1
|
Wang L, Li C, Liu L, Zhang W, Liu Y. The effect of venlafaxine on language function in patients with subcortical aphasia. J Psychiatr Res 2025; 186:172-191. [PMID: 40250324 DOI: 10.1016/j.jpsychires.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To investigate the effect of venlafaxine on the recovery of language function in patients with subcortical aphasia by using functional magnetic resonance imaging (fMRI) and to provide a theoretical basis for clinical drug treatment in patients with subcortical aphasia. METHODS Thirty-two patients with subcortical aphasia after acute stroke were randomly divided into a venlafaxine group and a control group, with 16 patients in each group. Behavioral assessments of speech function and fMRI were performed three times at 3 ± 2 days (V1), 30 ± 7 days (V2), and 90 ± 7 days (V3) after symptom onset. Behavioral assessments of speech function included the Chinese version of the Western Aphasia Test, the spontaneous word frequency test, and the image naming test. fMRI examinations include task-fMRI, resting-state fMRI (rs-fMRI), and diffusion tensor imaging (DTI). RESULTS ① There were no differences in language function scores between the venlafaxine and control groups at pretreatment (P > 0.05); however, the venlafaxine group scores were higher than those of the control group at time points V2 and V3 (P < 0.05), and the venlafaxine group scores were significantly greater at V2 than at V1 (P < 0.05) and at V3 than at V2 (P < 0.05). ② Regarding fMRI results, there were no significant between-group differences at V1, whereas compared with those in the control group, the venlafaxine group had greater activation and functional connection of the bilateral Broca area and structural connectivity of nerve fibers in the nondominant dorsal and ventral pathways at V2 and greater activation and functional activity of the bilateral Broca region and increased structural connectivity of the bilateral ventral pathway nerve fibers at V3. CONCLUSION Early application of venlafaxine can significantly promote the recovery of language function in patients with subcortical aphasia. With the recovery of language function, we observed corresponding changes in the fMRI data of patients at various stages after stroke. These results are helpful for understanding the mechanism of language function recovery in patients with subcortical aphasia and provide new ideas for the treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Lingjie Wang
- Department of Neurology, Huizhou Central People's Hospital, No. 41, Eling North Road, Huizhou, Guangdong Province, 516001, PR China
| | - Chunyong Li
- Dept. Encephalopathy, Guangzhou Conghua District Hospital of Traditional Chinese Medicine, No. 21, Jiekou Street Town North Road, Conghua District, Guangzhou, 510010, PR China.
| | - Liu Liu
- Department of Neurosurgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, Yuexiu District, China, No. 111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China
| | - Wei Zhang
- Dept. Neurology, Chaozhou Central Hospital, No. 84, Huancheng West Road, Xiangqiao District, Chaozhou, 521000, PR China
| | - Yan Liu
- Dept. Neurology, Foresea Life Insurance Guangzhou General Hospital, No. 703, Xincheng Avenue, Guangzhou, 511340, PR China.
| |
Collapse
|
2
|
Dávila G, Berthier ML. Are pharmacotherapeutics effective for treating aphasia? Expert Rev Neurother 2024; 24:267-271. [PMID: 38323346 DOI: 10.1080/14737175.2024.2313557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Aphasia is a communication disorder resulting from stroke and/or neurodegenerative conditions which involve the left cerebral hemisphere. It is a debilitating disorder affecting a person's ability to speak, understand, read, and write. Its impact on daily life necessitates therapeutic strategies to aid patients with aphasia. AREAS COVERED In this special report, the authors speculate whether current pharmacotherapeutic strategies are effective in treating aphasia. The authors look at aphasia caused by different conditions and how this could impact therapy before providing the reader with their expert perspectives. The aim of this paper is for the reader to gain a clearer understanding of the efficacy of the current pharmacotherapeutic treatment paradigms as well as potential future developments. EXPERT OPINION The exploration of pharmacotherapy for aphasia in vascular brain disorders and neurodegenerative diseases has received much attention in recent years with various therapeutic strategies having been put forward. In terms of whether pharmacotherapy is effective for the treatment of aphasia, there is still no clear-cut answer. Further research is needed with more studies requiring a greater emphasis on language and communication deficits. Biomarkers may also help clinicians provide their patients with a more personalized treatment plan.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Málaga, Málaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Málaga, Málaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA) - Plataforma Bionand, Málaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Málaga, Málaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA) - Plataforma Bionand, Málaga, Spain
| |
Collapse
|
3
|
Taghvaei M, Mechanic-Hamilton DJ, Sadaghiani S, Shakibajahromi B, Dolui S, Das S, Brown C, Tackett W, Khandelwal P, Cook P, Shinohara RT, Yushkevich P, Bassett DS, Wolk DA, Detre JA. Impact of white matter hyperintensities on structural connectivity and cognition in cognitively intact ADNI participants. Neurobiol Aging 2024; 135:79-90. [PMID: 38262221 PMCID: PMC10872454 DOI: 10.1016/j.neurobiolaging.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 01/25/2024]
Abstract
We used indirect brain mapping with virtual lesion tractography to test the hypothesis that the extent of white matter tract disconnection due to white matter hyperintensities (WMH) is associated with corresponding tract-specific cognitive performance decrements. To estimate tract disconnection, WMH masks were extracted from FLAIR MRI data of 481 cognitively intact participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used as regions of avoidance for fiber tracking in diffusion MRI data from 50 healthy young participants from the Human Connectome Project. Estimated tract disconnection in the right inferior fronto-occipital fasciculus, right frontal aslant tract, and right superior longitudinal fasciculus mediated the effects of WMH volume on executive function. Estimated tract disconnection in the left uncinate fasciculus mediated the effects of WMH volume on memory and in the right frontal aslant tract on language. In a subset of ADNI control participants with amyloid data, positive status increased the probability of periventricular WMH and moderated the relationship between WMH burden and tract disconnection in executive function performance.
