1
|
Montoro CI, Ruiz-Medina P, Duschek S, Gutiérrez-Palma N, Reyes Del Paso GA. Bilateral tDCS over the DLPFC enhances baroreceptor reflex sensitivity and inhibits blood pressure-related hypoalgesia. Clin Neurophysiol 2025; 169:11-22. [PMID: 39586225 DOI: 10.1016/j.clinph.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study investigated the impact of transcranial direct stimulation (tDCS) on pain perception, baroreflex sensitivity (BRS), and blood pressure (BP)-related hypoalgesia. METHOD Fifty-eight healthy participants were randomized to receive 1) bi-hemispheric tDCS over the dorsolateral prefrontal cortex (DLPFC) at 2 mA for 20 min, or 2) non-stimulation (Sham). Pain measures (threshold, tolerance, intensity and unpleasantness), emotional state (anxiety and mood), continuous BP, and electrocardiogram (ECG) data were recorded before, during, and after stimulation. RESULTS tDCS stimulation was followed by increases in BRS, pain intensity and unpleasantness. Anxiety decreased in the Sham group, but not in the tDCS group. Positive correlations between BP and pain threshold and tolerance before stimulation were observed. These remained during stimulation in the Sham group, but not in the tDCS group. Moreover, negative associations between BRS and BP only persisted in the Sham group. DISCUSSION The results suggest that bilateral tDCS over the DLPFC enhances BRS and modulates pain perception and BP-related mechanisms. tDCS increases pain perception by inhibiting BP-related hypoalgesia and preventing habituation of anxiety. SIGNIFICANCE Low BRS is a powerful prognostic factor of cardiovascular disease, such that its increase via tDCS may be a new therapeutic strategy for cardiovascular health promotion.
Collapse
Affiliation(s)
| | | | - Stefan Duschek
- Institute of Psychology, UMIT Tirol-University of Health Sciences and Technology, Hall in Tirol, Austria
| | | | | |
Collapse
|
2
|
Gardoki-Souto I, Martín de la Torre O, Hogg B, Redolar-Ripoll D, Martínez Sadurní L, Fontana-McNally M, Blanch JM, Lupo W, Pérez V, Radua J, Amann BL, Valiente-Gómez A, Moreno-Alcázar A. The study protocol of a double-blind randomized controlled trial of EMDR and multifocal transcranial current stimulation (MtCS) as augmentation strategy in patients with fibromyalgia. Trials 2024; 25:856. [PMID: 39741323 DOI: 10.1186/s13063-024-08708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Fibromyalgia (FM) is a generalized, widespread chronic pain disorder affecting 2.7% of the general population. In recent years, different studies have observed a strong association between FM and psychological trauma. Therefore, a trauma-focused psychotherapy, such as Eye Movement Desensitization and Reprocessing (EMDR), combined with a non-invasive brain stimulation technique, such as multifocal transcranial current stimulation (MtCS), could be an innovative adjunctive treatment option. This double-blind randomized controlled trial (RCT) analyzes if EMDR therapy is effective in the reduction of pain symptoms in FM patients, and if its potential is boosted with the addition of MtCS. METHODS Ninety-six patients with FM and a history of traumatic events will be randomly allocated to the treatment as usual (TAU) condition, EMDR + active-MtCS condition, or EMDR + sham-MtCS condition. Therapists and patients will be kept blind to MtCS conditions, and raters will be kept blind to both EMDR and MtCS. All patients will be evaluated at baseline, post-treatment, and follow-up at 6 months after post-treatment. Evaluations will assess the following variables: sociodemographic data, pain, psychological trauma, sleep disturbance, anxiety and affective symptoms, wellbeing, self-care, emotional regulation, self-esteem, and cognitive functioning. DISCUSSION This study will provide evidence of whether EMDR therapy is effective in reducing pain symptoms in FM patients, and whether the effect of EMDR can be enhanced by MtCS. TRIAL REGISTRATION NUMBER This trial was registered at ClinicalTrials.gov on 2 August 2019, identifier: NCT04084795.
Collapse
Affiliation(s)
- I Gardoki-Souto
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain
| | | | - B Hogg
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain
| | - D Redolar-Ripoll
- Cognitive NeuroLab, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | | | - J M Blanch
- Service of Rheumatology, Hospital del Mar, Barcelona, Spain
| | - W Lupo
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain
| | - V Pérez
- Hospital del Mar Research Institute, Barcelona, Spain
- Institute of Mental Health Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
- Universitat Pompeu i Fabra, Barcelona, Spain
| | - J Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Karolinska Institutet, Solna, Sweden
- King's College, London, England
| | - B L Amann
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
- Institute of Mental Health Hospital del Mar, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain.
- Universitat Pompeu i Fabra, Barcelona, Spain.
| | - A Valiente-Gómez
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institute of Mental Health Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - A Moreno-Alcázar
- Centre Forum Research Unit Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
3
|
Gomez-Alvaro MC, Gusi N, Cano-Plasencia R, Leon-Llamas JL, Murillo-Garcia A, Melo-Alonso M, Villafaina S. Effects of Different Transcranial Direct Current Stimulation Intensities over Dorsolateral Prefrontal Cortex on Brain Electrical Activity and Heart Rate Variability in Healthy and Fibromyalgia Women: A Randomized Crossover Trial. J Clin Med 2024; 13:7526. [PMID: 39768449 PMCID: PMC11728266 DOI: 10.3390/jcm13247526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
People with fibromyalgia (FM) exhibit alterations in brain electrical activity and autonomic modulation compared to healthy individuals. Objectives: This study aimed to investigate transcranial direct current stimulation (tDCS) effects on brain electrocortical activity and heart rate variability (HRV), specifically targeting the dorsolateral prefrontal cortex in both healthy controls (HC) and FM groups, to identify potential differences in the responses between these groups, and to compare the effectiveness of two distinct tDCS intensities (1 mA and 2 mA) against a sham condition. Methods: Electroencephalography and electrocardiogram signals were recorded pre- and post-tDCS intervention. All participants underwent the three conditions (sham, 1 mA, and 2 mA) over three separate weeks, randomized in order. Results: No statistically significant baseline differences were found in the investigated HRV variables. In the FM group, 1 mA tDCS induced significant increases in LF, LF/HF, mean HR, SDNN, RMSSD, total power, SD1, SD2, and SampEn, and a decrease in HF, suggesting a shift toward sympathetic dominance. Additionally, 2 mA significantly increased SampEn compared to sham and 1 mA. In the HC group, sham increased DFA1 compared to 1 mA, and 2 mA induced smaller changes in SampEn relative to sham and 1 mA. No significant differences were found between FM and HC groups for any tDCS intensity. Conclusions: The effects of dlPFC-tDCS on HRV are intensity- and group-dependent, with the FM group exhibiting more pronounced changes at 1 mA and 2 mA. These findings emphasize the need for individualized stimulation protocols, given the variability in responses across groups and intensities.
Collapse
Affiliation(s)
- Mari Carmen Gomez-Alvaro
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
- Instituto Universitario de Investigación e Innovación en Deporte (INIDE), Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - Narcis Gusi
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
- Instituto Universitario de Investigación e Innovación en Deporte (INIDE), Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | | | - Juan Luis Leon-Llamas
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
- Instituto Universitario de Investigación e Innovación en Deporte (INIDE), Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - Alvaro Murillo-Garcia
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
- Instituto Universitario de Investigación e Innovación en Deporte (INIDE), Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - Maria Melo-Alonso
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
- Instituto Universitario de Investigación e Innovación en Deporte (INIDE), Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - Santos Villafaina
- Grupo de Investigación en Actividad Física Calidad de Vida y Salud (AFYCAV), Facultad de Ciencias del Deporte, Universidad de Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (M.C.G.-A.); (J.L.L.-L.); (A.M.-G.); (S.V.)
| |
Collapse
|
4
|
Lopes Alves R, Zortea M, Vicuña Serrano P, Laranjeira VDS, Franceschini Tocchetto B, Ramalho L, Fernanda da Silveira Alves C, Brugnera Tomedi R, Pereira de Almeida R, Machado Bruck S, Medeiros L, R. S. Sanches P, P. Silva D, Torres ILS, Fregni F, Caumo W. Modulation of neural networks and symptom correlated in fibromyalgia: A randomized double-blind multi-group explanatory clinical trial of home-based transcranial direct current stimulation. PLoS One 2024; 19:e0288830. [PMID: 39536019 PMCID: PMC11560039 DOI: 10.1371/journal.pone.0288830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) might modulate neural activity and promote neural plasticity in patients with fibromyalgia (FM). This multi-group randomized clinical trial compared home-based active tDCS (HB-a-tDCS) on the left dorsolateral prefrontal cortex (l-DLPFC) or home-based sham tDCS (HB-s-tDCS), and HB-a-tDCS or HB-s-tDCS on the primary motor cortex (M1) in the connectivity analyses in eight regions of interest (ROIs) across eight resting-state electroencephalography (EEG) frequencies. METHODS We included 48 women with FM, aged 30 to 65, randomly assigned to 2:1:2:1 to receive 20 sessions during 20 minutes of HB-a-tDCS 2mA or HB-s-tDCS, over l-DLPFC or M1, respectively. EEG recordings were obtained before and after treatment with eyes open (EO) and eyes closed (EC). RESULTS In the EC condition, comparing pre to post-treatment, the HB-a-tDCS on l-DLPFC decreased the lagged coherence connectivity in the delta frequency band between the right insula and left anterior cingulate cortex (ACC) (t = -3.542, p = .048). The l-DLPFC HB-a-tDCS compared to HB-s-tDCS decreased the lagged coherence connectivity in the delta frequency band between the right insula and left ACC (t = -4.000, p = .017). In the EO condition, the l-DLPFC HB-a-tDCS compared to M1 HB-s-tDCS increased the lagged coherence connectivity between the l-DLPFC and left ACC in the theta band (t = -4.059, p = .048). Regression analysis demonstrated that the HB-a-tDCS effect on the l-DLPFC was positively correlated with sleep quality. On the other hand, the HB-a-tDCS on l-DLPFC and HB-s-tDCS on M1 were positively correlated with pain catastrophizing. CONCLUSIONS These results show that HB-a-tDCS affects the neural connectivity between parts of the brain that control pain's emotional and attentional aspects, which are most noticeable at lower EEG frequencies in a rest state. This effect on neural oscillations could serve as a neural marker associated with its efficacy in alleviating fibromyalgia symptoms. CLINICAL TRIAL REGISTRATION identifier [NCT03843203].
