1
|
Diedrich A, Arif Y, Taylor BK, Shen Z, Astorino PM, Lee WH, McCreery RW, Heinrichs-Graham E. Distinct age-related alterations in alpha-beta neural oscillatory activity during verbal working memory encoding in children and adolescents. J Physiol 2025; 603:2387-2408. [PMID: 40051330 DOI: 10.1113/jp287372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/18/2025] [Indexed: 04/23/2025] Open
Abstract
Emerging imaging studies of working memory (WM) have identified significant WM-related oscillatory events that are unique to each phase of working memory (e.g. encoding, maintenance). Although many previous imaging studies have shown age-related changes within the frontoparietal network when performing a WM task, understanding of the age-related changes in the oscillatory dynamics underlying each phase of WM during development and their relationships to other cognitive function is still in its infancy. To this end, we enrolled a group of 74 typically-developing youths aged 7-15 years to perform a letter-based Sternberg WM task during magnetoencephalography. Trial-wise data were transformed into the time-frequency domain, and significant oscillatory responses during the encoding and maintenance phases of the task were independently imaged using beamforming. Our results revealed widespread age-related power differences in alpha-beta oscillatory activity during encoding throughout left frontal, parietal, temporal, occipital and cerebellar regions. By contrast, age-related differences in maintenance-related activity were limited to a small area in the superior temporal gyrus and parieto-occipital regions. Follow-up exploratory factor analysis of age-related encoding alpha-beta activity revealed two distinct factors, and these factors were each found to significantly mediate age-related improvements in both verbal and non-verbal cognitive ability. Additionally, late maintenance alpha activity was related to reaction time on the task. Taken together, our results indicate that the neural dynamics in the alpha and beta bands are uniquely sensitive to age-related changes throughout this developmental period and are related to both task performance and other aspects of cognitive development. KEY POINTS: Understanding of the age-related changes in neural oscillatory dynamics serving verbal working memory function is in its infancy. This study identified the age-related neural alterations during each phase of working memory processing in youths. Developmental differences during working memory processing were primarily isolated to alpha-beta activity during the encoding phase. Alpha-beta activity during encoding significantly mediated age-related improvements in both verbal and non-verbal ability. This study establishes new brain-behaviour relationships linking working memory function to other aspects of cognitive development.
Collapse
Affiliation(s)
- Augusto Diedrich
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Yasra Arif
- Magnetoencephalography (MEG) Core, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Brittany K Taylor
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
- Neurodiversity Laboratory, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Zhiying Shen
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
| | - Phillip M Astorino
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
| | - Wai Hon Lee
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| | - Ryan W McCreery
- Audibility, Perception, and Cognition Laboratory, BTNRH, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Cognitive and Sensory Imaging Laboratory, Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
- Center for Pediatric Brain Health, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
- Magnetoencephalography (MEG) Core, Institute for Human Neuroscience, BTNRH, Omaha, NE, USA
| |
Collapse
|
2
|
Habets B, Ye Z, Jansma BM, Heldmann M, Münte TF. Brain imaging and electrophysiological markers of anaphoric reference during speech production. Neurosci Res 2025; 213:110-120. [PMID: 39788350 DOI: 10.1016/j.neures.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Pronouns create cohesive links in discourse by referring to previously mentioned elements. Here, we focus on pronominalization during speech production in three experiments employing ERP and fMRI methodologies. Participants were asked to produce two short sentences describing a man or woman using an object. In the second sentence, they were instructed to use a pronoun to refer to the same person and a noun to refer to a different person. The first ERP experiment revealed that noun conditions elicited more negative ERPs starting at 220 ms, with significant differences in early and later time windows, particularly in the left hemisphere. The second ERP experiment showed divergence at 280 ms, with significant differences between 300 and 400 ms at midline electrodes, again indicating more negative ERPs for nouns. The fMRI experiment identified greater activations for nouns than pronouns in regions like the superior temporal gyrus (STG) and cerebellar vermis, suggesting higher working memory load and lexical retrieval demands for nouns compared to pronouns. Moreover, pronouns elicited an enhanced centro-parietal positivity, indicating increased attentional demands. These findings suggest that while noun processing requires greater working memory and lexical retrieval, pronoun processing engages more attentional resources. This study advances our understanding of the neural mechanisms underlying pronominalization during speech production, highlighting distinct neural responses for nouns and pronouns.
Collapse
Affiliation(s)
- Boukje Habets
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bernadette M Jansma
- Department of Psychology, Maastricht University, Maastricht, the Netherlands
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Germany; Center for Brain Behavior and Metabolism, University of Lübeck, Germany
| | - Thomas F Münte
- Center for Brain Behavior and Metabolism, University of Lübeck, Germany.
| |
Collapse
|
3
|
Magalhães TNC, Maldonado T, Jackson TB, Hicks TH, Herrejon IA, Rezende TJR, Symm AC, Bernard JA. Cerebellar-hippocampal volume associations with behavioral outcomes following tDCS modulation. Brain Imaging Behav 2025; 19:384-394. [PMID: 39904871 DOI: 10.1007/s11682-025-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Here, we explore the relationship between transcranial direct current stimulation (tDCS) and brain-behavior interactions. We propose that tDCS perturbation allows for the investigation of relationships between brain volume and behavior. We focused on the hippocampus (HPC) and cerebellum (CB) regions that are implicated in our understanding of memory and motor skill acquisition. Seventy-four young adults (mean age: 22 ± 0.42 years, mean education: 14.7 ± 0.25 years) were randomly assigned to receive either anodal, cathodal, or sham stimulation. Following stimulation, participants completed computerized tasks assessing working memory and sequence learning in a magnetic resonance imaging (MRI) environment. We investigated the statistical interaction between CB and HPC volumes. Our findings showed that individuals with larger cerebellar volumes had shorter reaction times (RT) on a high-load working memory task in the sham stimulation group. In contrast, the anodal stimulation group exhibited faster RTs during the low-load working memory condition. These RT differences were associated with the cortical volumetric interaction between CB-HPC. Literature suggests that anodal stimulation down-regulates the CB and here, those with larger volumes perform more quickly, suggesting the potential need for additional cognitive resources to compensate for cerebellar downregulation or perturbation. This new insight suggests that tDCS can aid in revealing structure-function relationships, due to greater performance variability, especially in young adults. It may also reveal new targets of interest in the study of aging or in diseases where there is also greater behavioral variability.
