica M. Sun
- Robertson Clinical and Translational Cell Therapy ProgramDuke UniversityDurhamNorth CarolinaUSA
| | - Joanne Kurtzberg
- Robertson Clinical and Translational Cell Therapy ProgramDuke UniversityDurhamNorth CarolinaUSA
| | - Geraldine Dawson
- Duke Institute for Brain SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke Center for Autism and Brain DevelopmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
22
|
Bi XA, Liu Y, Jiang Q, Shu Q, Sun Q, Dai J. The Diagnosis of Autism Spectrum Disorder Based on the Random Neural Network Cluster. Front Hum Neurosci 2018; 12:257. [PMID: 29997489 PMCID: PMC6028564 DOI: 10.3389/fnhum.2018.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
As the autism spectrum disorder (ASD) is highly heritable, pervasive and prevalent, the clinical diagnosis of ASD is vital. In the existing literature, a single neural network (NN) is generally used to classify ASD patients from typical controls (TC) based on functional MRI data and the accuracy is not very high. Thus, the new method named as the random NN cluster, which consists of multiple NNs was proposed to classify ASD patients and TC in this article. Fifty ASD patients and 42 TC were selected from autism brain imaging data exchange (ABIDE) database. First, five different NNs were applied to build five types of random NN clusters. Second, the accuracies of the five types of random NN clusters were compared to select the highest one. The random Elman NN cluster had the highest accuracy, thus Elman NN was selected as the best base classifier. Then, we used the significant features between ASD patients and TC to find out abnormal brain regions which include the supplementary motor area, the median cingulate and paracingulate gyri, the fusiform gyrus (FG) and the insula (INS). The proposed method provides a new perspective to improve classification performance and it is meaningful for the diagnosis of ASD.
Collapse
Affiliation(s)
- Xia-An Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yingchao Liu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qin Jiang
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qing Shu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jianhua Dai
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Wilson RB, Enticott PG, Rinehart NJ. Motor development and delay: advances in assessment of motor skills in autism spectrum disorders. Curr Opin Neurol 2018; 31:134-139. [PMID: 29493557 PMCID: PMC8653917 DOI: 10.1097/wco.0000000000000541] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Motor impairments in neurodevelopmental disorders, specifically autism spectrum disorder (ASD), are prevalent and pervasive. Moreover, motor impairments may be the first sign of atypical development in ASD and likely contribute to abnormalities in social communication. However, measurement of motor function in ASD has lagged behind other behavioral phenotyping. Quantitative and neurodiagnostic measures of motor function can help identify specific motor impairments in ASD and the underlying neural mechanisms that might be implicated. These findings can serve as markers of early diagnosis, clinical stratification, and treatment targets. RECENT FINDINGS Here, we briefly review recent studies on the importance of motor function to other developmental domains in ASD. We then highlight studies that have applied quantitative and neurodiagnostic measures to better measure motor impairments in ASD and the neural mechanisms that may contribute to these abnormalities. SUMMARY Information from advanced quantitative and neurodiagnostic methods of motor function contribute to a better understanding of the specific and subtle motor impairments in ASD, and the relationship of motor function to language and social development. Greater utilization of these methods can assist with early diagnosis and development of targeted interventions. However, there remains a need to utilize these approaches in children with neurodevelopmental disorders across a developmental trajectory and with varying levels of cognitive function.