Collapse
Affiliation(s)
- Rael Lopes Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maxciel Zortea
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Health School, University of Vale do Rio dos Sinos, São Leopoldo, Porto Alegre, Brazil
| | - Paul Vicuña Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vani dos Santos Laranjeira
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Betina Franceschini Tocchetto
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafaela Brugnera Tomedi
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Samara Machado Bruck
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Liciane Medeiros
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Paulo R. S. Sanches
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Danton P. Silva
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Iraci L. S. Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, Massachusetts, United States of America
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Surgery, School of Medicine, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Tiwari VK, Kumar A, Nanda S, Chaudhary S, Sharma R, Kumar U, Kumaran SS, Bhatia R. Effect of neuronavigated repetitive Transcranial Magnetic Stimulation on pain, cognition and cortical excitability in fibromyalgia syndrome. Neurol Sci 2024; 45:3421-3433. [PMID: 38270728 DOI: 10.1007/s10072-024-07317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Fibromyalgia syndrome is a widespread chronic pain condition identified by body-wide pain, fatigue, cognitive fogginess, and sleep issues. In the past decade, repetitive transcranial magnetic stimulation has emerged as a potential management tool.. In the present study, we enquired whether repetitive transcranial magnetic stimulation could modify pain, corticomotor excitability, cognition, and sleep. METHODS Study is a randomized, sham-controlled, double-blind, clinical trial; wherein after randomizing thirty-four fibromyalgia patients into active or sham therapy (n = 17 each), each participant received repetitive transcranial magnetic stimulation therapy. In active therapy was given at 1 Hz for 20 sessions were delivered on dorsolateral prefrontal cortex (1200 pulses, 150 pulses per train for 8 trains); while in sham therapy coil was placed at right angle to the scalp with same frequency. Functional magnetic resonance imaging was used to identify the therapeutic site. Pain intensity, corticomotor excitability, cognition, and sleep were examined before and after therapy. RESULTS Baseline demographic and clinical parameters for both active and sham groups were comparable. In comparison to sham, active repetitive transcranial magnetic stimulation showed significant difference in pain intensity (P < 0.001, effect size = 0.29, large effect) after intervention. Other parameters of pain perception, cognition, and sleep quality also showed a significant improvement after the therapy in active therapy group only, as compared to sham. CONCLUSIONS Findings suggest that repetitive transcranial magnetic stimulation intervention is effective in managing pain alongside cognition and sleep disturbances in patients of fibromyalgia. It may prove to be an important tool in relieving fibromyalgia-associated morbidity.
Collapse
Affiliation(s)
- Vikas Kumar Tiwari
- Pain Research and TMS Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Aasheesh Kumar
- Pain Research and TMS Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Srishti Nanda
- Pain Research and TMS Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Shefali Chaudhary
- Department of Nuclear Magnetic Resonance and MRI Facility, New Delhi, India
| | - Ratna Sharma
- Stress and Cognition Electroimaging Laboratory, Department of Physiology, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences (AIIMS), New Delhi, India, 110029
| | - Senthil S Kumaran
- Department of Nuclear Magnetic Resonance and MRI Facility, New Delhi, India
| | - Renu Bhatia
- Pain Research and TMS Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India, 110029.
| |
Collapse
|
6
|
Cheng YC, Chen WY, Su MI, Tu YK, Chiu CC, Huang WL. Efficacy of neuromodulation on the treatment of fibromyalgia: A network meta-analysis. Gen Hosp Psychiatry 2024; 87:103-123. [PMID: 38382420 DOI: 10.1016/j.genhosppsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Several types of neuromodulation have been investigated for the treatment of fibromyalgia, but they show varied efficacy on pain, functioning, comorbid depression and comorbid anxiety. Whether some types of neuromodulation or some factors are associated with a better response also awaits clarification. METHODS We conducted a systematic review and network meta-analysis of randomized controlled trials to evaluate the efficacy of neuromodulation in patients with fibromyalgia. We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and PsycINFO before March 2022. We employed a frequentist random-effects network meta-analysis. RESULTS Forty trials involving 1541 participants were included. Compared with sham control interventions, several types of transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), and high-frequency repetitive transcranial magnetic stimulation (rTMS) were associated with significant reduction of pain, depression, anxiety, and improvement in functioning. Many significantly effective treatment options involve stimulation of the primary motor cortex or dorsolateral prefrontal cortex. CONCLUSION We concluded that several types of rTMS, tDCS and tRNS may have the potential to be applied for clinical purposes.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yin Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Min-I Su
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan; Graduate Institute of Business Administration, College of Management, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Kang Tu
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan; Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.
| |
Collapse
|
7
|
Rodríguez-Huguet M, Ayala-Martínez C, Vinolo-Gil MJ, Góngora-Rodríguez P, Martín-Valero R, Góngora-Rodríguez J. Transcranial direct current stimulation in physical therapy treatment for adults after stroke: A systematic review. NeuroRehabilitation 2024; 54:171-183. [PMID: 38143386 DOI: 10.3233/nre-230213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Stroke is a clinical syndrome that can cause neurological disorders due to a reduction or interruption in the blood flow at the brain level. Transcranial direct current stimulation (TDCS) is a non-invasive electrotherapy technique with the ability to modulate the function of nervous tissue. OBJECTIVE The aim of this review is to analyze the effects derived from the application of the TDCS for post-stroke patients on functionality and mobility. METHODS The data search was conducted in PubMed, PEDro, Cochrane Library, Web of Science and Scopus between July and August 2023. The search focused on randomized clinical trials conducted in the period of 2019-2023, and according to the selection criteria, seven studies were obtained. RESULTS The results found are mainly focused on the analysis of the scales Fugl-Meyer Assessment for Upper Extremity and Wolf Motor Function Test. CONCLUSION The application of TDCS presents benefits in post-stroke individuals on functionality, mobility and other secondary studied variables.
Collapse
Affiliation(s)
| | | | - Maria Jesus Vinolo-Gil
- Department of Nursing and Physiotherapy, University of Cádiz, Cádiz, Spain
- Rehabilitation Clinical Management Unit, Interlevels-Intercenters Hospital Puerta del Mar, Hospital Puerto Real, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | | | - Rocío Martín-Valero
- Department of Physiotherapy, Faculty of Health Science, CTS-1071 Research Group, University of Málaga, Málaga, Spain
| | | |
Collapse
|
8
|
Azarkolah A, Noorbala AA, Ansari S, Hallajian AH, Salehinejad MA. Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sci 2023; 14:26. [PMID: 38248241 PMCID: PMC10813480 DOI: 10.3390/brainsci14010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been increasingly applied in fibromyalgia (FM) to reduce pain and fatigue. While results are promising, observed effects are variable, and there are questions about optimal stimulation parameters such as target region (e.g., motor vs. prefrontal cortices). This systematic review aimed to provide the latest update on published randomized controlled trials with a parallel-group design to examine the specific effects of active tDCS in reducing pain and disability in FM patients. Using the PRISMA approach, a literature search identified 14 randomized controlled trials investigating the effects of tDCS on pain and fatigue in patients with FM. Assessment of biases shows an overall low-to-moderate risk of bias. tDCS was found effective in all included studies conducted in patients with FM, except one study, in which the improving effects of tDCS were due to placebo. We recommended tDCS over the motor and prefrontal cortices as "effective" and "probably effective" respectively, and also safe for reducing pain perception and fatigue in patients with FM, according to evidence-based guidelines. Stimulation polarity was anodal in all studies, and one single-session study also examined cathodal polarity. The stimulation intensity ranged from 1-mA (7.14% of studies) to 1.5-mA (7.14% of studies) and 2-mA (85.7% of studies). In all of the included studies, a significant improvement in at least one outcome variable (pain or fatigue reduction) was observed. Moreover, 92.8% (13 of 14) applied multi-session tDCS protocols in FM treatment and reported significant improvement in their outcome variables. While tDCS is therapeutically effective for FM, titration studies that systematically evaluate different stimulation intensities, durations, and electrode placement are needed.