Collapse
Affiliation(s)
- Thamires N C Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77840, United States of America.
| | - Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, USA
| | | | - Tracey H Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77840, United States of America
| | - Ivan A Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77840, United States of America
| | - Thiago J R Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Abigail C Symm
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77840, United States of America
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77840, United States of America.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Madsen SJ, Lee YE, Uddin LQ, Mumford JA, Barch DM, Fair DA, Gotlib IH, Poldrack RA, Kuceyeski A, Saggar M. Predicting Task Activation Maps from Resting-State Functional Connectivity using Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612309. [PMID: 39314460 PMCID: PMC11419026 DOI: 10.1101/2024.09.10.612309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deep learning has been proven effective in predicting brain activation patterns from resting-state features. In this work, using resting state and task fMRI data from the Human Connectome Project (HCP), we replicate the state-of-the-art deep learning model BrainSurfCNN and examine new model architectures for improvement. We also examine the role of individual variability in model performance. Specifically, first, we replicated the BrainSurfCNN model and assessed how varying the input feature space impacts task contrast prediction. Second, we explored two architectural changes for improving model performance and scalability: adding a Squeeze-and-Excitation attention mechanism (BrainSERF) and using a graph neural network-based architecture (BrainSurfGCN). Third, we examined how model performance is impacted by individual variability in task performance and data quality. Overall, we present replication, potential avenues for improvements in performance and scalability, and a better understanding of how individual variability impacts prediction performance - all in the hope of advancing deep learning applications in neuroimaging.
Collapse
|
5
|
Zheng S, Zhang Y, Huang K, Zhuang J, Lü J, Liu Y. Temporal Interference Stimulation Boosts Working Memory Performance in the Frontoparietal Network. Hum Brain Mapp 2025; 46:e70160. [PMID: 39936622 DOI: 10.1002/hbm.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Temporal interference (TI) stimulation is a novel neuromodulation technique that overcomes the depth limitations of traditional transcranial electrical stimulation while avoiding the invasiveness of deep brain stimulation. Our previous behavioral research has demonstrated the effects of multi-target TI stimulation in enhancing working memory (WM) performance, however, the neural mechanisms of this special form of envelope modulation remain unclear. To address this issue, here we designed this randomized, double-blind, crossover study, which consisted of a task-based functional magnetic resonance imaging (fMRI) experiment, to explore how offline TI stimulation modulated brain activity and behavioral performance in healthy adults. We conducted a 2 × 2 within-subjects design with two factors: stimulation (TI vs. Sham) and time (pre vs. post). Participants received two stimulation protocols in a random order: TI (beat frequency: 6 Hz, targeting middle frontal gyrus [MFG] and inferior parietal lobule [IPL]) and sham stimulation. Neuroimaging data of a WM task with different cognitive loads were acquisited immediately before and after stimulation. We found TI stimulation significantly improved d' in the high-demand WM task. Whole-brain analysis showed the significant time-by-stimulation interactions in two main clusters in IPL and precuneus with lower activation after TI stimulation. The generalized psychophysiological interaction (gPPI) analysis revealed a significant interaction in task-modulated connectivity between MFG and IPL, with improvement observed after TI stimulation. Notably, this increasing functional connectivity induced by TI stimulation was positively correlated with better behavioral performance. Overall, our findings show specific effects of TI stimulation on brain activation and functional connectivity in the frontoparietal network and may contribute to provide new perspectives for future neuromodulation applications.
Collapse
Affiliation(s)
- Suwang Zheng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yufeng Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kun Huang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Gao C, Wu J, Cheng Y, Ke Y, Qu X, Yang M, Hartwigsen G, Chen L. Continuous theta-burst stimulation demonstrates language-network-specific causal effects on syntactic processing. Neuroimage 2025; 306:121014. [PMID: 39793638 DOI: 10.1016/j.neuroimage.2025.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Hierarchical syntactic structure processing is proposed to be at the core of the human language faculty. Syntactic processing is supported by the left fronto-temporal language network, including a core area in the inferior frontal gyrus as well as its interaction with the posterior temporal lobe (i.e., "IFG + pTL"). Moreover, during complex syntactic processes, left IFG also interacts with executive control regions, such as the superior parietal lobule (SPL). However, the functional relevance of these network interactions is largely unclear. In particular, it remains to be demonstrated whether the language network plays a specific causal role in comparatively challenging syntactic processes, separable from the interaction between IFG and other general cognitive regions (i.e., "IFG + SPL" in the present study). The present study was designed to address this question. Thirty healthy adult Chinese native speakers underwent four continuous theta-burst stimulation (cTBS) sessions: stimulation over IFG, stimulation over IFG + pTL, stimulation over IFG + SPL, and sham stimulation over IFG + irrelevant region in a pseudo-randomized order. In each session, participants were required to label the syntactic categories of jabberwocky sequences retaining real Chinese function words (e.g., "ムウ" is labeled as a verb phrase (VP): "[VP [V]N]", similar to "ziff-ed a wug", where "ziff" and "wug" are nonsense pseudowords, and the whole phrase is a VP). Contrasted with sham cTBS, change percentage of accuracy rates (ΔACCR%), reaction times (ΔRT%), and coefficient of variation (ΔCV%) were calculated and compared across conditions. First-order behavioral results showed a significantly higher ΔCV% after stimulating IFG + pTL compared to stimulating the IFG + SPL, indicating that syntactic processing became more unstable. Second-order representational similarity analysis (RSA) results revealed that cTBS effects on IFG + pTL selectively depended on the hierarchical embedding depth, a key measure of syntactic hierarchical complexity, whereas the effects on IFG + SPL were sensitive to the dependency length, a crucial index reflecting the working memory load. Collectively, these findings reveal the specific causal relevance of the language areas for hierarchical syntactic processing, separable from other general cognitive (such as working memory) capacities. These results shed light on the uniqueness and the specific causal role of the language network for the human language faculty, further supporting the causally separable view of the functional dissociation between the language network and the domain-general/multiple-demand network.