Collapse
Affiliation(s)
- Mohammad Taghvaei
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - William Tackett
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
6
|
Zhuo B, Deng S, Li B, Zhu W, Zhang M, Qin C, Meng Z. Possible Effects of Acupuncture in Poststroke Aphasia. Behav Neurol 2023; 2023:9445381. [PMID: 37091130 PMCID: PMC10115536 DOI: 10.1155/2023/9445381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/30/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Neural plasticity promotes the reorganization of language networks and is an essential recovery mechanism for poststroke aphasia (PSA). Neuroplasticity may be a pivotal bridge to elucidate the potential recovery mechanisms of acupuncture for aphasia. Therefore, understanding the neuroplasticity mechanism of acupuncture in PSA is crucial. However, the underlying therapeutic mechanism of neuroplasticity in PSA after acupuncture needs to be explored. Excitotoxicity after brain injury affects the activity of neurotransmitters and disrupts the transmission of normal neuron information. Thus, a helpful strategy of acupuncture might be to improve PSA by affecting the availability of these neurotransmitters and glutamate receptors at synapses. In addition, the regulation of neuroplasticity by acupuncture may also be related to the regulation of astrocytes. Considering the guiding significance of acupuncture for clinical treatment, it is necessary to carry out further study about the influence of acupuncture on the recovery of aphasia after stroke. This study summarizes the current research on the neural mechanism of acupuncture in treating PSA. It seeks to elucidate the potential effect of acupuncture on the recovery of PSA from the perspective of synaptic plasticity and integrity of gray and white matter.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review. Brain Sci 2022; 12:brainsci12101273. [PMID: 36291207 PMCID: PMC9599395 DOI: 10.3390/brainsci12101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the relative scarcity of studies focusing on pharmacotherapy in aphasia, there is evidence in the literature indicating that remediation of language disorders via pharmaceutical agents could be a promising aphasia treatment option. Among the various agents used to treat chronic aphasic deficits, cholinergic drugs have provided meaningful results. In the current review, we focused on published reports investigating the impact of acetylcholine on language and other cognitive disturbances. It has been suggested that acetylcholine plays an important role in neuroplasticity and is related to several aspects of cognition, such as memory and attention. Moreover, cholinergic input is diffused to a wide network of cortical areas, which have been associated with language sub-processes. This could be a possible explanation for the positive reported outcomes of cholinergic drugs in aphasia recovery, and specifically in distinct language processes, such as naming and comprehension, as well as overall communication competence. However, evidence with regard to functional alterations in specific brain areas after pharmacotherapy is rather limited. Finally, despite the positive results derived from the relevant studies, cholinergic pharmacotherapy treatment in post-stroke aphasia has not been widely implemented. The present review aims to provide an overview of the existing literature in the common neuroanatomical substrate of cholinergic pathways and language related brain areas as a framework for interpreting the efficacy of cholinergic pharmacotherapy interventions in post-stroke aphasia, following an integrated approach by converging evidence from neuroanatomy, neurophysiology, and neuropsychology.