Collapse
Affiliation(s)
- Anita Azarkolah
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Ahmad Ali Noorbala
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | - Sahar Ansari
- Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
- Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Tehran P.O. Box 1416634793, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz-Institut für Arbeitsforschung, 44139 Dortmund, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran P.O. Box 1956836613, Iran
| |
Collapse
|
9
|
Moshfeghinia R, Shekouh D, Mostafavi S, Hosseinzadeh M, Bahadori AR, Abdollahifard S, Razmkon A. The effects of transcranial direct-current stimulation (tDCS) on pain intensity of patients with fibromyalgia: a systematic review and meta-analysis. BMC Neurol 2023; 23:395. [PMID: 37919664 PMCID: PMC10621179 DOI: 10.1186/s12883-023-03445-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION Fibromyalgia (FM) is a chronic pain condition that affects millions of people worldwide. Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique that has shown promise as a potential treatment for FM by modulating pain perception and reducing symptoms, such as fatigue and depression. We aimed to systematically review studies that assess the effect of tDCS on pain reduction in FM patients. METHODS Seven electronic databases (PubMed, Scopus, Embase, PsycINFO, Web of Science, Cochrane, and CINAHL Complete) were searched for records in English. Studies that measured the effect of tDCS on pain intensity in FM patients were included. The Cochrane Collaboration's tool was used to assess the quality of the included studies. A random-effect model was preferred, and statistical analysis was performed by Stata software version 17. RESULTS Twenty studies were included for qualitative, and eleven for quantitative analysis. Out of 664 patients included in the study, 443 were in the stimulation group. The left M1 area was the most common stimulation target (n = 12), and 2 mA was the most common stimulation amplitude (n = 19). The analysis showed that active tDCS significantly reduced pain intensity in FM patients in comparison to the sham group (SMD= -1.55; 95% CI -2.10, -0.99); also, no publication bias was noted. CONCLUSION Our systematic review highlights the potential effect of tDCS on the reduction of pain intensity in FM patients. Additionally, this current evidence could suggest that tDCS applied at an intensity of 2mA to the left M1 is the most effective strategy.
Collapse
Affiliation(s)
- Reza Moshfeghinia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran
| | - Sara Mostafavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran
| | - Mehrnaz Hosseinzadeh
- Fasa Neuroscience Circle (FNC), Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Amir Reza Bahadori
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Razmkon
- Research Center for Neuromodulation and Pain, 4th floor, Boghrat building, Zand Street, Shiraz, Iran.
| |
Collapse
|
10
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Cuenca-Martínez F, Sempere-Rubio N, Mollà-Casanova S, Muñoz-Gómez E, Fernández-Carnero J, Sánchez-Sabater A, Suso-Martí L. Effects of Repetitive-Transcranial Magnetic Stimulation (rTMS) in Fibromyalgia Syndrome: An Umbrella and Mapping Review. Brain Sci 2023; 13:1059. [PMID: 37508991 PMCID: PMC10377383 DOI: 10.3390/brainsci13071059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The main aim of this study was to assess the effects of repetitive-transcranial magnetic stimulation (rTMS) in patients with fibromyalgia (FMS). METHODS We systematically searched PubMed, PEDro, EMBASE, and CINAHL. Methodological quality was analyzed using the AMSTAR and ROBIS scales, and the strength of evidence was established according to the guidelines advisory committee grading criteria. A total of 11 systematic reviews were included. The assessed variables were pain intensity, depressive symptoms, anxiety, and general health. RESULTS Regarding pain intensity, it seems that high-frequency rTMS significantly reduces pain intensity at a 1-month follow-up when the primary motor cortex (M1) is stimulated. However, we cannot robustly conclude the same for low-frequency protocols. When we look at the combination of high and low-frequency rTMS, there seems to be a significant effect on pain intensity up to 1-week post-intervention, but after that point of follow-up, the results are controversial. Regarding depressive symptoms and anxiety, results showed that the effects of rTMS are almost non-existent. Finally, in regard to general health, results showed that rTMS caused significant post-intervention effects in a robust way. However, the results of the follow-ups are contradictory. CONCLUSIONS The results obtained showed that high-frequency rTMS applied on the M1 showed some effect on the variable of pain intensity with a limited quality of evidence. Overall, rTMS was shown to be effective in improving general health with moderate quality of evidence. Finally, rTMS was not shown to be effective in managing depressive symptoms and anxiety with a limited to moderate quality of evidence. PROSPERO number: This review was previously registered in PROSPERO (CRD42023391032).
Collapse
Affiliation(s)
| | | | | | - Elena Muñoz-Gómez
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Josué Fernández-Carnero
- Department of Physical and Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Grupo de Investigación en Neurociencia Cognitiva, Dolor y Rehabilitación en Ciencias de la Salud (NECODOR), Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | | | - Luis Suso-Martí
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
12
|
Teixeira PEP, Pacheco-Barrios K, Branco LC, de Melo PS, Marduy A, Caumo W, Papatheodorou S, Keysor J, Fregni F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation 2023; 26:715-727. [PMID: 36435660 PMCID: PMC10203058 DOI: 10.1016/j.neurom.2022.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is tentative evidence to support the analgesic effect of transcranial direct current stimulation (tDCS) in fibromyalgia (FM), with large variability in the effect size (ES) encountered in different clinical trials. Understanding the source of the variability and exploring how it relates to the clinical results could characterize effective neuromodulation protocols and ultimately guide care in FM pain. The primary objective of this study was to determine the effect of tDCS in FM pain as compared with sham tDCS. The secondary objective was to explore the relationship of methodology, population, and intervention factors and the analgesic effect of tDCS in FM. MATERIALS AND METHODS For the primary objective, a systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomized clinical trials (RCTs) investigating tDCS as an intervention for FM pain were searched in MEDLINE, Embase, and the Web Of Science. Studies were excluded if they used cross-over designs or if they did not use tDCS as an intervention for pain or did not measure clinical pain. Analysis for the main outcome was performed using a random-effects model. Risk of bias and evidence certainty were assessed for all studies using Cochrane Risk of Bias and Grading of Recommendations Assessment, Development, and Evaluation tools. For the secondary objective, a meta-regression was conducted to explore methodology, population, and intervention factors potentially related to the ES. RESULTS Sixteen RCTs were included. Six studies presented a high risk of bias. Significant reduction in pain scores were found for FM (standardized mean difference = 1.22, 95% CI = 0.80-1.65, p < 0.001). Subgroup analysis considering tDCS as a neural target revealed no differences between common neural sites. Meta-regression revealed that the duration of the tDCS protocol in weeks was the only factor associated with the ES, in which protocols that lasted four weeks or longer reported larger ES than shorter protocols. CONCLUSIONS Results suggest an analgesic effect of tDCS in FM. tDCS protocols that last four weeks or more may be associated with larger ESs. Definite conclusions are inadequate given the large heterogeneity and limited quality of evidence of the included studies.
Collapse
Affiliation(s)
- Paulo E P Teixeira
- MGH Institute of Health Professions, Boston, MA, USA; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Luis Castelo Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paulo S de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wolnei Caumo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Julie Keysor
- MGH Institute of Health Professions, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Molero-Chamizo A, Nitsche MA, Barroso RTA, Bailén JRA, Palomeque JCG, Rivera-Urbina GN. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines 2023; 11:biomedicines11030954. [PMID: 36979932 PMCID: PMC10046115 DOI: 10.3390/biomedicines11030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Although fibromyalgia is defined by its core muscular nociceptive component, it also includes multiple dysfunctions that involve the musculoskeletal, gastrointestinal, immune, endocrine, as well as the central and peripheral nervous systems, amongst others. The pathogenic involvement of the nervous system and the numerous neurological and neuroinflammatory symptoms of this disease may benefit from neuromodulatory stimulation techniques that have been shown to be effective and safe in diverse nervous system pathologies. In this systematic review, we outline current evidence showing the potential of non-invasive brain stimulation techniques, such as therapeutic strategies in fibromyalgia. In addition, we evaluate the contribution of these tools to the exploration of the neurophysiological characteristics of fibromyalgia. Considering that the pathogenesis of this disease is unknown, these approaches do not aim to causally treat this syndrome, but to significantly reduce a range of key symptoms and thus improve the quality of life of the patients.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | | | - José R Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University, 11001 Cádiz, Spain
- Cadiz Bahia Sur District, Andalusian Health Service, 11006 Cádiz, Spain
| | | |
Collapse
|
14
|
Loreti EH, Freire AM, Alexandre da Silva A, Kakuta E, Martins Neto UR, Konkiewitz EC. Effects of Anodal Transcranial Direct Current Stimulation on the Primary Motor Cortex in Women With Fibromyalgia: A Randomized, Triple-Blind Clinical Trial. Neuromodulation 2023:S1094-7159(22)01370-8. [PMID: 36702675 DOI: 10.1016/j.neurom.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The aim of this study was to analyze the effects of ten sessions of active transcranial direct current stimulation transcranial direct current stimulation (tDCS) (2 mA) with 13:20:13 stimulation at M1 in women with fibromyalgia (FM). To the best of our knowledge, this is the first article that uses this protocol in patients with FM. The main hypothesis is that the protocol would be effective in decreasing pain and that the results would last for up to 90 days. MATERIALS AND METHODS This study was a randomized clinical trial with 35 women with FM divided into two groups, active tDCS group and sham tDCS group. A conventional tDCS device was used to deliver 2 mA for 13 minutes, with a 20-minute break followed by a further 13 minutes of stimulation for ten sessions. The anodal stimulus was in the left primary motor cortex M1 region. The primary outcome was a change in the visual analog scale and the Survey of Pain Attitudes pain score at the end of treatment, after 30 days, and 90 days after the end of treatment. Secondary outcomes included changes in the Fibromyalgia Impact Questionnaire, Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, World Health Organization's Quality of Life Questionnaire, and Fatigue Assessment Scale. The Research Ethics Committee of the Centro Universitário da Grande Dourados under registration number Certificado de Apresentação de Apreciação Ética approved this research: 36444920.5.0000.5159. The study was registered in The Brazilian Registry of Clinical Trials with the identifier RBR-8wc8rjq. RESULTS The active tDCS group showed improvement in pain after ten sessions (p < 0.001), after 30 days (p < 0.01), and after 90 days (p < 0.001) compared with sham tDCS. In addition, improvement in quality of life (QoL) and fatigue was observed in the active tDCS group. CONCLUSION The results of this study suggest that active tDCS with an intensity of 2 mA for ten sessions was effective in decreasing pain and fatigue and improving QoL in patients with FM.