Collapse
Affiliation(s)
- Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yuming Ke
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
7
|
Li Z, Li SB, Tan S, Liu LL, Yan C, Zou LQ. Neural correlates of olfactory working memory in the human brain. Neuroimage 2025; 306:121005. [PMID: 39788337 DOI: 10.1016/j.neuroimage.2025.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Previous research has revealed that the insula, pallidum, thalamus, hippocampus, middle frontal gyrus, and supplementary motor area are activated during odor memory and that the performance of olfactory working memory is affected by the verbalization of odors. However, the neural mechanisms underlying olfactory working memory and the role of verbalization in olfactory working memory are not fully understood. Twenty-nine participants were enrolled in a study to complete olfactory and visual n-back tasks using high- and low-verbalizability stimuli while undergoing fMRI imaging. The behavioral results showed that the participants achieved greater accuracy in the visual rather than olfactory n-back task. We observed increased activation in the precentral gyrus, superior frontal gyrus, middle frontal gyrus, supplementary motor area, and inferior parietal gyrus during olfactory working memory. Interestingly, decreased activation was observed in the olfactory 2-back task versus the 0-back task. Moreover, the left angular gyrus and inferior parietal gyrus were more strongly activated during processing of olfactory working memory using high-verbalizability odors. In conclusion, olfactory working memory engages cross-modal regions to facilitate responses, is involved in the monitoring and manipulation of information during working memory, and boasts a unique activation pattern that is different from that of visual working memory. Semantic information supports the representation of odor information in the working memory system.
Collapse
Affiliation(s)
- Zhuofeng Li
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Bin Li
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Shaozhen Tan
- School of Education, South China Normal University, Guangzhou, Guangdong, China; Guangzhou Social Welfare Institute, Guangzhou, Guangdong, China
| | - Lu-Lu Liu
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| | - Lai-Quan Zou
- Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Tranfa M, Costabile T, Pontillo G, Scaravilli A, Pane C, Brunetti A, Saccà F, Cocozza S. Altered Intracerebellar Functional Connectivity in Friedreich's Ataxia: A Graph-Theory Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2025; 24:30. [PMID: 39808241 PMCID: PMC11732920 DOI: 10.1007/s12311-025-01785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA. In this cross-sectional, single-center study, resting-state functional MRI data from 17 patients with FRDA (average age 27.7 ± 13.6 years; F/M = 6/11) and 20 healthy controls (HC) (average age 29.4 ± 9.7 years; F/M = 9/11), all of whom underwent neuropsychological testing, were analyzed. From functional connectivity matrices, graph measures were computed at both the network and node levels using two complementary parcellations. FRDA patients exhibited decreased global efficiency (p = 0.04), nodal degree (p = 0.001) and betweenness centrality (p = 0.04) in the vermal portion of lobule VIII, along with reduced global efficiency in cerebellar regions belonging to the Control-A network (p = 0.02), one of the three subdivisions of the Frontoparietal network. Verbal memory deficits correlated with global efficiency in both the vermal portion of lobule VIII (r = 0.53, p = 0.02) and the cerebellar regions of the Control-A network (r = 0.49, p = 0.05). Graph analysis revealed regional intra-cerebellar FC changes in FRDA, marked by reduced functional centrality in cerebellar regions of the vermis and responsible for executive functions. These changes correlated with cognitive alterations, highlighting the role of the cerebellar cortex in the cognitive impairment observed in FRDA.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Teresa Costabile
- Department of Clinical and Experimental Medicine, "Luigi Vanvitelli" University, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
9
|
Pereira Seabra J, Chopurian V, Souza AS, Christophel TB. Verbal Encoding Strategies in Visuo-Spatial Working Memory. J Cogn 2025; 8:2. [PMID: 39803180 PMCID: PMC11720477 DOI: 10.5334/joc.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/01/2024] [Indexed: 01/16/2025] Open
Abstract
Visual working memory and verbal storage are often investigated independently of one another. However, a growing body of evidence suggests that naming visual stimuli can provide an advantage in performance during visual working memory tasks. On the other hand, there is also evidence that labeling could lead to biases in recall. Here, we present an exploratory investigation of verbal labels associated with the memorization of simple visuo-spatial stimuli, and how the use of these labels informs recall behavior of the same stimuli in a separate working memory task. English-speaking participants performed a working memory task with orientation and location stimuli, followed by a separate naming task featuring the same stimuli. We found a diverse set of labels employed frequently and with a consistent distribution across stimulus types, the stimulus space, and among participants. The use of individual spatial words, predicted class 1 cardinal biases in memory (i.e. the observation that cardinal stimuli are more accurately recalled than non-cardinal ones). Conversely, words expressing uncertainty (e.g. 'slightly', 'near') predicted class 2 cardinal bias (i.e. recall biases away from the cardinal planes). This relationship between word use and recall biases is consistent with shared representational resources that are used for both visuo-spatial and verbal working memory.
