1
|
Moretto M, Luciani BF, Zigiotto L, Saviola F, Tambalo S, Cabalo DG, Annicchiarico L, Venturini M, Jovicich J, Sarubbo S. Resting State Functional Networks in Gliomas: Validation With Direct Electric Stimulation Using a New Tool for Planning Brain Resections. Neurosurgery 2024; 95:1358-1368. [PMID: 38836617 PMCID: PMC11540433 DOI: 10.1227/neu.0000000000003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Precise mapping of functional networks in patients with brain tumor is essential for tailoring personalized treatment strategies. Resting-state functional MRI (rs-fMRI) offers an alternative to task-based fMRI, capable of capturing multiple networks within a single acquisition, without necessitating task engagement. This study demonstrates a strong concordance between preoperative rs-fMRI maps and the gold standard intraoperative direct electric stimulation (DES) mapping during awake surgery. METHODS We conducted an analysis involving 28 patients with glioma who underwent awake surgery with DES mapping. A total of 100 DES recordings were collected to map sensorimotor (SMN), language (LANG), visual (VIS), and speech articulation cognitive domains. Preoperative rs-fMRI maps were generated using an updated version of the ReStNeuMap software, specifically designed for rs-fMRI data preprocessing and automatic detection of 7 resting-state networks (SMN, LANG, VIS, speech articulation, default mode, frontoparietal, and visuospatial). To evaluate the agreement between these networks and those mapped with invasive cortical mapping, we computed patient-specific distances between them and intraoperative DES recordings. RESULTS Automatically detected preoperative functional networks exhibited excellent agreement with intraoperative DES recordings. When we spatially compared DES points with their corresponding networks, we found that SMN, VIS, and speech articulatory DES points fell within the corresponding network (median distance = 0 mm), whereas for LANG a median distance of 1.6 mm was reported. CONCLUSION Our findings show the remarkable consistency between key functional networks mapped noninvasively using presurgical rs-fMRI and invasive cortical mapping. This evidence highlights the utility of rs-fMRI for personalized presurgical planning, particularly in scenarios where awake surgery with DES is not feasible to protect eloquent areas during tumor resection. We have made the updated tool for automated functional network estimation publicly available, facilitating broader utilization of rs-fMRI mapping in various clinical contexts, including presurgical planning, functional reorganization over follow-up periods, and informing future treatments such as radiotherapy.
Collapse
Affiliation(s)
- Manuela Moretto
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | | | - Luca Zigiotto
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Psychology, University of Trento, Trento, Italy
| | - Francesca Saviola
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Stefano Tambalo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Donna Gift Cabalo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luciano Annicchiarico
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Martina Venturini
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Silvio Sarubbo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Cellular, Computation and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMED), University of Trento, Trento, Italy
| |
Collapse
|
2
|
Martín-Monzón I, Amores-Carrera L, Sabsevitz D, Herbet G. Intraoperative mapping of the right hemisphere: a systematic review of protocols that evaluate cognitive and social cognitive functions. Front Psychol 2024; 15:1415523. [PMID: 38966723 PMCID: PMC11222673 DOI: 10.3389/fpsyg.2024.1415523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
The right hemisphere of the brain is often referred to as the non-dominant hemisphere. Though this is meant to highlight the specialized role of the left hemisphere in language, the use of this term runs the risk of oversimplifying or minimizing the essential functions of the right hemisphere. There is accumulating evidence from functional MRI, clinical lesion studies, and intraoperative mapping data that implicate the right hemisphere in a diverse array of cognitive functions, including visuospatial functions, attentional processes, and social cognitive functions. Neuropsychological deficits following right hemisphere resections are well-documented, but there is a general paucity of literature focusing on how to best map these functions during awake brain surgery to minimize such deficits. To address this gap in the literature, a systematic review was conducted to examine the cognitive and emotional processes associated with the right hemisphere and the neuropsychological tasks frequently used for mapping the right hemisphere during awake brain tumor surgery. It was found that the most employed tests to assess language and speech functions in patients with lesions in the right cerebral hemisphere were the naming task and the Pyramids and Palm Trees Test (PPTT). Spatial cognition was typically evaluated using the line bisection task, while social cognition was assessed through the Reading the Mind in the Eyes (RME) test. Dual-tasking and the movement of the upper and lower limbs were the most frequently used methods to evaluate motor/sensory functions. Executive functions were typically assessed using the N-back test and Stroop test. To the best of our knowledge, this is the first comprehensive review to help provide guidance on the cognitive functions most at risk and methods to map such functions during right awake brain surgery. Systematic Review Registration PROSPERO database [CRD42023483324].