Collapse
Affiliation(s)
| | - Ariana Mendes Freire
- Department of Physiotherapy, Grande Dourados University Center, Dourados, Brazil
| | | | - Elaine Kakuta
- Department of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | | | | |
Collapse
|
15
|
La Rocca M, Clemente L, Gentile E, Ricci K, Delussi M, de Tommaso M. Effect of Single Session of Anodal M1 Transcranial Direct Current Stimulation-TDCS-On Cortical Hemodynamic Activity: A Pilot Study in Fibromyalgia. Brain Sci 2022; 12:1569. [PMID: 36421893 PMCID: PMC9688269 DOI: 10.3390/brainsci12111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 07/23/2024] Open
Abstract
Transcranial direct current stimulation (TDCS) on the primary motor cortex (M1) has been reported to be effective in fibromyalgia (FM). Our previous works have shown hypometabolism of motor networks in FM using Functional Near Infrared Spectroscopy (fNIRS), which could contribute to pain symptoms. To investigate if a single Transcranial Direct Current Stimulation (TDCS) session can restore the reduced metabolism expected in FM patients, we compared metabolic activity in FM patients and controls during a finger-tapping task in basal condition, sham condition, and under anodal TDCS on M1. During the finger tapping task, a continuous wave 20 channel fNIRS system was placed across the bilateral central-frontal areas in 22 healthy controls and 54 FM patients. Subjects were randomly assigned to real TDCS or sham stimulation. The finger-tapping slowness did not change after real and sham stimulation. After real TDCS stimulation, FM patients showed an increased activation of cortical motor regions (t-statistic = -2.5246, p-value = 0.0125 for the stimulated hemisphere and t-statistic = -4.6638, p-value = 0.0001 for the non-stimulated hemisphere). The basal differences between FM and controls reverted after real TDCS, while this effect was not observed for sham stimulation. A single TDCS session of the cortical motor network seemed able to restore basic cortical hypometabolism in FM patients. Further studies could clarify the long-term effect of M1 stimulation on cortical metabolism, and its relevance in pain processing and clinical features.
Collapse
Affiliation(s)
- Marianna La Rocca
- Physics Department, Bari Aldo Moro University, 70121 Bari, Italy
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Livio Clemente
- DiBraiN Department, Bari Aldo Moro University, 70121 Bari, Italy
| | - Eleonora Gentile
- DiBraiN Department, Bari Aldo Moro University, 70121 Bari, Italy
| | - Katia Ricci
- DiBraiN Department, Bari Aldo Moro University, 70121 Bari, Italy
| | - Marianna Delussi
- DiBraiN Department, Bari Aldo Moro University, 70121 Bari, Italy
| | | |
Collapse
|
16
|
Sound-Induced Flash Illusions Support Cortex Hyperexcitability in Fibromyalgia. Pain Res Manag 2022; 2022:7355102. [PMID: 36199588 PMCID: PMC9527419 DOI: 10.1155/2022/7355102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022]
Abstract
Objectives Fibromyalgia (FM) is characterized by spontaneous chronic widespread pain in combination with hyperalgesia to pressure stimuli. Sound-induced flash illusions (SIFIs) reflect cross-modal interactions between senses allowing to assess a visual cortical hoerexcitability (VCH) by evaluating the fission and fusion illusions disruption. The aims of the present study were to explore whether SIFIs are perceived differently in patients with fibromyalgia as compared to healthy controls (HCs) and how migraine affects fission and fusion illusions in fibromyalgia. Methods A single flash (F) accompanied by 0 to 4 beeps (B) was presented to induce the fission illusion while multiple flash (i.e., 2 to 4) accompanied by 0 or 1 beep was presented to induce fusion illusion. The mean number of perceived flashes in fission and fusion illusion trials was compared between the groups (i.e., FM, FM with migraine, and HCs) using repeated-measures analysis of variance. Medication history was recorded along with the administration of Fibromyalgia Impact Questionnaire and Hospital Anxiety and Depression scales. Results Twenty-four patients with FM (mean age 51, 2 ± 10, 6 years; 22 females), seventeen patients with FM and migraine without aura (mean age 47.8 ± 11.4 years; 16 females; 13 chronic, 4 episodic migraine), and forty-one age- and sex-matched HCs (mean age 47.3 ± 6.9 years; 34 females) participated in the study. Fission and fusion illusory effects were detected in all the participants. However, in FM patients, the fission illusion was reduced and almost abolished as compared to HCs (1F1B, p = 0.02; 1F2B, p < 0.0001; 1F3B, p < 0.0001; 1F4B, p = 0.0001), while there were no differences between groups in fusion trials. Migraine did not affect the fission and the fusion illusions. Conclusion Results from this study confirm that patients with FM have a VCH suggesting that the pathological changes in cortical excitability might have important roles in the pathophysiology of FM. SIFI represents a noninvasive behavioral tool for the exploration of cross-sensory functional interplay.
Collapse
|
17
|
Samartin-Veiga N, González-Villar AJ, Pidal-Miranda M, Vázquez-Millán A, Carrillo-de-la-Peña MT. Active and sham transcranial direct current stimulation (tDCS) improved quality of life in female patients with fibromyalgia. Qual Life Res 2022; 31:2519-2534. [PMID: 35229253 PMCID: PMC9250466 DOI: 10.1007/s11136-022-03106-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Fibromyalgia (FM) is a chronic pain syndrome with a strong impact on quality of life (QoL). Treatment of this condition remains a challenge, due to the scarce evidence for the effectiveness of the therapeutic approaches available. Current attention is focused on transcranial direct current stimulation (tDCS), which has yielded promising results for pain treatment. Rather than focusing only on pain relief, in this study, we aimed to determine how active or sham tDCS (over three cortical targets -the primary motor cortex, the dorsolateral prefrontal cortex and the operculo-insular cortex-) affect QoL in patients with FM. METHODS Using a double-blind, placebo-controlled design, we applied fifteen tDCS sessions of 20' to initial 130 participants (randomized to any of the four treatment groups). We evaluated the QoL (assessed by SF-36) and the symptoms' impact (assessed by FIQ-R) in baseline, after treatment and at 6 months follow-up. RESULTS All groups were comparable as regards age, medication pattern and severity of symptoms before the treatment. We found that QoL and symptoms' impact improved in all treatment groups (including the sham) and this improvement lasted for up to 6 months. However, we did not observe any group effect nor group*treatment interaction. CONCLUSIONS After the intervention, we observed a non-specific effect that may be due to placebo, favoured by the expectations of tDCS efficacy and psychosocial variables inherent to the intervention (daily relationship with therapists and other patients in the clinic). Therefore, active tDCS is not superior to sham stimulation in improving QoL in FM.
Collapse
Affiliation(s)
- N Samartin-Veiga
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| | - A J González-Villar
- Psychological Neuroscience Lab, Research Center in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - M Pidal-Miranda
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| | - A Vázquez-Millán
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| | - M T Carrillo-de-la-Peña
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Facultade de Psicoloxia, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
18
|
Samartin-Veiga N, Pidal-Miranda M, González-Villar AJ, Bradley C, Garcia-Larrea L, O'Brien AT, Carrillo-de-la-Peña MT. Transcranial direct current stimulation of 3 cortical targets is no more effective than placebo as treatment for fibromyalgia: a double-blind sham-controlled clinical trial. Pain 2022; 163:e850-e861. [PMID: 34561393 DOI: 10.1097/j.pain.0000000000002493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and the dorsolateral prefrontal cortex seem to improve pain and other symptoms of fibromyalgia (FM), although the evidence on the effectiveness of tDCS and the optimal stimulation target is not robust enough. Our main objective was to establish the optimal area of stimulation, comparing the 2 classical targets and a novel pain-related area, the operculo-insular cortex, in a sham-controlled trial. Using a double-blind design, we randomly assigned 130 women with FM to 4 treatment groups (M1, dorsolateral prefrontal cortex, operculo-insular cortex, and sham), each receiving fifteen 20-minute sessions of 2 mA anodal tDCS over the left hemisphere. Our primary outcome was pain intensity. The secondary outcomes were the other core symptoms of FM (fatigue, mood, cognitive and sleep disorders, and hyperalgesia measured by the pressure pain threshold). We performed the assessment at 3 time points (before, immediately after treatment, and at 6 months follow-up). The linear mixed-model analysis of variances showed significant treatment effects across time for clinical pain and for fatigue, cognitive and sleep disturbances, and experimental pain, irrespective of the group. In mood, the 3 active tDCS groups showed a significantly larger improvement in anxiety and depression than sham. Our findings provide evidence of a placebo effect, support the use of tDCS for the treatment of affective symptoms, and challenge the effectiveness of tDCS as treatment of FM.