Collapse
Affiliation(s)
- Joana Pereira Seabra
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| | - Vivien Chopurian
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| | | | - Thomas B. Christophel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, DE
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, DE
| |
Collapse
|
10
|
Hempel M, Barnhofer T, Domke AK, Hartling C, Stippl A, Carstens L, Gärtner M, Grimm S. Aberrant associations between neuronal resting-state fluctuations and working memory-induced activity in major depressive disorder. Mol Psychiatry 2025; 30:4-12. [PMID: 38951625 PMCID: PMC11649556 DOI: 10.1038/s41380-024-02647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Previous investigations have revealed performance deficits and altered neural processes during working-memory (WM) tasks in major depressive disorder (MDD). While most of these studies used task-based functional magnetic resonance imaging (fMRI), there is an increasing interest in resting-state fMRI to characterize aberrant network dynamics involved in this and other MDD-associated symptoms. It has been proposed that activity during the resting-state represents characteristics of brain-wide functional organization, which could be highly relevant for the efficient execution of cognitive tasks. However, the dynamics linking resting-state properties and task-evoked activity remain poorly understood. Therefore, the present study investigated the association between spontaneous activity as indicated by the amplitude of low frequency fluctuations (ALFF) at rest and activity during an emotional n-back task. 60 patients diagnosed with an acute MDD episode, and 52 healthy controls underwent the fMRI scanning procedure. Within both groups, positive correlations between spontaneous activity at rest and task-activation were found in core regions of the central-executive network (CEN), whereas spontaneous activity correlated negatively with task-deactivation in regions of the default mode network (DMN). Compared to healthy controls, patients showed a decreased rest-task correlation in the left prefrontal cortex (CEN) and an increased negative correlation in the precuneus/posterior cingulate cortex (DMN). Interestingly, no significant group-differences within those regions were found solely at rest or during the task. The results underpin the potential value and importance of resting-state markers for the understanding of dysfunctional network dynamics and neural substrates of cognitive processing.
Collapse
Affiliation(s)
- Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany.
| | - Thorsten Barnhofer
- School of Psychology, University of Surrey, GU2 7XH, Guildford, United Kingdom
| | - Ann-Kathrin Domke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Corinna Hartling
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Matti Gärtner
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
11
|
Zotev V, McQuaid JR, Robertson‐Benta CR, Hittson AK, Wick TV, Nathaniel U, Miller SD, Ling JM, van der Horn HJ, Mayer AR. Evaluation of Theta EEG Neurofeedback Procedure for Cognitive Training Using Simultaneous fMRI in Counterbalanced Active-Sham Study Design. Hum Brain Mapp 2025; 46:e70127. [PMID: 39780508 PMCID: PMC11711506 DOI: 10.1002/hbm.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design. Healthy volunteers (n = 18) used EEG-nf to upregulate frontal theta EEG asymmetry (FTA) during fMRI while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. The FTA was defined as power asymmetry for channels F3 and F4 in [4-7] Hz band. Sham feedback was provided based on asymmetry of motion-related artifacts. The experimental procedure included two training runs with the active EEG-nf and two training runs with the sham feedback, in a randomized order. The participants showed significantly more positive FTA changes during the active EEG-nf conditions compared to the sham conditions, associated with significantly higher theta EEG power changes for channel F3. Temporal correlations between the FTA and fMRI activities of prefrontal, parietal, and occipital brain regions were significantly enhanced during the active EEG-nf conditions compared to the sham conditions. Temporal correlation between theta EEG power for channel F3 and fMRI activity of the left dorsolateral prefrontal cortex (DLPFC) was also significantly enhanced. Significant active-vs-sham difference in fMRI activations was observed for the left DLPFC. Our results demonstrate that mechanisms of EEG-nf training can be reliably evaluated using the counterbalanced active-sham study design and simultaneous fMRI.
Collapse
Affiliation(s)
- Vadim Zotev
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Jessica R. McQuaid
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | | | - Anne K. Hittson
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
- Department of PediatricsUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Tracey V. Wick
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Upasana Nathaniel
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Samuel D. Miller
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Harm J. van der Horn
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
- Department of Psychiatry & Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
12
|
Gornushenkov ID, Barkhatova AN, Pluzhnikov IV, Chaika YA. [Comparative study of cognitive impairment in subgroups of bipolar affective disorder types I and II, occurring with and without psychotic symptoms]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:7-11. [PMID: 40195095 DOI: 10.17116/jnevro20251250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
One of the developing research areas of bipolar affective disorder (BAD) is the study of the neurocognitive profile of the patients, supported by the clinical practice to address the issues of diagnosis, course prediction, response to drug therapy, as well as the relationship of cognitive impairment with the level of social and labor adaptation of patients, and mental health sciences to analyze the BAD subtypes and clarify their neurobiological ground. By searching using combinations of the keywords «bipolar disorder», «psychosis», «BD I type», «BD II type», «cognitive impairment», «cognitive dysfunction», «meta-analysis», and «review» in the PubMed and Google Scholar databases, relevant meta-analyses, reviews, and original research articles were identified. The results showed that the BAD subgroups with and without psychotic manifestations, types I and II BAD, have different structures of the neurocognitive profile and the depth and severity of cognitive impairment, which can be assumed to reflect differences in the neurobiological mechanisms of these disorders. For future studies, it is interesting to compare the neurocognitive profile and psychopathological manifestations of the subgroups discussed to study BAD further. Evaluating the neurocognitive profile of BAD subgroups may increase the effectiveness of the diagnosis and therapy. Determining reliable causal factors will help implement personalized therapeutic interventions and develop effective preventive programs.