Collapse
|
8
|
Capizzi A, Woo J, Magat E. Poststroke aphasia treatment: A review of pharmacologic therapies and noninvasive brain stimulation techniques. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Harvey SR, Carragher M, Dickey MW, Pierce JE, Rose ML. Treatment dose in post-stroke aphasia: A systematic scoping review. Neuropsychol Rehabil 2021; 31:1629-1660. [PMID: 32631143 DOI: 10.1080/09602011.2020.1786412] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
Little is known about how the amount of treatment a person with aphasia receives impacts aphasia recovery following stroke, yet this information is vital to ensure effective treatments are delivered efficiently. Furthermore, there is no standard dose terminology in the stroke rehabilitation or aphasia literature. This scoping review aims to systematically map the evidence regarding dose in treatments for post-stroke aphasia and to explore how treatment dose is conceptualized, measured and reported in the literature. A comprehensive search was undertaken in June 2019. One hundred and twelve intervention studies were reviewed. Treatment dose (amount of treatment) has been conceptualized as both a measure of time and a count of discrete therapeutic elements. Doses ranged from one to 100 hours, while some studies reported session doses of up to 420 therapeutic inputs per session. Studies employ a wide variety of treatment schedules (i.e., session dose, session frequency, and intervention duration) and the interaction of dose parameters may impact the dose-response relationship. High dose interventions delivered over short periods may improve treatment efficiency while maintaining efficacy. Person- and treatment-level factors that mediate tolerance of high dose interventions require further investigation. Systematic exploration of dose-response relationships in post-stroke aphasia treatment is required.
Collapse
Affiliation(s)
- Sam R Harvey
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Marcella Carragher
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Michael Walsh Dickey
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Pierce
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| | - Miranda L Rose
- Discipline of Speech Pathology, School of Allied Health, Human Services and Sport, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Bundoora, Australia
| |
Collapse
|
11
|
La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, Ottenhausen M, Demichelis G, Romito LM, Acerbi F, Broggi M, Schiariti MP, Ferroli P, Bruzzone MG, Serrao G. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Front Neurol 2021; 12:641586. [PMID: 33732210 PMCID: PMC7959833 DOI: 10.3389/fneur.2021.641586] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The frontal aslant tract (FAT) is a recently identified white matter tract connecting the supplementary motor complex and lateral superior frontal gyrus to the inferior frontal gyrus. Advancements in neuroimaging and refinements to anatomical dissection techniques of the human brain white matter contributed to the recent description of the FAT anatomical and functional connectivity and its role in the pathogenesis of several neurological, psychiatric, and neurosurgical disorders. Through the application of diffusion tractography and intraoperative electrical brain stimulation, the FAT was shown to have a role in speech and language functions (verbal fluency, initiation and inhibition of speech, sentence production, and lexical decision), working memory, visual–motor activities, orofacial movements, social community tasks, attention, and music processing. Microstructural alterations of the FAT have also been associated with neurological disorders, such as primary progressive aphasia, post-stroke aphasia, stuttering, Foix–Chavany–Marie syndrome, social communication deficit in autism spectrum disorders, and attention–deficit hyperactivity disorder. We provide a systematic review of the current literature about the FAT anatomical connectivity and functional roles. Specifically, the aim of the present study relies on providing an overview for practical neurosurgical applications for the pre-operative, intra-operative, and post-operative assessment of patients with brain tumors located around and within the FAT. Moreover, some useful tests are suggested for the neurosurgical evaluation of FAT integrity to plan a safer surgery and to reduce post-operative deficits.
Collapse
Affiliation(s)
- Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Eldahaby
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Greco
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomo Bertolini
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Levi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Malte Ottenhausen
- Department of Neurological Surgery, University Medical Center Mainz, Mainz, Germany
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Michele Romito
- Parkinson's Disease and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Paolo Schiariti
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Graziano Serrao
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Adjunctive Approaches to Aphasia Rehabilitation: A Review on Efficacy and Safety. Brain Sci 2021; 11:brainsci11010041. [PMID: 33401678 PMCID: PMC7823462 DOI: 10.3390/brainsci11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Aphasia is one of the most socially disabling post-stroke deficits. Although traditional therapies have been shown to induce adequate clinical improvement, aphasic symptoms often persist. Therefore, unconventional rehabilitation techniques which act as a substitute or as an adjunct to traditional approaches are urgently needed. The present review provides an overview of the efficacy and safety of the principal approaches which have been proposed over the last twenty years. First, we examined the effectiveness of the pharmacological approach, principally used as an adjunct to language therapy, reporting the mechanism of action of each single drug for the recovery of aphasia. Results are conflicting but promising. Secondly, we discussed the application of Virtual Reality (VR) which has been proven to be useful since it potentiates the ecological validity of the language therapy by using virtual contexts which simulate real-life everyday contexts. Finally, we focused on the use of Transcranial Direct Current Stimulation (tDCS), both discussing its applications at the cortical level and highlighting a new perspective, which considers the possibility to extend the use of tDCS over the motor regions. Although the review reveals an extraordinary variability among the different studies, substantial agreement has been reached on some general principles, such as the necessity to consider tDCS only as an adjunct to traditional language therapy.