Collapse
Affiliation(s)
- Noelia Samartin-Veiga
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marina Pidal-Miranda
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto J González-Villar
- Department of Basic Psychology, Psychological Neuroscience Lab, Research Center in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Claire Bradley
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
- Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
- Queensland Brain Institute, St Lucia, Australia
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
- Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | | | - María T Carrillo-de-la-Peña
- Brain and Pain (BaP) Lab, Departamento de Psicoloxía Clínica y Psicobioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Im JJ, Na S, Kang S, Jeong H, Lee ES, Lee TK, Ahn WY, Chung YA, Song IU. A Randomized, Double-Blind, Sham-Controlled Trial of Transcranial Direct Current Stimulation for the Treatment of Persistent Postural-Perceptual Dizziness (PPPD). Front Neurol 2022; 13:868976. [PMID: 35493817 PMCID: PMC9046552 DOI: 10.3389/fneur.2022.868976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Persistent postural-perceptual dizziness (PPPD) is a functional vestibular disorder that causes chronic dizziness interfering with daily activities. Transcranial direct current stimulation (tDCS) has reportedly improved dizziness in patients with phobic postural vertigo in an open-label trial. However, no randomized, double-blind, sham-controlled study has been conducted on its therapeutic efficacy in PPPD. Objective This study was conducted to investigate the efficacy and safety of tDCS as an add-on treatment to pharmacotherapy in patients with PPPD. In addition, functional neuroimaging was used to identify the neural mechanisms underlying the effects of tDCS. Materials and Methods In a randomized, double-blind, sham-controlled trial, 24 patients diagnosed with PPPD were randomized to receive active (2 mA, 20 min) or sham tDCS to the left dorsolateral prefrontal cortex (DLPFC), administered in 15 sessions over 3 weeks. The clinical measures that assess the severity of dizziness, depression, and anxiety were collected at baseline, immediate follow-up, 1-month follow-up, and 3-month follow-up. Adverse events were also observed. The effect of tDCS on regional cerebral blood flow (rCBF) was evaluated with single photon emission tomography before and after tDCS sessions. Results For the primary outcome measure of the Dizziness Handicap Inventory (DHI) score, a significant main effect of time was found, but neither the treatment-by-time interaction effect nor the main effect of treatment was significant. For the Hamilton Depression Rating Scale (HDRS) score, there was a statistical significance for the treatment-by-time interaction effect and the main effect of time, but not for the main effect of treatment. However, the treatment-by-time interaction effect and the main effect of time on HDRS score appear to be due to one data point, an increase in depressive symptoms reported by the sham group at the 3-month follow-up. For the Activities-specific Balance Confidence (ABC) Scale and the Hamilton Anxiety Rating Scale scores, there were no significant main effects of time, treatment, and treatment-by-time interaction. In a comparison with the changes in rCBF between the groups, a significant treatment-by-time interaction effect was found in the right superior temporal and left hippocampus, controlling for age and sex. Conclusion Active tDCS was not found to be significantly more efficacious than sham tDCS on dizziness symptoms in patients with PPPD. It is conceivable that tDCS targeting the DLPFC may not be an optimal treatment option for reducing dizziness symptoms in PPPD. Our findings encourage further investigation on the effects of tDCS in PPPD, which considers different stimulation protocols in terms of stimulation site or the number of sessions. Clinical Trial Registration cris.nih.go.kr, identifier: KCT0005068.
Collapse
Affiliation(s)
- Jooyeon Jamie Im
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Seunghee Na
| | - Sanghoon Kang
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Hyeonseok Jeong
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhang University Bucheon Hospital, Bucheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurology, Soonchunhang University Bucheon Hospital, Bucheon, South Korea
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Yong-An Chung
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
20
|
Cheng YC, Kuo PH, Su MI, Huang WL. The efficacy of non-invasive, non-convulsive electrical neuromodulation on depression, anxiety and sleep disturbance: a systematic review and meta-analysis. Psychol Med 2022; 52:801-812. [PMID: 35105413 DOI: 10.1017/s0033291721005560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of non-invasive, non-convulsive electrical neuromodulation (NINCEN) on depression, anxiety and sleep disturbance are inconsistent in different studies. Previous meta-analyses on transcranial direct current stimulation (tDCS) and cerebral electrotherapy stimulation (CES) suggested that these methods are effective on depression. However, not all types of NINECN were included; results on anxiety and sleep disturbance were lacking and the influence of different populations and treatment parameters was not completely analyzed. We searched PubMed, Embase, PsycInfo, PsycArticles and CINAHL before March 2021 and included published randomized clinical trials of all types of NINCEN for symptoms of depression, anxiety and sleep in clinical and non-clinical populations. Data were pooled using a random-effects model. The main outcome was change in the severity of depressive symptoms after NINCEN treatment. A total of 58 studies on NINCEN were included in the meta-analysis. Active tDCS showed a significant effect on depressive symptoms (Hedges' g = 0.544), anxiety (Hedges' g = 0.667) and response rate (odds ratio = 1.9594) compared to sham control. CES also had a significant effect on depression (Hedges' g = 0.654) and anxiety (Hedges' g = 0.711). For all types of NINCEN, active stimulation was significantly effective on depression, anxiety, sleep efficiency, sleep latency, total sleep time, etc. Our results showed that tDCS has significant effects on both depression and anxiety and that these effects are robust for different populations and treatment parameters. The rational expectation of the tDCS effect is 'response' rather than 'remission'. CES also is effective for depression and anxiety, especially in patients with disorders of low severity.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-I Su
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
21
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
22
|
Movement observation activates motor cortex in fibromyalgia patients: a fNIRS study. Sci Rep 2022; 12:4707. [PMID: 35304530 PMCID: PMC8933439 DOI: 10.1038/s41598-022-08578-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Scientific evidence points to a shared neural representation between performing and observing an action. The action observation notoriously determines a modulation of the observer’s sensorimotor system, a phenomenon called Motor Resonance (MR). Fibromyalgia (FM) patients suffer from a condition characterized by generalized musculoskeletal pain in which even simple movement can exacerbate their symptoms. Maladaptive functioning of the primary motor cortex is a common finding in patients with chronic pain. Activation of the motor cortex is known to induce an analgesic effect in patients with chronic pain. In this exploratory study, we intend to verify if the mere observation of a movement could elicit activation of the motor cortical areas in patients with FM. Therefore, the purpose of this study was to examine the presence of MR in patients affected by fibromyalgia. We adopted a behavioral paradigm known for detecting the presence of MR and a neurophysiological experiment. Participants watched videos showing gripping movements towards a graspable or an ungraspable object, respectively, and were asked to press a button the instant the agent touched the object (Time-to-contact detection session). In a different experimental session, participants were only requested to observe and pay attention to the videos (Observation-only session). During each experimental session, the participants’ cerebral hemodynamic activity was recorded using the functional Near-Infrared Spectroscopy method. The behavioral task analysis revealed the presence of MR in both FM patients and healthy controls. Moreover, neurophysiological findings suggested that the observation of movement during the Observation-only session provoked activation and modulation of the cortical motor networks of FM patients. These results could represent evidence of the possible beneficial effects of movement observation in restarting motor activation, notoriously reduced, in FM patients.
Collapse
|
23
|
Choo YJ, Kwak SG, Chang MC. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. PAIN MEDICINE 2022; 23:1272-1282. [PMID: 34983056 DOI: 10.1093/pm/pnab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVE In fibromyalgia, central sensitization is a key mechanism, and repetitive transcranial magnetic stimulation (rTMS) has been reported to potentially manage symptoms of fibromyalgia. In this meta-analysis, we evaluated the therapeutic effect of rTMS in patients with fibromyalgia according to stimulation locations and follow-up time points. METHODS We searched the MEDLINE, Cochrane, Embase, Scopus, Cumulative Index to Nursing and Allied Health Literature, and Web of Science databases for articles published from January 1, 1990 to August 26, 2021, including randomized controlled studies investigating the effectiveness of rTMS on managing fibromyalgia. RESULTS In total, 10 papers and 299 participants were included. The high-frequency rTMS on the left primary motor cortex (Lt. M1) had a significant effect on pain reduction immediately and 1-4 weeks after the end of the session but had no significant effect after 5-12 weeks. Additionally, after high-frequency rTMS sessions on the Lt. M1, the effect on patients' quality of life (QoL) appeared late at 5-12 weeks of follow-up. In contrast, high-frequency rTMS on the left dorsolateral prefrontal cortex (Lt. DLPFC) did not reduce pain from fibromyalgia. The effect on controlling the affective problem was not observed after rTMS treatment on both the Lt. M1 and Lt. DLPFC. CONCLUSIONS High-frequency rTMS had a positive pain-reducing effect immediately and at 1-4 weeks after completing the rTMS sessions, and the patients' QoL improved after 5-12 weeks. However, Lt. DLPFC stimulation was not effective in controlling fibromyalgia symptoms.