Collapse
Affiliation(s)
- Rujuta B. Wilson
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA Division of Pediatric Neurology, Los Angeles, California, USA
| | - Peter G. Enticott
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Nicole J. Rinehart
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
24
|
Castelhano J, Tavares P, Mouga S, Oliveira G, Castelo-Branco M. Stimulus dependent neural oscillatory patterns show reliable statistical identification of autism spectrum disorder in a face perceptual decision task. Clin Neurophysiol 2018; 129:981-989. [PMID: 29554581 DOI: 10.1016/j.clinph.2018.01.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Electroencephalographic biomarkers have been widely investigated in autism, in the search for diagnostic, prognostic and therapeutic outcome measures. Here we took advantage of the information available in temporal oscillatory patterns evoked by simple perceptual decisions to investigate whether stimulus dependent oscillatory signatures can be used as potential biomarkers in autism spectrum disorder (ASD). METHODS We studied an extensive set of stimuli (9 categories of faces) and performed data driven classification (Support vector machine, SVM) of ASD vs. Controls with features based on the EEG power responses. We carried out an extensive time-frequency and synchrony analysis of distinct face categories requiring different processing mechanisms in terms of non-holistic vs. holistic processing. RESULTS We found that the neuronal oscillatory responses of low gamma frequency band, locked to photographic and abstract two-tone (Mooney) face stimulus presentation are decreased in ASD vs. the control group. We also found decreased time-frequency (TF) responses in the beta band in ASD after 350 ms, possibly related to motor preparation. On the other hand, synchrony in the 30-45 Hz band showed a distinct spatial pattern in ASD. These power changes enabled accurate classification of ASD with an SVM approach. SVM accuracy was approximately 85%. ROC curves showed about 94% AUC (area under the curve). Combination of Mooney and Photographic face stimuli evoked features enabled a better separation between groups, reaching an AUC of 98.6%. CONCLUSION We identified a relative decrease in EEG responses to face stimuli in ASD in the beta (15-30 Hz; >350 ms) and gamma (30-45 Hz; 55-80 Hz; 50-350 ms) frequency ranges. These can be used as input of a machine learning approach to separate between groups with high accuracy. SIGNIFICANCE Future studies can use EEG time-frequency patterns evoked by particular types of faces as a diagnostic biomarker and potentially as outcome measures in therapeutic trials.
Collapse
Affiliation(s)
- João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Tavares
- Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Susana Mouga
- Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Guiomar Oliveira
- Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Pillai AS, McAuliffe D, Lakshmanan BM, Mostofsky SH, Crone NE, Ewen JB. Altered task-related modulation of long-range connectivity in children with autism. Autism Res 2018; 11:245-257. [PMID: 28898569 PMCID: PMC5825245 DOI: 10.1002/aur.1858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022]
Abstract
Functional connectivity differences between children with autism spectrum disorder (ASD) and typically developing children have been described in multiple datasets. However, few studies examine the task-related changes in connectivity in disorder-relevant behavioral paradigms. In this paper, we examined the task-related changes in functional connectivity using EEG and a movement-based paradigm that has behavioral relevance to ASD. Resting-state studies motivated our hypothesis that children with ASD would show a decreased magnitude of functional connectivity during the performance of a motor-control task. Contrary to our initial hypothesis, however, we observed that task-related modulation of functional connectivity in children with ASD was in the direction opposite to that of TDs. The task-related connectivity changes were correlated with clinical symptom scores. Our results suggest that children with ASD may have differences in cortical segregation/integration during the performance of a task, and that part of the differences in connectivity modulation may serve as a compensatory mechanism. Autism Res 2018, 11: 245-257. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Decreased connectivity between brain regions is thought to cause the symptoms of autism. Because most of our knowledge comes from data in which children are at rest, we do not know how connectivity changes directly lead to autistic behaviors, such as impaired gestures. When typically developing children produced complex movements, connectivity decreased between brain regions. In children with autism, connectivity increased. It may be that behavior-related changes in brain connectivity are more important than absolute differences in connectivity in autism.
Collapse
Affiliation(s)
- Ajay S Pillai
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Danielle McAuliffe
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Balaji M Lakshmanan
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Stewart H Mostofsky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
26
|
Larrain-Valenzuela J, Zamorano F, Soto-Icaza P, Carrasco X, Herrera C, Daiber F, Aboitiz F, Billeke P. Theta and Alpha Oscillation Impairments in Autistic Spectrum Disorder Reflect Working Memory Deficit. Sci Rep 2017; 7:14328. [PMID: 29085047 PMCID: PMC5662653 DOI: 10.1038/s41598-017-14744-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
A dysfunction in the excitatory-inhibitory (E/I) coordination in neuronal assembly has been proposed as a possible neurobiological mechanism of Autistic Spectrum Disorder (ASD). However, the potential impact of this mechanism in cognitive performance is not fully explored. Since the main consequence of E/I dysfunction is an impairment in oscillatory activity and its underlying cognitive computations, we assessed the electroencephalographic activity of ASD and typically developing (TD) subjects during a working-memory task. We found that ASD subjects committed more errors than TD subjects. Moreover, TD subjects demonstrated a parametric modulation in the power of alpha and theta band while ASD subjects did not demonstrate significant modulations. The preceding leads to significant differences between the groups in both the alpha power placed on the occipital cortex and the theta power placed on the left premotor and the right prefrontal cortex. The impaired theta modulation correlated with autistic symptoms. The results indicated that ASD may present an alteration in the recruitment of the oscillatory activity during working-memory, and this alteration could be related to the physiopathology of the disorder.