Collapse
Affiliation(s)
| | | | | | - Yu A Chaika
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
13
|
Takahashi A, Iuchi S, Sasaki T, Hashimoto Y, Ishizaka R, Minami K, Watanabe T. Working memory load increases movement-related alpha and beta desynchronization. Neuropsychologia 2024; 205:109030. [PMID: 39486757 DOI: 10.1016/j.neuropsychologia.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Working memory (WM) load has been well-documented to impair selective attention and inhibitory control. However, its effects on motor function remain insufficiently explored. To extend the existing literature, we investigated the impact of WM load on force control and movement-related brain activity. Sixteen healthy young participants performed a visual static force matching task using a pinch grip under varying WM loads. The task included low and high WM load conditions (memorizing one digit or six digits), and the precision level required to control force was adjusted by manipulating visual gain (low vs. high visual gains), with higher visual gain necessitating more precise force control. Peri-movement alpha and beta event-related desynchronization (ERD), along with force accuracy and steadiness, were measured using electroencephalography recorded over the central areas during the force control task. Results indicated that while force accuracy and steadiness significantly improved with higher visual gain, there was no significant effect of WM load on these measures. Alpha and beta ERD were greater under high than low visual gain, and also greater under high than low WM load. These findings suggest that in young adults, increased WM load leads to compensatory increases in sensorimotor cortical activity to mitigate potential declines in static force control performance that may result from the depletion of neural resources caused by WM load. Our findings extend current understanding of the interaction between WM and sensorimotor processes by offering new insights into how movement-related brain activity is influenced by heightened WM load.
Collapse
Affiliation(s)
- Aoki Takahashi
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Shugo Iuchi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Taisei Sasaki
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuhei Hashimoto
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Riku Ishizaka
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kodai Minami
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tatsunori Watanabe
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| |
Collapse
|
14
|
Akhmadullina DR, Konovalov RN, Shpilyukova YA, Nevzorova KV, Fedotova EY, Illarioshkin SN. Neuroanatomical correlates of language impairment in non-fluent variant of primary progressive aphasia. Front Hum Neurosci 2024; 18:1486809. [PMID: 39698146 PMCID: PMC11652495 DOI: 10.3389/fnhum.2024.1486809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Non-fluent variant of primary progressive aphasia (nfvPPA) is a neurodegenerative disorder with a predominantly speech and language impairment. Apraxia of speech and expressive agrammatisms along with decreased speech fluency and impaired grammar comprehension are the most typical disorder manifestations but with the course of the disease other language disturbances may also arise. Most studies have investigated these symptoms individually, and there is still no consensus on whether they have similar or different neuroanatomical foundations in nfvPPA. In addition, only few works have focused on the functional connectivity correlates. The aim of our study was to simultaneously investigate functional and structural brain-language associations in one group of nfvPPA. Methods Twenty eight patients were enrolled and underwent brain MRI and language assessment. Apraxia of speech, expressive and receptive agrammatisms, repetition, naming and single word comprehension correlates were identified using voxel-based morphometry and resting-state functional MRI (ROI-to-ROI analysis). Results and discussion Among the structural correlates, the most common were inferior frontal gyrus (was associated with fluency, both expressive and receptive agrammatisms) and supramarginal gyrus (apraxia of speech, receptive agrammatisms, naming and repetition). Apart from that, neuroanatomical foundations were different for each of the core nfvPPA language domains, including superior parietal lobule involvement in fluency, temporoparietal areas in receptive agrammatisms and supplemental motor area in apraxia of speech. Functional correlations were even more diverse. In general, connectivity decrease between temporoparietal structures was more typical for expressive and receptive agrammatisms, single word comprehension and naming, while apraxia of speech, fluency and repetition showed connectivity disruption mainly among the frontoparietal region and subcortical structures. Overall, extensive structural and functional changes are involved in the development of language and speech disturbances in nfvPPA with distinctive neuroanatomical foundations for each domain.
Collapse
|
15
|
Bomyea J, Feng S, Moore RC, Simmons AN, Thomas ML. Change in Resting-State Functional Connectivity Following Working Memory Training in Individuals With Repetitive Negative Thinking. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1262-1270. [PMID: 38705463 DOI: 10.1016/j.bpsc.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Repetitive negative thinking (RNT) symptoms, which are characterized by pervasive, uncontrollable negative thoughts, are common in individuals with mood, anxiety, and traumatic stress disorders. Inability to regulate the contents of working memory is a hypothesized etiological factor in RNT, which suggests that training to improve working memory may be beneficial. This study examined the effects of working memory training on resting-state functional connectivity (rsFC) in individuals with elevated RNT and whether such changes would be associated with clinical improvement. METHODS We conducted a secondary analysis of pre-post resting-state data collected as part of a randomized controlled trial (NCT04912089) of working memory training interventions (n = 42) compared with a waitlist control group (n = 23). We hypothesized that individuals who completed training would show increased rsFC between the 2 key intrinsic connectivity networks-the default mode network (posterior cingulate cortex) and the frontoparietal network (dorsolateral prefrontal cortex). We explored whether the magnitude of rsFC change was associated with change in RNT symptom severity. RESULTS rsFC increased between the posterior cingulate cortex and regions including the frontal and parietal cortex in the training group compared with the waitlist group. Increased connectivity between the posterior cingulate cortex and superior frontal cortex was associated with RNT symptom reduction. CONCLUSIONS These data provide evidence that working memory training can modulate neural circuitry at rest in individuals with RNT. Results are consistent with accounts of working memory training effects on large-scale neurocircuitry changes and suggest that these changes may contribute to clinical promise of this type of intervention on transdiagnostic RNT symptoms.
Collapse
Affiliation(s)
- Jessica Bomyea
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California.
| | - Shirley Feng
- Department of Psychiatry, University of California San Diego, San Diego, California; Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts
| | - Raeanne C Moore
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Alan N Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
16
|
Karr JE, Rodriguez JE, Rast P, Goh PK, Martel MM. A Network Analysis of Executive Functions in Children and Adolescents With and Without Attention-Deficit/Hyperactivity Disorder. Child Psychiatry Hum Dev 2024; 55:1600-1610. [PMID: 36890331 DOI: 10.1007/s10578-023-01518-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
This study applied network analysis to executive function test performances to examine differences in network parameters between demographically matched children and adolescents with and without attention-deficit/hyperactivity disorder (ADHD) (n = 141 per group; M = 12.7 ± 2.9 years-old; 72.3% boys, 66.7% White, 65.2% ≥ 12 years maternal education). All participants completed the NIH Toolbox Cognition Battery, including the Flanker, measuring inhibition, Dimensional Change Card Sort, measuring shifting, and List Sorting test, measuring working memory. Children with and without ADHD had comparable mean test performances (d range: .05-0.11) but presented with differences in network parameters. Among participants with ADHD, shifting was less central, had a weaker relationship with inhibition, and did not mediate the relationship between inhibition and working memory. These network characteristics were consistent with the executive function network structure of younger ages in prior research and may reflect an immature executive function network among children and adolescents with ADHD, aligning with the delayed maturation hypothesis.