Collapse
Affiliation(s)
- Yoo Jin Choo
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Alter BJ, Santosa H, Nguyen QH, Huppert TJ, Wasan AD. Offset analgesia is associated with opposing modulation of medial versus dorsolateral prefrontal cortex activations: A functional near-infrared spectroscopy study. Mol Pain 2022; 18:17448069221074991. [PMID: 35083928 PMCID: PMC9047820 DOI: 10.1177/17448069221074991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
Offset analgesia is defined by a dramatic drop in perceived pain intensity with a relatively small decrease in noxious input. Although functional magnetic resonance imaging studies implicate subcortical descending inhibitory circuits during offset analgesia, the role of cortical areas remains unclear. The current study identifies cortical correlates of offset analgesia using functional near infrared spectroscopy (fNIRS). Twenty-four healthy volunteers underwent fNIRS scanning during offset (OS) and control (Con) heat stimuli applied to the forearm. After controlling for non-neural hemodynamic responses in superficial tissues, widespread increases in cortical oxygenated hemoglobin concentration were observed, reflecting cortical activation during heat pain. OS-Con contrasts revealed deactivations in bilateral medial prefrontal cortex (mPFC) and bilateral somatosensory cortex (SSC) associated with offset analgesia. Right dorsolateral prefrontal cortex (dlPFC) showed activation only during OS. These data demonstrate opposing cortical activation patterns during offset analgesia and support a model in which right dlPFC underlies ongoing evaluation of pain intensity change. With predictions of decreasing pain intensity, right dlPFC activation likely inhibits ascending noxious input via subcortical pathways resulting in SSC and mPFC deactivation. This study identifies cortical circuitry underlying offset analgesia and introduces the use of fNIRS to study pain modulation in an outpatient clinical environment.
Collapse
Affiliation(s)
- Benedict J. Alter
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Hendrik Santosa
- Department of Radiology, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Quynh H. Nguyen
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Theodore J. Huppert
- Department of Electrical and
Computer Engineering, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Ajay D. Wasan
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of
Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Ibraheem W, Mckenzie S, Wilcox-Omubo V, Abdelaty M, Saji SE, Siby R, Alalyani W, Mostafa JA. Pathophysiology and Clinical Implications of Cognitive Dysfunction in Fibromyalgia. Cureus 2021; 13:e19123. [PMID: 34858761 PMCID: PMC8614169 DOI: 10.7759/cureus.19123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cognitive dysfunction is a complaint of many patients diagnosed with fibromyalgia. Although the main symptoms of the disease are fatigue, widespread musculoskeletal pain, poor sleep quality, and tenderness points, the cognitive symptoms can be more distressing than the pain itself, and negatively affect their lives; however, many healthcare professionals underestimate these cognitive complaints and it is still one of the least researched topics. Proper management of these symptoms at an early stage may have a great impact to improve the mental health, physical function, and overall health of these patients. Hence, this traditional review aimed to look at the previous body of literature in PubMed in the past five years to address the pathophysiology of the cognitive dysfunction in fibromyalgia patients, to find the risk factors of cognitive dysfunction in these patients, to discover the recent modalities for treatment, and to figure out the clinical implications and recent recommendations by researchers on screening, diagnosis, and management of fibromyalgia and its cognitive dysfunction symptoms. This review has shown the various mechanisms of cognitive dysfunction. Some mechanisms are related to disease symptomologies, such as excessive pain perception, and others are related to hormonal and metabolite changes in the brain. Tobacco smoking and high body mass index showed an inverse impact on cognitive dysfunction and quality of life in fibromyalgia. Other risk factors and clinical implications were discussed in detail.
Collapse
Affiliation(s)
- Weaam Ibraheem
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Simon Mckenzie
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Victory Wilcox-Omubo
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed Abdelaty
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sandra E Saji
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rosemary Siby
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wafaa Alalyani
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
26
|
Qureshi AG, Jha SK, Iskander J, Avanthika C, Jhaveri S, Patel VH, Rasagna Potini B, Talha Azam A. Diagnostic Challenges and Management of Fibromyalgia. Cureus 2021; 13:e18692. [PMID: 34786265 PMCID: PMC8580749 DOI: 10.7759/cureus.18692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization regards chronic pain to be a public health concern. In clinical medicine, fibromyalgia (FM) is the most prevalent chronic widespread pain disease. In terms of impairment, consumption of health and social resources, and impact on primary and speciality care systems, it has reached worrisome proportions. This disease is frequently managed by primary care providers. Because of its intricacy, fibromyalgia diagnosis and treatment can be difficult. Fibromyalgia is a controversial condition. It might appear ill-defined in comparison to other pain conditions, with no clear knowledge of pathophysiology and hence no particular targeted therapy. This invariably sparks debates and challenges. There is no obvious cut-off point that distinguishes FM from non-FM. The diagnosis of fibromyalgia has been complicated by several factors, including patients' health-seeking behaviour, symptom identification, and physician labelling of the disease. Fibromyalgia is currently considered a centralized pain condition, according to research that has improved our understanding of its etiopathology. A multidisciplinary strategy combining pharmacological and non-pharmacological therapies based on a biopsychosocial paradigm can result in effective therapy. Cultural and psychosocial variables appear to be a recent development in fibromyalgia, and they appear to have a larger influence on physician diagnosis than severe symptom levels in FM patients. Although physicians rely on FM criteria as the only way to classify FM patients in research and clinical settings, some crucial elements of the diagnostic challenge of fibromyalgia remain unsolved - invalidation, psychosocial variables, and diverse illness manifestation are some examples. Beyond the existing constructional scores, physicians' judgment gained in real communicative contexts with patients, appears to be the only dependable route for a more accurate diagnosis for fibromyalgia. We have performed an exhaustive review of the literature using the keywords "Fibromyalgia", "challenges" and "diagnosis" in PubMed and Google Scholar indexes up to September 2021. This article aims to examine the causes, diagnosis, and current treatment protocols of FM, as well as discuss some continuing debates and diagnostic challenges which physicians face in accurately diagnosing fibromyalgia.
Collapse
Affiliation(s)
- Aniqa G Qureshi
- Medicine and Surgery, Jinggangshan Medical University, Jian, CHN
| | - Saurav K Jha
- Internal Medicine, Kankai Hospital, Birtamode, NPL
| | - John Iskander
- Family Medicine, American University of Antigua, St. John's, ATG
| | - Chaithanya Avanthika
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
- Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Sharan Jhaveri
- Medicine, Smt Nathiba Hargovandas Lakhmichand Municipal Medical College (NHLMMC), Ahmedabad, IND
| | - Vithi Hitendra Patel
- Family Medicine, GMERS Medical College and Hospital, Valsad, IND
- Internal Medicine, Gujarat Cancer Society Medical College and Research Center, Ahmedabad, IND
| | | | | |
Collapse
|
27
|
Matias MGL, Germano Maciel D, França IM, Cerqueira MS, Silva TCLA, Okano AH, Pegado R, Brito Vieira WH. Transcranial Direct Current Stimulation Associated With Functional Exercise Program for Treating Fibromyalgia: A Randomized Controlled Trial. Arch Phys Med Rehabil 2021; 103:245-254. [PMID: 34480887 DOI: 10.1016/j.apmr.2021.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of transcranial direct current stimulation (tDCS) associated with functional exercise on pain, functional performance, psychological symptoms, and quality of life of patients with fibromyalgia (FM). DESIGN Randomized controlled trial. Participants were randomized by blocks into 2 groups: tDCS associated with functional exercise (n=17) and sham-tDCS associated with functional exercise (n=14). SETTING Laboratory of neuromuscular performance in the department of physical therapy. PARTICIPANTS Women with FM (N=31) according to American College of Rheumatology-2010 criteria. INTERVENTIONS Anodal tDCS or sham-tDCS was applied over the left motor cortex for 5 consecutive days during the first week of intervention (2 mA; 20min). All volunteers also engaged in 8 weeks of functional exercises 3 times per week. MAIN OUTCOME MEASURES Pain intensity, functional performance, psychological symptoms, and quality of life were assessed pre-exercise and immediately after the first, fourth, and eighth weeks of intervention. RESULTS Pain intensity, functional performance, psychological symptoms, and quality of life increased significantly in both groups (P<.05); however, no significant differences between groups were found in all outcomes (P>.05). CONCLUSION tDCS associated with functional exercises did not enhance the effects of physical exercise on pain, functional performance, psychological symptoms, and quality of life of patients with FM.
Collapse
Affiliation(s)
- Monayane G L Matias
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte
| | - Daniel Germano Maciel
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte
| | - Ingrid M França
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte
| | - Mikhail S Cerqueira
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte
| | - Tatiana C L A Silva
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte
| | - Alexandre H Okano
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo, São Paulo
| | - Rodrigo Pegado
- Faculty of Health Science of Trairi, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Wouber H Brito Vieira
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte.
| |
Collapse
|
28
|
Bergeron D, Obaid S, Fournier-Gosselin MP, Bouthillier A, Nguyen DK. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci 2021; 11:brainsci11050639. [PMID: 34063367 PMCID: PMC8156413 DOI: 10.3390/brainsci11050639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. METHODS We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. RESULTS Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. CONCLUSION In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.