Collapse
Affiliation(s)
- Isabel Martín-Monzón
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - Laura Amores-Carrera
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - David Sabsevitz
- Department of Psychiatry and Psychology, Division of Neuropsychology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier, France
- Praxiling Lab, UMR5267 CNRS & Paul Valéry University, Bâtiment de Recherche Marc Bloch, Montpellier, France
- Department of Medicine, University of Montpellier, Campus ADV, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Tomasino B, Weis L, Maieron M, Pauletto G, Verriello L, Budai R, Ius T, D'Agostini S, Fadiga L, Skrap M. Motor or non-motor speech interference? A multimodal fMRI and direct cortical stimulation mapping study. Neuropsychologia 2024; 198:108876. [PMID: 38555064 DOI: 10.1016/j.neuropsychologia.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
We retrospectively analyzed data from 15 patients, with a normal pre-operative cognitive performance, undergoing awake surgery for left fronto-temporal low-grade glioma. We combined a pre-surgical measure (fMRI maps of motor- and language-related centers) with intra-surgical measures (MNI-registered cortical sites data obtained during intra-operative direct electrical stimulation, DES, while they performed the two most common language tasks: number counting and picture naming). Selective DES effects along the precentral gyrus/inferior frontal gyrus (and/or the connected speech articulation network) were obtained. DES of the precentral gyrus evoked the motor speech arrest, i.e., anarthria (with apparent mentalis muscle movements). We calculated the number of shared voxels between the lip-tongue and overt counting related- and silent naming-related fMRI maps and the Volumes of Interest (VOIs) obtained by merging together the MNI sites at which a given speech disturbance was observed, normalized on their mean the values (i.e., Z score). Both tongue- and lips-related movements fMRI maps maximally overlapped (Z = 1.05 and Z = 0.94 for lips and tongue vs. 0.16 and -1.003 for counting and naming) with the motor speech arrest seed. DES of the inferior frontal gyrus, pars opercularis and the rolandic operculum induced speech arrest proper (without apparent mentalis muscle movements). This area maximally overlapped with overt counting-related fMRI map (Z = -0.11 and Z = 0.09 for lips and tongue vs. 0.9 and 0.0006 for counting and naming). Interestingly, our fMRI maps indicated reduced Broca's area activity during silent speech compared to overt speech. Lastly, DES of the inferior frontal gyrus, pars opercularis and triangularis evoked variations of the output, i.e., dysarthria, a motor speech disorder occurring when patients cannot control the muscles used to produce articulated sounds (phonemes). Silent object naming-related fMRI map maximally overlapped (Z = -0.93 and Z = -1.04 for lips and tongue vs. -1.07 and 0.99 for counting and naming) with this seed. Speech disturbances evoked by DES may be thought of as selective interferences with specific recruitment of left inferior frontal gyrus and precentral cortex which are differentiable in terms of the specific interference induced.
Collapse
Affiliation(s)
| | - Luca Weis
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Marta Maieron
- Fisica Medica, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Giada Pauletto
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Lorenzo Verriello
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Riccardo Budai
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Tamara Ius
- Neurochirurgia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Serena D'Agostini
- Neuroradiologia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Genova, Italy; Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Italy
| | - Miran Skrap
- Neurochirurgia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| |
Collapse
|
4
|
Sun C, Zhang J, Bu L, Lu J, Yao Y, Wu J. A speech fluency brain network derived from gliomas. Brain Commun 2024; 6:fcae153. [PMID: 38756538 PMCID: PMC11098038 DOI: 10.1093/braincomms/fcae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The brain network of speech fluency has not yet been investigated via a study with a large and homogenous sample. This study analysed multimodal imaging data from 115 patients with low-grade glioma to explore the brain network of speech fluency. We applied voxel-based lesion-symptom mapping to identify domain-specific regions and white matter pathways associated with speech fluency. Direct cortical stimulation validated the domain-specific regions intra-operatively. We then performed connectivity-behaviour analysis with the aim of identifying connections that significantly correlated with speech fluency. Voxel-based lesion-symptom mapping analysis showed that damage to domain-specific regions (the middle frontal gyrus, the precentral gyrus, the orbital part of inferior frontal gyrus and the insula) and white matter pathways (corticospinal fasciculus, internal capsule, arcuate fasciculus, uncinate fasciculus, frontal aslant tract) are associated with reduced speech fluency. Furthermore, we identified connections emanating from these domain-specific regions that exhibited significant correlations with speech fluency. These findings illuminate the interaction between domain-specific regions and 17 domain-general regions-encompassing the superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and rolandic operculum, superior temporal gyrus, temporal pole, inferior temporal pole, middle cingulate gyrus, supramarginal gyrus, fusiform gyrus, inferior parietal lobe, as well as subcortical structures such as thalamus-implicating their collective role in supporting fluent speech. Our detailed mapping of the speech fluency network offers a strategic foundation for clinicians to safeguard language function during the surgical intervention for brain tumours.