Collapse
|
13
|
Dávila G, Moyano MP, Edelkraut L, Moreno-Campos L, Berthier ML, Torres-Prioris MJ, López-Barroso D. Pharmacotherapy of Traumatic Childhood Aphasia: Beneficial Effects of Donepezil Alone and Combined With Intensive Naming Therapy. Front Pharmacol 2020; 11:1144. [PMID: 32848757 PMCID: PMC7411310 DOI: 10.3389/fphar.2020.01144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
At present, language therapy is the only available treatment for childhood aphasia (CA). Studying new interventions to augment and hasten the benefits provided by language therapy in children is strongly needed. CA frequently emerges as a consequence of traumatic brain injury and, as in the case of adults, it may be associated with dysfunctional activity of neurotransmitter systems. The use of cognitive-enhancing drugs, alone or combined with aphasia therapy, promotes improvement of language deficits in aphasic adults. In this study we report the case of a 9-year-old right-handed girl, subject P, who had chronic anomic aphasia associated with traumatic lesions in the left temporal-parietal cortex. We performed a single-subject, open-label study encompassing administration of the cholinergic agent donepezil (DP) alone during 12 weeks, followed by a combination of DP and intensive naming therapy (INT) for 2 weeks and thereafter by a continued treatment of DP alone during 12 weeks, a 4-week washout period, and another 2 weeks of INT. Four comprehensive language and neuropsychological evaluations were performed at different timepoints along the study, and multiple naming evaluations were performed after each INT in order to assess performance in treated and untreated words. Structural magnetic resonance imaging (MRI) was performed at baseline. MRI revealed two focal lesions in the left hemisphere, one large involving the posterior inferior and middle temporal gyri and another comprising the angular gyrus. Overall, baseline evaluation disclosed marked impairment in naming with mild-to-moderate compromise of spontaneous speech, repetition, and auditory comprehension. Executive and attention functions were also affected, but memory, visuoconstructive, and visuoperceptive functions were preserved. Treatment with DP alone significantly improved spontaneous speech, auditory comprehension, repetition, and picture naming, in addition to processing speed, selective, and sustained attention. Combined DP-INT further improved naming. After washout of both interventions, most of these beneficial changes remained. Importantly, DP produced no side effects and subject P attained the necessary level of language competence to return to regular schooling. In conclusion, the use of DP alone and in combination with INT improved language function and related cognitive posttraumatic deficits in a child with acquired aphasia. Further studies in larger samples are warranted.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María Pilar Moyano
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
14
|
Berthier ML, Dávila G, Torres-Prioris MJ, Moreno-Torres I, Clarimón J, Dols-Icardo O, Postigo MJ, Fernández V, Edelkraut L, Moreno-Campos L, Molina-Sánchez D, de Zaldivar PS, López-Barroso D. Developmental Dynamic Dysphasia: Are Bilateral Brain Abnormalities a Signature of Inefficient Neural Plasticity? Front Hum Neurosci 2020; 14:73. [PMID: 32265672 DOI: 10.3389/fnhum.2020.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The acquisition and evolution of speech production, discourse and communication can be negatively impacted by brain malformations. We describe, for the first time, a case of developmental dynamic dysphasia (DDD) in a right-handed adolescent boy (subject D) with cortical malformations involving language-eloquent regions (inferior frontal gyrus) in both the left and the right hemispheres. Language evaluation revealed a markedly reduced verbal output affecting phonemic and semantic fluency, phrase and sentence generation and verbal communication in everyday life. Auditory comprehension, repetition, naming, reading and spelling were relatively preserved, but executive function was impaired. Multimodal neuroimaging showed a malformed cerebral cortex with atypical configuration and placement of white matter tracts bilaterally and abnormal callosal fibers. Dichotic listening showed right hemisphere dominance for language, and functional magnetic resonance imaging (fMRI) additionally revealed dissociated hemispheric language representation with right frontal activation for phonology and bilateral dominance for semantic processing. Moreover, subject D also had congenital mirror movements (CMM), defined as involuntary movements of one side of the body that mirror intentional movements of the other side. Transcranial magnetic stimulation and fMRI during voluntary unimanual (left and right) hand movements showed bilateral motor cortex recruitment and tractography revealed a lack of decussation of bilateral corticospinal tracts. Genetic testing aimed to detect mutations that disrupt the development of commissural tracts correlating with CMM (e.g., Germline DCC mutations) was negative. Overall, our findings suggest that DDD in subject D resulted from the underdevelopment of the left inferior frontal gyrus with limited capacity for plastic reorganization by its homologous counterpart in the right hemisphere. Corpus callosum anomalies probably contributed to hinder interhemispheric connectivity necessary to compensate language and communication deficits after left frontal involvement.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | | | - Jordi Clarimón
- Department of Neurology and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Oriol Dols-Icardo
- Department of Neurology and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - María J Postigo
- Neurophysiology Unit, Regional University Hospital Carlos Haya, Málaga, Spain
| | - Victoria Fernández
- Neurophysiology Unit, Regional University Hospital Carlos Haya, Málaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Diana Molina-Sánchez
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Paloma Solo de Zaldivar
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| |
Collapse
|