Collapse
Affiliation(s)
- Justin E Karr
- Department of Psychology, University of Kentucky, 171 Funkhouser Drive, 012D Kastle Hall, Lexington, KY, 40506-0044, USA.
| | - Josue E Rodriguez
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Philippe Rast
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Patrick K Goh
- Department of Psychology, University of Hawai'i at Manoa, Honolulu, Hawai'i, USA
| | - Michelle M Martel
- Department of Psychology, University of Kentucky, 171 Funkhouser Drive, 012D Kastle Hall, Lexington, KY, 40506-0044, USA
| |
Collapse
|
17
|
Mohammadi H, Jamshidi S, Khajehpour H, Adibi I, Rahimiforoushani A, Karimi S, Dadashi Serej N, Riyahi Alam N. Unveiling Glutamate Dynamics: Cognitive Demands in Human Short-Term Memory Learning Across Frontal and Parieto-Occipital Cortex: A Functional MRS Study. J Biomed Phys Eng 2024; 14:519-532. [PMID: 39726886 PMCID: PMC11668935 DOI: 10.31661/jbpe.v0i0.2407-1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 12/28/2024]
Abstract
Background Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate's involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks. Objective This study aimed to investigate glutamate modulation during memory tasks in the right Dorsolateral Prefrontal Cortex (DLPFC) and parieto-occipital regions using functional Magnetic Resonance Spectroscopy (fMRS). Material and Methods This experimental research applied fMRS acquisition concurrently with a modified Sternberg's verbal working memory task for fourteen healthy right-handed participants (5 females, mean age=30.64±4.49). The glutamate/total-creatine (Glu/tCr) ratio was quantified by LCModel in the DLPFC and parieto-occipital voxels while applying the tissue corrections. Results The significantly higher Glu/tCr modulation was observed during the task with a trend of increased modulation with memory load in both the DLPFC (19.9% higher, P-value=0.018) and parieto-occipital (33% higher, P-value=0.046) regions compared to the rest. Conclusion Our pioneering fMRS study has yielded groundbreaking insights into brain functions during S-term Memory (STM) and learning. This research provides valuable methodological advancements for investigating the metabolic functions of both healthy and disordered brains. Based on the findings, cognitive demands directly correlate with glutamate levels, highlighting the neurochemical underpinnings of cognitive processing. Additionally, the obtained results potentially challenge the traditional left-hemisphere-centric model of verbal working memory, leading to the deep vision of hemispheric contributions to cognitive functions.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Shahriyar Jamshidi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Hassan Khajehpour
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rahimiforoushani
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shaghayegh Karimi
- Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasim Dadashi Serej
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
- School of Computing and Engineering, University of West London, UK
| | - Nader Riyahi Alam
- Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Concordia University, PERFORM Center, School of Health, Montreal, Quebec, Canada
- Magnetic Resonance Imaging Lab, National Brain Mapping Laboratory (NBML), Tehran, Iran
| |
Collapse
|
18
|
Jin X, Zhang L, Wu G, Wang X, Du Y. Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians. Neurosci Bull 2024; 40:1843-1857. [PMID: 38839688 PMCID: PMC11625043 DOI: 10.1007/s12264-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 06/07/2024] Open
Abstract
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Collapse
Affiliation(s)
- Xinhu Jin
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyi Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Du
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
19
|
Said A, Bayrak RG, Derr T, Shabbir M, Moyer D, Chang C, Koutsoukos X. NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics. ARXIV 2024:arXiv:2306.06202v4. [PMID: 38045477 PMCID: PMC10690301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.
Collapse
|
20
|
Carriere M, Tomasello R, Pulvermüller F. Can human brain connectivity explain verbal working memory? NETWORK (BRISTOL, ENGLAND) 2024:1-42. [PMID: 39530651 DOI: 10.1080/0954898x.2024.2421196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The ability of humans to store spoken words in verbal working memory and build extensive vocabularies is believed to stem from evolutionary changes in cortical connectivity across primate species. However, the underlying neurobiological mechanisms remain unclear. Why can humans acquire vast vocabularies, while non-human primates cannot? This study addresses this question using brain-constrained neural networks that realize between-species differences in cortical connectivity. It investigates how these structural differences support the formation of neural representations for spoken words and the emergence of verbal working memory, crucial for human vocabulary building. We develop comparative models of frontotemporal and occipital cortices, reflecting human and non-human primate neuroanatomy. Using meanfield and spiking neural networks, we simulate auditory word recognition and examine verbal working memory function. The "human models", characterized by denser inter-area connectivity in core language areas, produced larger cell assemblies than the "monkey models", with specific topographies reflecting semantic properties of the represented words. Crucially, longer-lasting reverberant neural activity was observed in human versus monkey architectures, compatible with robust verbal working memory, a necessary condition for vocabulary building. Our findings offer insights into the structural basis of human-specific symbol learning and verbal working memory, shedding light on humans' unique capacity for large vocabulary acquisition.