Collapse
Affiliation(s)
- Cechen Sun
- Department of Biostatistics, School of Public Health & National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health & National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| |
Collapse
|
5
|
Dai Z, Song L, Luo C, Liu D, Li M, Han Z. Hemispheric lateralization of language processing: insights from network-based symptom mapping and patient subgroups. Cereb Cortex 2024; 34:bhad437. [PMID: 38031356 DOI: 10.1093/cercor/bhad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres. Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
Collapse
Affiliation(s)
- Zhiyun Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Chongjing Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
8
|
Moiyadi A, Jain K, Shetty P, kumar Singh V, Radhakrishnan K, Rane P, Velayutham P. Baseline neurocognitive dysfunction is ubiquitous in intrinsic brain tumors- results from a large Indian cohort of patients and analysis of factors associated with domain-specific dysfunction. World Neurosurg X 2023; 19:100210. [PMID: 37251242 PMCID: PMC10209697 DOI: 10.1016/j.wnsx.2023.100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background Neurocognitive function (NCF) before surgery is an important marker of baseline performance in patients with brain tumors. Increasingly, neurocognitive deficits (NCD) have been demonstrated in a high proportion of patients. Selection bias (patient, tumor, and surgical procedure related) may influence the prevalence and type of domains involved in patients with gliomas. Methods We evaluated baseline NCF in a consecutive cohort of intra-axial tumors in Indian patients (n = 142). A comprehensive battery evaluating five domains - attention & executive function (EF), memory, language, visuospatial function and visuomotor abilities was used. Deficits were categorized as severe and mild-moderate. Factors associated with severe NCD were evaluated. Results Severe NCD was present in 90% of the patients, 70% of them having affection of at least 2 domains. Attention-EF, memory and visuomotor speed were most affected. 132 underwent surgery (69 awake, 63 under general anesthesia - GA). The awake cohort had younger patients with lower grade gliomas and more left sided tumors. Multi-domain dysfunction was seen almost equally in awake/GA groups as well as left/right sided tumors. On multivariate analysis, older age, lower educational status and larger tumor volume adversely affected NCF in many of the domains. Only language dysfunction was location specific (temporal lobe tumors) though not laterality (left/right) specific. Conclusions NCD were seen in a large majority of cases before surgery, including those undergoing awake surgery. Language may be affected even in tumors in the non-dominant hemisphere. Attention-EF and memory are most affected and need to be factored in while assessing patient performance intraoperatively during awake surgery as well as tailoring rehabilitative measures subsequently.
Collapse
Affiliation(s)
- Aliasgar Moiyadi
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Kanchi Jain
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Prakash Shetty
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Vikas kumar Singh
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Keerthi Radhakrishnan
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Pallavi Rane
- Clinical Research Secretariat, ACTREC, Tata Memorial Centre, Mumbai, 400012, India
| | - Parthiban Velayutham
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
9
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
10
|
Sarubbo S, Venturini M, Avesani P, Duffau H. In Reply: Planning Brain Tumor Resection Using a Probabilistic Atlas of Cortical and Subcortical Structures Critical for Functional Processing: A Proof of Concept. Oper Neurosurg (Hagerstown) 2023; 24:e246-e247. [PMID: 36716037 DOI: 10.1227/ons.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, Azienda Provinciale peri Servizi Sanitari (APSS), "S. Chiara" Hospital, Trento, Italy
| | - Martina Venturini
- Department of Neurosurgery, Azienda Provinciale peri Servizi Sanitari (APSS), "S. Chiara" Hospital, Trento, Italy
| | - Paolo Avesani
- Neuroinformatic Laboratory, Bruno Kessler Foundation, Trento Italy
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, University of Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
11
|
The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Struct Funct 2023; 228:103-120. [PMID: 35995880 DOI: 10.1007/s00429-022-02551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.
Collapse
|
12
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
13
|
Dureux A, Zigiotto L, Sarubbo S, Desoche C, Farnè A, Bolognini N, Hadj-Bouziane F. Personal space regulation is affected by unilateral temporal lesions beyond the amygdala. Cereb Cortex Commun 2022; 3:tgac031. [PMID: 36072709 PMCID: PMC9441012 DOI: 10.1093/texcom/tgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
We constantly face situations involving interactions with others that require us to automatically adjust our physical distances to avoid discomfort or anxiety. A previous case study has demonstrated that the integrity of both amygdalae is essential to regulate interpersonal distances. Despite unilateral lesion to the amygdala, as to other sectors of the medial temporal cortex, are known to also affect social behavior, their role in the regulation of interpersonal distances has never been investigated. Here, we sought to fill this gap by testing three patients with unilateral temporal lesions following surgical resections, including one patient with a lesion mainly centered on the amygdala and two with lesions to adjacent medial temporal cortex, on two versions of the stop distance paradigm (i.e. in a virtual reality environment and in a real setting). Our results showed that all three patients set shorter interpersonal distances compared to neurotypical controls. In addition, compared to controls, none of the patients adjusted such physical distances depending on facial emotional expressions, despite they preserved ability to categorize them. Finally, patients' heart rate responses differed from controls when viewing approaching faces. Our findings bring compelling evidence that unilateral lesions within the medial temporal cortex, not necessarily restricted to the amygdala, are sufficient to alter interpersonal distance, thus shedding new light on the neural circuitry regulating distance in social interactions.