Collapse
Affiliation(s)
- Josefina Larrain-Valenzuela
- División de Neurociencia, Centro de Investigación en Complejidad Social (neuroCICS), Universidad del Desarrollo, Av. Las Condes 12461, Las Condes, Santiago, 7590943, Chile
| | - Francisco Zamorano
- División de Neurociencia, Centro de Investigación en Complejidad Social (neuroCICS), Universidad del Desarrollo, Av. Las Condes 12461, Las Condes, Santiago, 7590943, Chile.,Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana de Santiago, Av. Vitacura 5951, Vitacura, 7650568, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencias Cognitivas, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Ximena Carrasco
- Laboratorio de Neurociencias Cognitivas, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudia Herrera
- Sociedad de Psiquiatría y Neurología de la Infancia y Adolescencia de Chile, Esmeralda 678, Santiago, 8320053, Chile
| | - Francisca Daiber
- Laboratorio de Neurociencias Cognitivas, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Francisco Aboitiz
- Laboratorio de Neurociencias Cognitivas, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Pablo Billeke
- División de Neurociencia, Centro de Investigación en Complejidad Social (neuroCICS), Universidad del Desarrollo, Av. Las Condes 12461, Las Condes, Santiago, 7590943, Chile.
| |
Collapse
|
27
|
Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:528-536. [PMID: 29170759 DOI: 10.1016/j.bpsc.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. Methods The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. Results In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. Conclusions These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.
Collapse
|
28
|
Pihko E, Lönnberg P, Lauronen L, Wolford E, Andersson S, Lano A, Metsäranta M, Nevalainen P. Lack of Cortical Correlates of Response Inhibition in 6-Year-Olds Born Extremely Preterm - Evidence from a Go/NoGo Task in Magnetoencephalographic Recordings. Front Hum Neurosci 2017; 10:666. [PMID: 28111544 PMCID: PMC5216039 DOI: 10.3389/fnhum.2016.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Children born extremely preterm (EPT) may have difficulties in response inhibition, but the neural basis of such problems is unknown. We recorded magnetoencephalography (MEG) during a somatosensory Go/NoGo task in 6-year-old children born EPT (n = 22) and in children born full term (FT; n = 21). The children received tactile stimuli randomly to their left little (target) and index (non-target) finger and were instructed to squeeze a soft toy with the opposite hand every time they felt a stimulus on the little finger. Behaviorally, the EPT children performed worse than the FT children, both in responding to the target finger stimulation and in refraining from responding to the non-target finger stimulation. In MEG, after the non-target finger stimulation (i.e., during the response inhibition), the sensorimotor alpha oscillation levels in the contralateral-to-squeeze hemisphere were elevated in the FT children when compared with a condition with corresponding stimulation but no task (instead the children were listening to a story and not attending to the fingers). This NoGo task effect was absent in the EPT children. Further, in the sensorimotor cortex contralateral to the tactile stimulation, the post-stimulus suppression was less pronounced in the EPT than FT children. We suggest that the missing NoGo task effect and lower suppression of sensorimotor oscillations are markers of deficient functioning of the sensorimotor networks in the EPT children.
Collapse
Affiliation(s)
- Elina Pihko
- Department of Neuroscience and Biomedical Engineering, Aalto UniversityEspoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| | - Piia Lönnberg
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| | - Leena Lauronen
- Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Elina Wolford
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Päivi Nevalainen
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| |
Collapse
|