Collapse
Affiliation(s)
- Maxime Carriere
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
| |
Collapse
|
21
|
Magielse N, Manoli A, Eickhoff SB, Fox PT, Saberi A, Valk SL. Bias-accounting meta-analyses overcome cerebellar neglect to refine the cerebellar behavioral topography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621398. [PMID: 39553998 PMCID: PMC11565958 DOI: 10.1101/2024.10.31.621398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The cerebellum plays important roles in motor, cognitive, and emotional behaviors. Previous cerebellar coordinate-based meta-analyses and mappings have attributed different behaviors to cerebellar subareas, but an accurate behavioral topography is lacking. Here, we show overrepresentation of superior activation foci, which may be exacerbated by historical cerebellar neglect. Unequal foci distributions render the null hypothesis of standard activation likelihood estimation unsuitable. Our new method, cerebellum-specific activation-likelihood estimation (C-SALE), finds behavioral convergence beyond baseline activation rates. It does this by testing experimental foci versus null models sampled from a data-driven, biased probability distribution of finding foci at any cerebellar location. Cerebellar mappings were made across five BrainMap task domains and thirty-five subdomains, illustrating improved specificity of the new method. Twelve of forty (sub)domains reached convergence in specific cerebellar subregions, supporting dual motor representations and placing cognition in posterior-lateral regions. Repeated subsampling revealed that whereas action, language and working memory were relatively stable, other behaviors produced unstable meta-analytic maps. Lastly, meta-analytic connectivity modeling in the same debiased framework was used to reveal coactivation networks of cerebellar behavioral clusters. In sum, we created a new method for cerebellar meta-analysis that accounts for data biases and can be flexibly adapted to any part of the brain. Our findings provide a refined understanding of cerebellar involvement in human behaviors, highlighting regions for future investigation in both basic and clinical applications.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Aikaterina Manoli
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Minerva Fast Track Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amin Saberi
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sofie L. Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Marti E, Coll SY, Doganci N, Ptak R. Cortical and subcortical substrates of working memory in the right hemisphere: A connectome-based lesion-symptom mapping study. Neuropsychologia 2024; 204:108998. [PMID: 39251106 DOI: 10.1016/j.neuropsychologia.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Working Memory (WM) is a cognitive system whose crucial role is to temporarily hold and manipulate information. Early studies suggest that verbal WM is typically associated with left hemisphere (LH) brain regions, while the processing of visuospatial information in WM more specifically depends on the right hemisphere (RH). However, recent evidence suggests a more complex network involving both hemispheres' prefrontal and posterior parietal cortices in these processes. Unfortunately, previous lesion studies often examined only one modality (either verbal, or visuospatial) or one hemisphere, which limits the possible conclusions regarding non-lateralized hemispheric involvement. Using connectome-based lesion-symptom mapping on a large sample of patients with left (LBD) and right (RBD) focal brain damage, we examined whether gray matter damage and white matter disconnections predict deficits of WM updating in an N-back task. Patients were examined with two WM tasks that differed regarding modality (verbal, spatial) and cognitive load (1-back, 2-back). Behavioral outcomes indicated that RBD patients showed significant deficits in WM updating, regardless of task modality or load. This observation was supported by whole-brain voxel-based analysis, revealing associations between WM deficits and gray matter clusters in the RH. Specifically, damage to the right lateral frontal cortex including the brain region homologous to Broca's area was associated with verbal WM deficits, while damage to the right inferior parietal lobe and posterior temporal cortex predicted spatial WM deficits. Additionally, white matter analyses identified severely impacted tracts in the RH, predicting deficits in both verbal and spatial WM. Our findings suggest that the mental manipulation of both verbal and visuospatial information in WM updating relies on the integrity of the RH, irrespective of the specific type of information held in mind.
Collapse
Affiliation(s)
- Emilie Marti
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Sélim Yahia Coll
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
23
|
Nozari N, Martin RC. Is working memory domain-general or domain-specific? Trends Cogn Sci 2024; 28:1023-1036. [PMID: 39019705 PMCID: PMC11540753 DOI: 10.1016/j.tics.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Given the fundamental role of working memory (WM) in all domains of cognition, a central question has been whether WM is domain-general. However, the term 'domain-general' has been used in different, and sometimes misleading, ways. By reviewing recent evidence and biologically plausible models of WM, we show that the level of domain-generality varies substantially between three facets of WM: in terms of computations, WM is largely domain-general. In terms of neural correlates, it contains both domain-general and domain-specific elements. Finally, in terms of application, it is mostly domain-specific. This variance encourages a shift of focus towards uncovering domain-general computational principles and away from domain-general approaches to the analysis of individual differences and WM training, favoring newer perspectives, such as training-as-skill-learning.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| |
Collapse
|
24
|
Zhang Y, Fu J, Zhao X. Neural correlates of working memory training: An fMRI meta-analysis. Neuroimage 2024; 301:120885. [PMID: 39395643 DOI: 10.1016/j.neuroimage.2024.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Working memory (WM) can be improved by cognitive training. Numerous studies examined neural mechanisms underlying WM training, although with differing conclusions. Therefore, we conducted a meta-analysis to examine the neural substrates underlying WM training in healthy adults. Findings from global analyses showed substantial neural changes in the frontoparietal and subcortical regions. Results from training dosage analyses of WM training showed that shorter WM training could produce neural changes in the frontoparietal regions, whereas longer WM training could produce changes in the subcortical regions (striatum, anterior cingulate cortex, and insula). WM training-induced neural changes were also moderated by the type of training task, with updating tasks inducing neural changes in more regions than maintenance tasks. Overall, these results indicate that the neural changes associated with WM training occur in the frontoparietal network and dopamine-related brain areas, extending previous meta-analyses on WM training and advancing our understanding of the neural underpinnings of WM training effects.