Collapse
Affiliation(s)
- Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| | - Luca Zigiotto
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
- Department of Psychology, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Clément Desoche
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
- Center for Mind/Brain Sciences (CIMeC), University of Trento , Trento , Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca , 20126 Milano , Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano , 20122 Milano , Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| |
Collapse
|
14
|
Narayana S, Franklin C, Peterson E, Hunter EJ, Robin DA, Halpern A, Spielman J, Fox PT, Ramig LO. Immediate and long-term effects of speech treatment targets and intensive dosage on Parkinson's disease dysphonia and the speech motor network: Randomized controlled trial. Hum Brain Mapp 2022; 43:2328-2347. [PMID: 35141971 PMCID: PMC8996348 DOI: 10.1002/hbm.25790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022] Open
Abstract
This study compared acoustic and neural changes accompanying two treatments matched for intensive dosage but having two different treatment targets (voice or articulation) to dissociate the effects of treatment target and intensive dosage in speech therapies. Nineteen participants with Parkinsonian dysphonia (11 F) were randomized to three groups: intensive treatment targeting voice (voice group, n = 6), targeting articulation (articulation group, n = 7), or an untreated group (no treatment, n = 6). The severity of dysphonia was assessed by the smoothed cepstral peak prominence (CPPS) and neuronal changes were evaluated by cerebral blood flow (CBF) recorded at baseline, posttreatment, and 7-month follow-up. Only the voice treatment resulted in significant posttreatment improvement in CPPS, which was maintained at 7 months. Following voice treatment, increased activity in left premotor and bilateral auditory cortices was observed at posttreatment, and in the left motor and auditory cortices at 7-month follow-up. Articulation treatment resulted in increased activity in bilateral premotor and left insular cortices that were sustained at a 7-month follow-up. Activation in the auditory cortices and a significant correlation between the CPPS and CBF in motor and auditory cortices was observed only in the voice group. The intensive dosage resulted in long-lasting behavioral and neural effects as the no-treatment group showed a progressive decrease in activity in areas of the speech motor network out to a 7-month follow-up. These results indicate that dysphonia and the speech motor network can be differentially modified by treatment targets, while intensive dosage contributes to long-lasting effects of speech treatments.
Collapse
Affiliation(s)
- Shalini Narayana
- Department of Pediatrics, Division of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Eric J Hunter
- Department of Communicative Sciences and Disorders, Michigan State University, Lansing, Michigan, USA
| | - Donald A Robin
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, New Hampshire, USA
| | - Angela Halpern
- LSVT Global Inc, Tucson, Arizona, USA.,National Center for Voice and Speech and Department of Speech-Language and Hearing Sciences, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Jennifer Spielman
- National Center for Voice and Speech and Department of Speech-Language and Hearing Sciences, University of Colorado-Boulder, Boulder, Colorado, USA.,Front Range Voice Care, Denver, Colorado, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Audie L. Murphy South Texas Veterans Administration Medical Center, San Antonio, Texas, USA
| | - Lorraine O Ramig
- LSVT Global Inc, Tucson, Arizona, USA.,National Center for Voice and Speech and Department of Speech-Language and Hearing Sciences, University of Colorado-Boulder, Boulder, Colorado, USA.,Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Sarubbo S, Duffau H. Connectomic evidences driving a functional approach in neuro-oncological surgery. J Neurosurg Sci 2022; 65:545-547. [PMID: 35128917 DOI: 10.23736/s0390-5616.21.05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, "Santa Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy -
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Institut of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Landers MJ, Baene WD, Rutten GJ, Mandonnet E. The third branch of the superior longitudinal system. J Neurosurg Sci 2022; 65:548-559. [PMID: 35128918 DOI: 10.23736/s0390-5616.21.05423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the major associative fiber pathways in the brain is the superior longitudinal system. This review discusses the current knowledge gained from studies on the third branch of the superior longitudinal system (SLS) regarding its anatomy, functional role in healthy individuals, results from lesion-symptom mapping studies and intraoperative electrostimulation studies. The results of these studies clearly indicate that the third branch of the SLS is a distinct pathway, as seen both from a functional and anatomical perspective. The third branch of the SLS should be distinguished from the long segment of the arcuate fasciculus, that courses along its trajectory but seems implicated in different functions. Moreover, these studies also provide substantial evidence that the right and left third branch of the SLS have different functional roles. Finally, a hypothesis for an integrated anatomo-functional model is proposed, that describes three subcomponents of the third branch of the superior longitudinal system.