Collapse
Affiliation(s)
- David Bergeron
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
- Correspondence:
| | - Sami Obaid
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | | | - Alain Bouthillier
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | - Dang Khoa Nguyen
- Service de Neurologie, Université de Montréal, Montréal, QC H3T 1L5, Canada;
| |
Collapse
|
29
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Repetitive transcranial magnetic stimulation (rTMS) versus transcranial direct current stimulation (tDCS) in the management of patients with fibromyalgia: A randomized controlled trial. Neurophysiol Clin 2021; 51:339-347. [PMID: 33814258 DOI: 10.1016/j.neucli.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the effects of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on pain and quality of life in patients with fibromyalgia. METHODS Thirty participants were randomized into two groups of 15 patients, to receive 3 sessions of either high-frequency (10 Hz) rTMS or 2 mA, 20 min anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex (DLPFC) over 1 week. Pain was assessed using a Visual Analog Scale (VAS) before treatment, immediately after treatment, 6 and 12 weeks later. Quality of life was evaluated using the Revised Fibromyalgia Impact Questionnaire (FIQR) and psychiatric symptoms were measured using the Depression Anxiety Stress Scale-21 Item (DASS-21) before treatment, and 6 and 12 weeks after treatment. RESULTS For the VAS there was a significant time-group interaction, showing that the behavior of two groups differed regarding changes of VAS in favor of the RTMS group (df = 1.73, F = 4.80, p = <0.016). Time-group interaction effect on DASS-21 and FIQR was not significant. 66.6% of patients in rTMS group and 26.6% of patients in tDCS group experienced at least a 30% reduction of VAS from baseline to last follow-up (p = 0.028). DISCUSSION With the methodology used in this study, both rTMS and tDCS were safe modalities and three sessions of rTMS over DLPFC had greater and longer lasting analgesic effects compared to tDCS in patients with FM. However, considering the limitations of this study, further studies are needed to explore the most effective modality.
Collapse
|
31
|
Gardoki-Souto I, Martín de la Torre O, Hogg B, Redolar-Ripoll D, Valiente-Gómez A, Martínez Sadurní L, Blanch JM, Lupo W, Pérez V, Radua J, Amann BL, Moreno-Alcázar A. Augmentation of EMDR with multifocal transcranial current stimulation (MtCS) in the treatment of fibromyalgia: study protocol of a double-blind randomized controlled exploratory and pragmatic trial. Trials 2021; 22:104. [PMID: 33514408 PMCID: PMC7844777 DOI: 10.1186/s13063-021-05042-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) is a generalized, widespread chronic pain disorder affecting 2.7% of the general population. In recent years, different studies have observed a strong association between FM and psychological trauma. Therefore, a trauma-focused psychotherapy, such as eye movement desensitization and reprocessing (EMDR), combined with a non-invasive brain stimulation technique, such as multifocal transcranial current stimulation (MtCS), could be an innovative adjunctive treatment option. This double-blind randomized controlled trial (RCT) analyzes if EMDR therapy is effective in the reduction of pain symptoms in FM patients and if its potential is boosted with the addition of MtCS. METHODS Forty-five patients with FM and a history of traumatic events will be randomly allocated to Waiting List, EMDR + active-MtCS, or EMDR + sham-MtCS. Therapists and patients will be kept blind to MtCS conditions, and raters will be kept blind to both EMDR and MtCS. All patients will be evaluated at baseline, post-treatment, and follow-up at 6 months after post-treatment. Evaluations will assess the following variables: sociodemographic data, pain, psychological trauma, sleep disturbance, anxiety and affective symptoms, and wellbeing. DISCUSSION This study will provide evidence of whether EMDR therapy is effective in reducing pain symptoms in FM patients, and whether the effect of EMDR can be enhanced by MtCS. TRIAL REGISTRATION ClinicalTrials.gov NCT04084795 . Registered on 2 August 2019.
Collapse
Affiliation(s)
- I. Gardoki-Souto
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - B. Hogg
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - D. Redolar-Ripoll
- Cognitive NeuroLab, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - A. Valiente-Gómez
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - L. Martínez Sadurní
- Institut de Neuropsiquiatria i Addiccions (INAD), Parc de Salut Mar, Barcelona, Spain
| | - J. M. Blanch
- Service of Rheumatology, Parc de Salut Mar, Barcelona, Spain
| | - W. Lupo
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
| | - V. Pérez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - J. Radua
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Karolinska Institutet, Solna, Sweden
- King’s College, London, England
| | - B. L. Amann
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - A. Moreno-Alcázar
- Centre Forum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, C/ Llull 410, 08019 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
32
|
Bernardi L, Bertuccelli M, Formaggio E, Rubega M, Bosco G, Tenconi E, Cattelan M, Masiero S, Del Felice A. Beyond physiotherapy and pharmacological treatment for fibromyalgia syndrome: tailored tACS as a new therapeutic tool. Eur Arch Psychiatry Clin Neurosci 2021; 271:199-210. [PMID: 33237361 PMCID: PMC7867558 DOI: 10.1007/s00406-020-01214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022]
Abstract
Fibromyalgia syndrome (FMS) is a complex pain disorder, characterized by diffuse pain and cognitive disturbances. Abnormal cortical oscillatory activity may be a promising biomarker, encouraging non-invasive neurostimulation techniques as a treatment. We aimed to modulate abnormal slow cortical oscillations by delivering transcranial alternating current stimulation (tACS) and physiotherapy to reduce pain and cognitive symptoms. This was a double-blinded, randomized, crossover trial conducted between February and September 2018 at the Rehabilitation Unit of a teaching Hospital (NCT03221413). Participants were randomly assigned to tACS or random noise stimulation (RNS), 5 days/week for 2 weeks followed by ad hoc physiotherapy. Clinical and cognitive assessments were performed at T0 (baseline), T1 (after stimulation), T2 (1 month after stimulation). Electroencephalogram (EEG) spectral topographies recorded from 15 participants confirmed slow-rhythm prevalence and provided tACS tailored stimulation parameters and electrode sites. Following tACS, EEG alpha1 ([8-10] Hz) activity increased at T1 (p = 0.024) compared to RNS, pain symptoms assessed by Visual Analog Scale decreased at T1 (T1 vs T0 p = 0.010), self-reported cognitive skills and neuropsychological scores improved both at T1 and T2 (Patient-Reported Outcomes in Cognitive Impairment, T0-T2, p = 0.024; Everyday memory questionnaire, T1 compared to RNS, p = 0.012; Montréal Cognitive Assessment, T0 vs T1, p = 0.048 and T0 vs T2, p = 0.009; Trail Making Test B T0-T2, p = 0.034). Psychopathological scales and other neuropsychological scores (Trail Making Test-A; Total Phonemic Fluency; Hopkins Verbal Learning Test-Revised; Rey-Osterrieth Complex Figure) improved both after tACS and RNS but earlier improvements (T1) were registered only after tACS. These results support tACS coupled with physiotherapy in treating FMS cognitive symptoms, pain and subclinical psychopathology.
Collapse
Affiliation(s)
- Laura Bernardi
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Margherita Bertuccelli
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128, Paduas, Italy. .,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131, Padua, Italy.
| | - Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Maria Rubega
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35031 Padua, Italy
| | - Elena Tenconi
- Department of Neuroscience and Padova Neuroscience Center, Psychiatric Clinic, University of Padova, Via Giustiniani 3, 35128 Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121 Padua, Italy
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy ,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131 Padua, Italy
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy ,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131 Padua, Italy
| |
Collapse
|
33
|
Maffei ME. Fibromyalgia: Recent Advances in Diagnosis, Classification, Pharmacotherapy and Alternative Remedies. Int J Mol Sci 2020; 21:E7877. [PMID: 33114203 PMCID: PMC7660651 DOI: 10.3390/ijms21217877] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fibromyalgia (FM) is a syndrome that does not present a well-defined underlying organic disease. FM is a condition which has been associated with diseases such as infections, diabetes, psychiatric or neurological disorders, rheumatic pathologies, and is a disorder that rather than diagnosis of exclusion requires positive diagnosis. A multidimensional approach is required for the management of FM, including pain management, pharmacological therapies, behavioral therapy, patient education, and exercise. The purpose of this review is to summarize the recent advances in classification criteria and diagnostic criteria for FM as well as to explore pharmacotherapy and the use of alternative therapies including the use of plant bioactive molecules.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, 10135 Turin, Italy
| |
Collapse
|
34
|
Pinto AM, Geenen R, Castilho P, da Silva JA. Progress towards improved non-pharmacological management of fibromyalgia. Joint Bone Spine 2020; 87:377-379. [DOI: 10.1016/j.jbspin.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
|
35
|
Pacheco-Barrios K, Cardenas-Rojas A, Thibaut A, Costa B, Ferreira I, Caumo W, Fregni F. Methods and strategies of tDCS for the treatment of pain: current status and future directions. Expert Rev Med Devices 2020; 17:879-898. [PMID: 32845195 PMCID: PMC7674241 DOI: 10.1080/17434440.2020.1816168] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique that has been widely studied for the treatment of chronic pain. It is considered a promising and safe alternative pain therapy. Different targets have been tested, each having their own particular mechanisms for modulating pain perception. AREAS COVERED We discuss the current state of the art of tDCS to manage pain and future strategies to optimize tDCS' effects. Current strategies include primary motor cortex tDCS, prefrontal tDCS and tDCS combined with behavioral interventions while future strategies, on the other hand, include high-intensity tDCS, transcutaneous spinal direct current stimulation, cerebellar tDCS, home-based tDCS, and tDCS with extended number of sessions. EXPERT COMMENTARY It has been shown that the stimulation of the prefrontal and primary motor cortex is efficient for pain reduction while a few other new strategies, such as high-intensity tDCS and network-based tDCS, are believed to induce strong neuroplastic effects, although the underlying neural mechanisms still need to be fully uncovered. Hence, conventional tDCS approaches demonstrated promising effects to manage pain and new strategies are under development to enhance tDCS effects and make this approach more easily available by using, for instance, home-based devices.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aurore Thibaut
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Coma Science Group, GIGA Consciousness, University of Liege, Liège, Belgium
| | - Beatriz Costa
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Isadora Ferreira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Pedron S, Dumontoy S, Dimauro J, Haffen E, Andrieu P, Van Waes V. Open-tES: An open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One 2020; 15:e0236061. [PMID: 32663223 PMCID: PMC7360043 DOI: 10.1371/journal.pone.0236061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive. Here, we introduce the Open-tES device, a project under a Creative Commons License (CC BY, SA 4.0) shared on the collaborative platform Git-Hub. This current generator allows tDCS (and other kinds of stimulations) to be realized, is suitable for rodents, is easy to use, and is low-cost. Characterization has been performed to measure the precision and accuracy of the current delivered. We also aimed to compare its effects with a commercial stimulator used in clinical trials (DC-Stimulator Plus, NeuroConn, Germany). To achieve this, a behavioral study was conducted to evaluate its efficacy for decreasing depression related-behavior in mice. The stimulator precision and accuracy were better than 250 nA and 25 nA, respectively. The behavioral evaluation performed in mice in the present study did not reveal any significant differences between the commercial stimulator used in clinical trials and the Open-tES device. Accuracy and precision of the stimulator ensure high repeatability of the stimulations. This current generator constitutes a reliable and inexpensive tool that is useful for preclinical studies in the field of non-invasive electrical brain stimulation.