Collapse
Affiliation(s)
- Maud J Landers
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands.,Department of Cognitive Neuropsychology, University of Tilburg, Tilburg, the Netherlands
| | - Wouter de Baene
- Department of Cognitive Neuropsychology, University of Tilburg, Tilburg, the Netherlands
| | - Geert J Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands.,Department of Cognitive Neuropsychology, University of Tilburg, Tilburg, the Netherlands
| | - Emmanuel Mandonnet
- University of Paris, Paris, France - .,Frontlab, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Paris, France.,Service of Neurosurgery, Lariboisière Hospital, Paris, France
| |
Collapse
|
17
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
DE Benedictis A, Marras CE, Petit L, Sarubbo S. The inferior fronto-occipital fascicle: a century of controversies from anatomy theaters to operative neurosurgery. J Neurosurg Sci 2021; 65:605-615. [PMID: 33940782 DOI: 10.23736/s0390-5616.21.05360-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Since its first description in the early 19th century, the inferior frontooccipital fascicle (IFOF) and its anatomo-functional features were neglected in the neuroscientific literature for the last century. In the last decade, the rapid development of in vivo imaging for the reconstruction of white matter (WM) connectivity (i.e., tractography) and the consequent interest in more traditional ex vivo methods (postmortem dissection) have allowed a renewed debate about course, termination territories, anatomical relationships, and functional roles of this fascicle. EVIDENCE ACQUISITION We reviewed the main current knowledge concerning the structural and functional anatomy of the IFOF and possible implications in neurosurgical practice. EVIDENCE SYNTHESIS The IFOF connects the occipital cortex, the temporo-basal areas, the superior parietal lobule, and the pre-cuneus to the frontal lobe, passing through the ventral third of subinsular WM of the external capsule. This wide distribution of cortical terminations provides multimodal integration between several functional networks, including language, non-verbal semantic processing, object identification, visuo-spatial processing and planning, reading, facial expression recognition, memory and conceptualization, emotional and neuropsychological behavior. This anatomo-functional organization has important implication also in neurosurgical practice, especially when approaching the frontal, insular, temporo-parieto-occipital regions and the ventricular system. CONCLUSIONS The IFOF is the most extensive associative bundle of the human connectome. Its multi-layer organization reflects important implications in many aspects of brain functional processing. Accurate awareness of IFOF functional anatomy and integration between multimodal datasets coming from different sources has crucial implications for both neuroscientific knowledge and quality of neurosurgical treatments.
Collapse
Affiliation(s)
- Alessandro DE Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy -
| | - Carlo E Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| |
Collapse
|
19
|
Hodology of the superior longitudinal system of the human brain: a historical perspective, the current controversies, and a proposal. Brain Struct Funct 2021; 226:1363-1384. [PMID: 33881634 DOI: 10.1007/s00429-021-02265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The description of human white matter pathways experienced a tremendous improvement, thanks to the advancement of neuroimaging and dissection techniques. The downside of this progress is the production of redundant and conflicting literature, bound by specific studies' methods and aims. The Superior Longitudinal System (SLS), encompassing the arcuate (AF) and the superior longitudinal fasciculi (SLF), becomes an illustrative example of this fundamental issue, being one of the most studied white matter association pathways of the brain. Herein, we provide a complete illustration of this white matter fiber system's current definition, from its early descriptions in the nineteenth century to its most recent characterizations. We propose a review of both in vivo diffusion magnetic resonance imaging-based tractography and anatomical dissection studies, enclosing all the information available up to date. Based on these findings, we reconstruct the wiring diagram of the SLS, highlighting a substantial variability in the description of its cortical sites of termination and the taxonomy and partonomy that characterize the system. We aim to level up discrepancies in the literature by proposing a parallel across the various nomenclature. Consistent with the topographical arrangement already documented for commissural and projection pathways, we suggest approaching the SLS organization as an orderly and continuous wiring diagram, respecting a medio-lateral palisading topography between the different frontal, parietal, occipital, and temporal gyri rather than in terms of individualized fascicles. A better and complete description of the fine organization of white matter association pathways' connectivity is fundamental for a better understanding of brain function and their clinical and neurosurgical applications.
Collapse
|
20
|
Hybbinette H, Schalling E, Plantin J, Nygren-Deboussard C, Schütz M, Östberg P, Lindberg PG. Recovery of Apraxia of Speech and Aphasia in Patients With Hand Motor Impairment After Stroke. Front Neurol 2021; 12:634065. [PMID: 33868144 PMCID: PMC8044583 DOI: 10.3389/fneur.2021.634065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: Aphasia and apraxia of speech (AOS) after stroke frequently co-occur with a hand motor impairment but few studies have investigated stroke recovery across motor and speech-language domains. In this study, we set out to test the shared recovery hypothesis. We aimed to (1) describe the prevalence of AOS and aphasia in subacute stroke patients with a hand motor impairment and (2) to compare recovery across speech-language and hand motor domains. In addition, we also explored factors predicting recovery from AOS. Methods: Seventy participants with mild to severe paresis in the upper extremity were assessed; 50% of these (n = 35) had left hemisphere (LH) lesions. Aphasia, AOS and hand motor assessments and magnetic resonance imaging were conducted at 4 weeks (A1) and at 6 months (A2) after stroke onset. Recovery was characterized in 15 participants showing initial aphasia that also had complete follow-up data at 6 months. Results: All participants with AOS and/or aphasia had LH lesions. In LH lesioned, the prevalence of aphasia was 71% and of AOS 57%. All participants with AOS had aphasia; 80% of the participants with aphasia also had AOS. Recovery in aphasia (n = 15) and AOS (n = 12) followed a parallel pattern to that observed in hand motor impairment and recovery correlated positively across speech-language and motor domains. The majority of participants with severe initial aphasia and AOS showed a limited but similar amount of recovery across domains. Lesion volume did not correlate with results from behavioral assessments, nor with recovery. The initial aphasia score was the strongest predictor of AOS recovery. Conclusion: Our findings confirm the common occurrence of AOS and aphasia in left hemisphere stroke patients with a hand motor impairment. Recovery was similar across speech-language and motor domains, even in patients with severe impairment, supporting the shared recovery hypothesis and that similar brain recovery mechanisms are involved in speech-language and motor recovery post stroke. These observations contribute to the knowledge of AOS and its relation to motor and language functions and add information that may serve as a basis for future studies of post stroke recovery. Studies including neuroimaging and/or biological assays are required to gain further knowledge on shared brain recovery mechanisms.
Collapse
Affiliation(s)
- Helena Hybbinette
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
- Department of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Ellika Schalling
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Speech and Language Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Plantin
- Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
- Department of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Catharina Nygren-Deboussard
- Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
- Department of Rehabilitation Medicine, Danderyd University Hospital, Stockholm, Sweden
| | - Marika Schütz
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Östberg
- Department of Clinical Science, Intervention and Technology, Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Speech and Language Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Påvel G. Lindberg
- Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
- Institut de Psychiatrie et Neurosciences Paris, Inserm U1266, Université de Paris, Paris, France
| |
Collapse
|
21
|
Sarubbo S, Annicchiarico L, Corsini F, Zigiotto L, Herbet G, Moritz-Gasser S, Dalpiaz C, Vitali L, Tate M, De Benedictis A, Amorosino G, Olivetti E, Rozzanigo U, Petralia B, Duffau H, Avesani P. Planning Brain Tumor Resection Using a Probabilistic Atlas of Cortical and Subcortical Structures Critical for Functional Processing: A Proof of Concept. Oper Neurosurg (Hagerstown) 2021; 20:E175-E183. [PMID: 33372966 DOI: 10.1093/ons/opaa396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Functional preoperative planning for resection of intrinsic brain tumors in eloquent areas is still a challenge. Predicting subcortical functional framework is especially difficult. Direct electrical stimulation (DES) is the recommended technique for resection of these lesions. A reliable probabilistic atlas of the critical cortical epicenters and subcortical framework based on DES data was recently published. OBJECTIVE To propose a pipeline for the automated alignment of the corticosubcortical maps of this atlas with T1-weighted MRI. METHODS To test the alignment, we selected 10 patients who underwent resection of brain lesions by using DES. We aligned different cortical and subcortical functional maps to preoperative volumetric T1 MRIs (with/without gadolinium). For each patient we quantified the quality of the alignment, and we calculated the match between the location of the functional sites found at DES and the functional maps of the atlas. RESULTS We found an accurate brain extraction and alignment of the functional maps with both the T1 MRIs of each patient. The matching analysis between functional maps and functional responses collected during surgeries was 88% at cortical and, importantly, 100% at subcortical level, providing a further proof of the correct alignment. CONCLUSION We demonstrated quantitatively and qualitatively the reliability of this tool that may be used for presurgical planning, providing further functional information at the cortical level and a unique probabilistic prevision of distribution of the critical subcortical structures. Finally, this tool offers the chance for multimodal planning through integrating this functional information with other neuroradiological and neurophysiological techniques.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Francesco Corsini
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luca Zigiotto
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Chiara Dalpiaz
- Department of Anesthesiology and Intensive Care, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luca Vitali
- Department of Anesthesiology and Intensive Care, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Matthew Tate
- Departments of Neurosurgery and Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Gabriele Amorosino
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Benedetto Petralia
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Paolo Avesani
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
22
|
A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia. Proc Natl Acad Sci U S A 2020; 117:32779-32790. [PMID: 33273118 PMCID: PMC7768768 DOI: 10.1073/pnas.2010193117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies of healthy and impaired language have generated many verbally described hypotheses. While these verbal descriptions have advanced our understanding of language processing, some explanations are mutually incompatible, and it is unclear how they work mechanistically. We constructed a neurocomputational bilateral model of spoken language production to simulate a range of phenomena in healthy participants and patients with aphasia simultaneously, including language lateralization, impaired performance after left but not right damage, and hemispheric involvement in plasticity-dependent recovery. The model demonstrates how seemly contradictory findings can be simulated within a single framework. This provides a coherent mechanistic account of language lateralization and recovery from poststroke aphasia. Understanding the processes underlying normal, impaired, and recovered language performance has been a long-standing goal for cognitive and clinical neuroscience. Many verbally described hypotheses about language lateralization and recovery have been generated. However, they have not been considered within a single, unified, and implemented computational framework, and the literatures on healthy participants and patients are largely separated. These investigations also span different types of data, including behavioral results and functional MRI brain activations, which augment the challenge for any unified theory. Consequently, many key issues, apparent contradictions, and puzzles remain to be solved. We developed a neurocomputational, bilateral pathway model of spoken language production, designed to provide a unified framework to simulate different types of data from healthy participants and aphasic patients. The model encapsulates key computational principles (differential computational capacity, emergent division of labor across pathways, experience-dependent plasticity-related recovery) and provides an explanation for the bilateral yet asymmetric lateralization of language in healthy participants, chronic aphasia after left rather than right hemisphere lesions, and the basis of partial recovery in patients. The model provides a formal basis for understanding the relationship between behavioral performance and brain activation. The unified model is consistent with the degeneracy and variable neurodisplacement theories of language recovery, and adds computational insights to these hypotheses regarding the neural machinery underlying language processing and plasticity-related recovery following damage.