Collapse
Affiliation(s)
- Solène Pedron
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphanie Dumontoy
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Julien Dimauro
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
37
|
Coskun Benlidayi I. The effectiveness and safety of electrotherapy in the management of fibromyalgia. Rheumatol Int 2020; 40:1571-1580. [PMID: 32524302 DOI: 10.1007/s00296-020-04618-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Treating fibromyalgia is a challenging task for physicians. With its multifaceted features, fibromyalgia requires a comprehensive management strategy focusing on both the pharmacological and non-pharmacological treatment options. During the last decades, there has been growing evidence regarding the role of electrotherapy in fibromyalgia treatment. In this regard, the present article aimed to review the recent literature on the effectiveness and safety of the electrotherapy in the treatment of fibromyalgia. A literature search was conducted through PubMed/MEDLINE and Scopus databases. Transcutaneous electrical nerve stimulation (TENS), non-invasive brain stimulation (transcranial direct current/magnetic stimulation), and light amplification by stimulated emission of radiation (LASER) emerged as the most commonly examined electrotherapy techniques in fibromyalgia. Currently, there is growing data regarding the effectiveness of electrotherapy in the management of fibromyalgia-related pain. Besides, non-invasive electrotherapy techniques are related to no/minor side effects. Further studies are warranted to identify the optimal treatment protocols for each electrotherapy modality.
Collapse
Affiliation(s)
- Ilke Coskun Benlidayi
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Cukurova University, Adana, Turkey.
| |
Collapse
|
38
|
Supervised transcranial direct current stimulation (tDCS) at home: A guide for clinical research and practice. Brain Stimul 2020; 13:686-693. [PMID: 32289698 DOI: 10.1016/j.brs.2020.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a method of noninvasive neuromodulation and potential therapeutic tool to improve functioning and relieve symptoms across a range of central and peripheral nervous system conditions. Evidence suggests that the effects of tDCS are cumulative with consecutive daily applications needed to achieve clinically meaningful effects. Therefore, there is growing interest in delivering tDCS away from the clinic or research facility, usually at home. OBJECTIVE To provide a comprehensive guide to operationalize safe and responsible use of tDCS in home settings for both investigative and clinical use. METHODS Providing treatment at home can improve access and compliance by decreasing the burden of time and travel for patients and their caregivers, as well as to reach those in remote locations and/or living with more advanced disabilities. RESULTS To date, methodological approaches for at-home tDCS delivery have varied. After implementing the first basic guidelines for at-home tDCS in clinical trials, this work describes a comprehensive guide for facilitating safe and responsible use of tDCS in home settings enabling access for repeated administration over time. CONCLUSION These guidelines provide a reference and standard for practice when employing the use of tDCS outside of the clinic setting.
Collapse
|
39
|
Gentile E, Brunetti A, Ricci K, Delussi M, Bevilacqua V, de Tommaso M. Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study. PLoS One 2020; 15:e0228158. [PMID: 31971993 PMCID: PMC6977766 DOI: 10.1371/journal.pone.0228158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Experimental and clinical studies suggested an analgesic effect on chronic pain by motor cortex activation. The present study explored the complex mechanisms of interaction between motor and pain during performing the slow and fast finger tapping task alone and in concomitant with nociceptive laser stimulation. METHOD The participants were 38 patients with fibromyalgia (FM) and 21 healthy subjects. We used a simultaneous multimodal method of laser-evoked potentials and functional near-infrared spectroscopy to investigate metabolic and electrical changes during the finger tapping task and concomitant noxious laser stimulation. Functional near-infrared spectroscopy is a portable and optical method to detect cortical metabolic changes. Laser-evoked potentials are a suitable tool to study the nociceptive pathways function. RESULTS We found a reduced tone of cortical motor areas in patients with FM compared to controls, especially during the fast finger tapping task. FM patients presented a slow motor performance in all the experimental conditions, requesting rapid movements. The amplitude of laser evoked potentials was different between patients and controls, in each experimental condition, as patients showed smaller evoked responses compared to controls. Concurrent phasic pain stimulation had a low effect on motor cortex metabolism in both groups nor motor activity changed laser evoked responses in a relevant way. There were no correlations between Functional Near-Infrared Spectroscopy (FNIRS) and clinical features in FM patients. CONCLUSION Our findings indicated that a low tone of motor cortex activation could be an intrinsic feature in FM and generate a scarce modulation on pain condition. A simple and repetitive movement such as that of the finger tapping task seems inefficacious in modulating cortical responses to pain both in patients and controls. The complex mechanisms of interaction between networks involved in pain control and motor function require further studies for the important role they play in structuring rehabilitation strategies.
Collapse
Affiliation(s)
- Eleonora Gentile
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Antonio Brunetti
- Department of Electrical and Information Engineering, Polytecnic University of Bari, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering, Polytecnic University of Bari, Bari, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Polyclinic General Hospital, Bari, Italy
| |
Collapse
|
40
|
Ferreira Pinto PHDC, Nigri F, Caparelli-Dáquer EM, Viana JDS. Computed tomography-guided navigated transcranial magnetic stimulation for preoperative brain motor mapping in brain lesion resection: A case report. Surg Neurol Int 2019; 10:134. [PMID: 31528469 PMCID: PMC6744739 DOI: 10.25259/sni-124-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Navigated transcranial magnetic stimulation (nTMS) is a well establish a noninvasive method for preoperative brain motor mapping. We commonly use magnetic resonance imaging (MRI) to supply the nTMS system. In some cases, MRI is not possible or available, and the use of computed tomography (CT) is necessary. We present the first report describing the association of CT and nTMS motor mapping for brain lesion resection. Case Description: CT imaging of a 59-year-old man suffering from acquired immune deficiency syndrome for 17 years, presenting with seizure and right hemiparesis, revealed a small single hypodense ring-enhancing lesion in the left central sulci suggesting cerebral toxoplasmosis. After 3 weeks of neurotoxoplasmosis treatment, due to four consecutive tonic-clonic seizures, a new CT scan was performed and showed no lesion changes. MRI was in maintenance at that time. Infectious diseases department suggested a brain lesion biopsy. Due to lesion’s location, we decided to perform a presurgical nTMS motor mapping. After a small craniotomy, we could precisely locate and safely totally remove the lesion. The pathology report revealed a high suspicious toxoplasmosis pattern. The patient was discharged after 2 days and continued toxoplasmosis treatment. After 6 months follow-up, he showed no signs of any procedure-related deficits or radiological recurrence. Conclusion: We report the feasibility and applicability of nTMS motor mapping using CT scan as an image source. It gives neurosurgeons another possibility to perform motor mapping for brain lesion removal, especially when MRI is not available or feasible.
Collapse
Affiliation(s)
| | - Flavio Nigri
- Department of Surgical Specialties, Neurosurgery Teaching and Assistance Unit, Pedro Ernesto University Hospital, RJ, Brazil.,Department of Physiological Sciences, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Egas Moniz Caparelli-Dáquer
- Department of Physiological Sciences, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.,Nervous System Electric Stimulation Laboratory (LabEEL), Neurosurgery Teaching and Assistance Unit, Pedro Ernesto University Hospital, RJ, Brazil
| | - Jucilana Dos Santos Viana
- Department of Surgical Specialties, Neurosurgery Teaching and Assistance Unit, Pedro Ernesto University Hospital, RJ, Brazil
| |
Collapse
|