Collapse
|
23
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Zigiotto L, Annicchiarico L, Corsini F, Vitali L, Falchi R, Dalpiaz C, Rozzanigo U, Barbareschi M, Avesani P, Papagno C, Duffau H, Chioffi F, Sarubbo S. Effects of supra-total resection in neurocognitive and oncological outcome of high-grade gliomas comparing asleep and awake surgery. J Neurooncol 2020; 148:97-108. [PMID: 32303975 DOI: 10.1007/s11060-020-03494-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Awake surgery is an established technique for resection of low-grade gliomas, while its possible benefit for resection of high-grade gliomas (HGGs) needs further confirmations. This retrospective study aims to compare overall survival, extent of resection (EOR) and cognitive outcome in two groups of HGGs patients submitted to asleep or awake surgery. METHODS Thirty-three patients submitted to Gross Total Resection of contrast-enhancing area of HGGs were divided in two homogeneous groups: awake (AWg; N = 16) and asleep surgery (ASg; N = 17). All patients underwent to an extensive neuropsychological assessment before surgery (time_1), 1-week (time_2) and 4-months (time_3) after surgery. We performed analyses to assess differences in cognitive performances between groups, cognitive outcomes in each group and EOR. A comparison of overall survival (OS) between the two groups was conducted. RESULTS Statistical analyses showed no differences between groups at time_2 and time_3 in each cognitive domain, excluding selective attention that resulted higher in the AWg before surgery. Regarding cognitive outcomes, we found a reversible worsening of memory and constructional praxis, and a significant recovery at time_3, similar for both groups. Assessment of time_3 in respect to time_1 never showed differences (all ps > .074). Moreover we found a significant lower level of tumor infiltration after surgery for AWg (p < .05), with an influence on OS (p < .05). Indeed, patients of AWg showed a significant longer OS in comparison to those in the ASg (p < .01). This result was confirmed even considering only wildtype Glioblastoma (p < .05). CONCLUSION These results indicate that awake surgery, and in general a supra-total resection of enhancing area, can improve OS in HGGs patients, preserving neuro-cognitive profile and quality of life.
Collapse
Affiliation(s)
- Luca Zigiotto
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
| | - Francesco Corsini
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
| | - Luca Vitali
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Roberta Falchi
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Chiara Dalpiaz
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Mattia Barbareschi
- Department of Histopathology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Avesani
- Neuroinformatics Lab (NiLab), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Costanza Papagno
- Centro Di Riabilitazione Neurocognitiva (CeRiN), CIMeC, University of Trento, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Hugues Duffau
- Department of Neurosurgery, Hopital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Franco Chioffi
- Department of Neurosurgery, "Azienda Ospedaliera di Padova", Padua, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy.
| |
Collapse
|
25
|
Large scale networks for human hand-object interaction: Functionally distinct roles for two premotor regions identified intraoperatively. Neuroimage 2020; 204:116215. [DOI: 10.1016/j.neuroimage.2019.116215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 11/27/2022] Open
|
26
|
Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H. A normalized dataset of 1821 cortical and subcortical functional responses collected during direct electrical stimulation in patients undergoing awake brain surgery. Data Brief 2019; 28:104892. [PMID: 31886348 PMCID: PMC6921148 DOI: 10.1016/j.dib.2019.104892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
In this data article, we provide the dataset which served as the basis for our related research article “Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain” [1], which represents the first probabilistic cortical and subcortical atlas of critical structures mediating human brain functions based on direct electrical stimulation (DES) in patients undergoing awake brain surgery. 1162 cortical and 659 subcortical DES-derived responses were recorded during testing of 16 functional domains in 256 patients undergoing awake surgery. Normalized [Montreal Neurological Institute (MNI) 152] spatial coordinates for cortical and subcortical responses, and probabilistic heat maps for each functional domain, were computed using methods previously developed by our group [2,3]. Source data, including the MNI-normalized coordinates of all 1821 DES-derived cortical and subcortical data points, and multi-planar (MNI-152, T1 1mm) videos showing the probabilistic distribution of each functional domain are provided. This novel dataset can improve and refine our understanding about the functional anatomy of critical brain networks, and these data are made available for medical and neuroscience applications.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, Azienda Provinciale per i Servizi Sanitari (APSS), 9 Largo Medaglie d'Oro, 38122, Trento, Italy
| | - Matthew Tate
- Departments of Neurosurgery and Neurology, Northwestern University, Feinberg School of Medicine, 420 E Superior St, 60611, Chicago, IL, USA
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital IRCCS, 4 Piazza Sant'Onofrio, 00165, Rome, Italy
| | | | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| |
Collapse
|
27
|
Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H. Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 2019; 205:116237. [PMID: 31626897 DOI: 10.1016/j.neuroimage.2019.116237] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The structural and functional organization of brain networks subserving basic daily activities (i.e. language, visuo-spatial cognition, movement, semantics, etc.) are not completely understood to date. Here, we report the first probabilistic cortical and subcortical atlas of critical structures mediating human brain functions based on direct electrical stimulation (DES), a well-validated tool for the exploration of cerebral processing and for performing safe surgical interventions in eloquent areas. METHODS We collected 1162 cortical and 659 subcortical DES responses during testing of 16 functional domains in 256 patients undergoing awake surgery. Spatial coordinates for each functional response were calculated, and probability distributions for the entire patient cohort were mapped onto a standardized three-dimensional brain template using a multinomial statistical analysis. In addition, matching analyses were performed against prior established anatomy-based cortical and white matter (WM) atlases. RESULTS The probabilistic maps for each functional domain were provided. The topographical analysis demonstrated a wide spatial distribution of cortical functional responses, while subcortical responses were more restricted, localizing to known WM pathways. These DES-derived data showed reliable matching with existing cortical and WM atlases as well as recent neuroimaging and neurophysiological data. CONCLUSIONS We present the first integrated and comprehensive cortical-subcortical atlas of structures essential for humans' neural functions based on highly-specific DES mapping during real-time neuropsychological testing. This novel atlas can serve as a complementary tool for neuroscientists, along with data obtained from other modalities, to improve and refine our understanding of the functional anatomy of critical brain networks.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, Azienda Provinciale per i Servizi Sanitari (APSS), 9 Largo Medaglie d'Oro, 38122, Trento, Italy.
| | - Matthew Tate
- Departments of Neurosurgery and Neurology, Northwestern University, Feinberg School of Medicine, 420 E Superior St, 60611, Chicago, IL, USA
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital IRCCS, 4 Piazza Sant'Onofrio, 00165, Rome, Italy
| | | | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France; National Institute for Health and Medical Research (INSERM), U1051, Team ''Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors'', Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France; National Institute for Health and Medical Research (INSERM), U1051, Team ''Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors'', Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, France; National Institute for Health and Medical Research (INSERM), U1051, Team ''Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors'', Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, Montpellier, France
| |
Collapse
|
28
|
Sarubbo S, Petit L. Editorial: Organization of the White Matter Anatomy in the Human Brain. Front Neuroanat 2019; 13:85. [PMID: 31619972 PMCID: PMC6759501 DOI: 10.3389/fnana.2019.00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023] Open
Affiliation(s)
- Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégératives (IMN)-UMR5293-CNRS, CEA, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Zacà D, Jovicich J, Corsini F, Rozzanigo U, Chioffi F, Sarubbo S. ReStNeuMap: a tool for automatic extraction of resting-state functional MRI networks in neurosurgical practice. J Neurosurg 2019; 131:764-771. [PMID: 30485221 DOI: 10.3171/2018.4.jns18474] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Resting-state functional MRI (rs-fMRI) represents a promising and cost-effective alternative to task-based fMRI for presurgical mapping. However, the lack of clinically streamlined and reliable rs-fMRI analysis tools has prevented wide adoption of this technique. In this work, the authors introduce an rs-fMRI processing pipeline (ReStNeuMap) for automatic single-patient rs-fMRI network analysis. METHODS The authors provide a description of the rs-fMRI network analysis steps implemented in ReStNeuMap and report their initial experience with this tool after performing presurgical mapping in 6 patients. They verified the spatial agreement between rs-fMRI networks derived by ReStNeuMap and localization of activation with intraoperative direct electrical stimulation (DES). RESULTS The authors automatically extracted rs-fMRI networks including eloquent cortex in spatial proximity with the resected lesion in all patients. The distance between DES points and corresponding rs-fMRI networks was less than 1 cm in 78% of cases for motor, 100% of cases for visual, 87.5% of cases for language, and 100% of cases for speech articulation mapping. CONCLUSIONS The authors' initial experience with ReStNeuMap showed good spatial agreement between presurgical rs-fMRI predictions and DES findings during awake surgery. The availability of the rs-fMRI analysis tools for clinicians aiming to perform noninvasive mapping of brain functional networks may extend its application beyond surgical practice.
Collapse
Affiliation(s)
- Domenico Zacà
- 1Center for Mind/Brain Sciences, University of Trento; and
| | - Jorge Jovicich
- 1Center for Mind/Brain Sciences, University of Trento; and
| | - Francesco Corsini
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| | - Umberto Rozzanigo
- 3Department of Radiology, Neuroradiology Unit, "S. Chiara" Hospital, Trento, Italy
| | - Franco Chioffi
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| | - Silvio Sarubbo
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| |
Collapse
|