Collapse
Affiliation(s)
- Yao Zhang
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Junjun Fu
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China
| | - Xin Zhao
- School of Psychology, Key Laboratory of Behavioral and Mental Health of Gansu Province, Northwest Normal University, Lanzhou, China.
| |
Collapse
|
25
|
Nikolova YS, Ruocco AC, Felsky D, Lange S, Prevot TD, Vieira E, Voineskos D, Wardell JD, Blumberger DM, Clifford K, Dharavath RN, Gerretsen P, Hassan AN, Jennings SK, Le Foll B, Melamed O, Orson J, Pangarov P, Quigley L, Russell C, Shield K, Sloan ME, Smoke A, Tang V, Cabrera DV, Wang W, Wells S, Wickramatunga R, Sibille E, Quilty LC. Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312806. [PMID: 39252904 PMCID: PMC11383479 DOI: 10.1101/2024.08.30.24312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Substance use disorders (SUDs) are pressing global public health problems. Executive functions (EFs) are prominently featured in mechanistic models of addiction. However, there remain significant gaps in our understanding of EFs in SUDs, including the dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder heterogeneity, and functional ability. To improve health outcomes for people with SUDs, interdisciplinary clinical, preclinical and health services research is needed to inform policies and interventions aligned with biopsychosocial models of addiction. Here, we introduce Cognitive Dysfunction in the Addictions (CDiA), an integrative team-science and translational research program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance treatments for people living with SUDs. Methods The CDiA Program comprises seven complementary interdisciplinary projects that aim to progress understanding of EF in SUDs and investigate new biological treatment approaches. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking treatment for addiction, who are followed prospectively over one year to identify EF domains crucial to recovery. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers and their associations with both EF domains (inhibition, working memory, and set-shifting) and functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for addiction and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related barriers to treatment engagement for those with substance use concerns. Project 7 uses innovative whole-person modeling to integrate the multi-modal data generated across projects, applying clustering and deep learning methods to identify patient subtypes and drive future cross-disciplinary initiatives. Discussion The CDiA program has promise to bring scientific domains together to uncover the diverse ways in which EFs are linked to SUD severity and functional recovery. These findings, supported by emerging clinical, preclinical, health service, and whole-person modeling investigations, will facilitate future discoveries about cognitive dysfunction in addiction and could enhance the future clinical care of individuals seeking treatment for SUDs.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anthony C Ruocco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Daniel Felsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shannon Lange
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey D Wardell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kevan Clifford
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ravinder Naik Dharavath
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed N Hassan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Jennings
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- Moms Stop the Harm, Victoria, British Columbia
| | - Bernard Le Foll
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Osnat Melamed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto
| | - Joshua Orson
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Leanne Quigley
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, USA
| | - Cayley Russell
- Ontario CRISM Node Team, Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kevin Shield
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Sloan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Smoke
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- The Ontario Network of People Who Use Drugs, Toronto, Ontario, Canada
| | - Victor Tang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Valdes Cabrera
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha Wells
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Western University, London, Ontario, Canada
| | - Rajith Wickramatunga
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lena C Quilty
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Istomina A, Arsalidou M. Add, subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev Cogn Neurosci 2024; 69:101419. [PMID: 39098250 PMCID: PMC11342769 DOI: 10.1016/j.dcn.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.
Collapse
|
27
|
Patel V, Chavda V. Intraoperative glioblastoma surgery-current challenges and clinical trials: An update. CANCER PATHOGENESIS AND THERAPY 2024; 2:256-267. [PMID: 39371095 PMCID: PMC11447313 DOI: 10.1016/j.cpt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 10/08/2024]
Abstract
Surgical excision is an important part of the multimodal therapy strategy for patients with glioblastoma, a very aggressive and invasive brain tumor. While major advances in surgical methods and technology have been accomplished, numerous hurdles remain in the field of glioblastoma surgery. The purpose of this literature review is to offer a thorough overview of the current challenges in glioblastoma surgery. We reviewed the difficulties associated with tumor identification and visualization, resection extent, neurological function preservation, tumor margin evaluation, and inclusion of sophisticated imaging and navigation technology. Understanding and resolving these challenges is critical in order to improve surgical results and, ultimately, patient survival.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat 388001, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Medicine, Multispecialty, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, Gujarat 382350, India
| |
Collapse
|
28
|
Yamashita M, Shou Q, Mizuno Y. Unsupervised machine learning for identifying attention-deficit/hyperactivity disorder subtypes based on cognitive function and their implications for brain structure. Psychol Med 2024; 54:1-13. [PMID: 39324400 PMCID: PMC11578918 DOI: 10.1017/s0033291724002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Structural anomalies in the frontal lobe and basal ganglia have been reported in patients with attention-deficit/hyperactivity disorder (ADHD). However, these findings have been not always consistent because of ADHD diversity. This study aimed to identify ADHD subtypes based on cognitive function and find their distinct brain structural characteristics. METHODS Using the data of 656 children with ADHD from the Adolescent Brain Cognitive Development (ABCD) Study, we applied unsupervised machine learning to identify ADHD subtypes using the National Institutes of Health Toolbox Tasks. Moreover, we compared the regional brain volumes between each ADHD subtype and 6601 children without ADHD (non-ADHD). RESULTS Hierarchical cluster analysis automatically classified ADHD into three distinct subtypes: ADHD-A (n = 212, characterized by high-order cognitive ability), ADHD-B (n = 190, characterized by low cognitive control, processing speed, and episodic memory), and ADHD-C (n = 254, characterized by strikingly low cognitive control, working memory, episodic memory, and language ability). Structural analyses revealed that the ADHD-C type had significantly smaller volumes of the left inferior temporal gyrus and right lateral orbitofrontal cortex than the non-ADHD group, and the right lateral orbitofrontal cortex volume was positively correlated with language performance in the ADHD-C type. However, the volumes of the ADHD-A and ADHD-B types were not significantly different from those of the non-ADHD group. CONCLUSIONS These results indicate the presence of anomalies in the lateral orbitofrontal cortex associated with language deficits in the ADHD-C type. Subtype specificity may explain previous inconsistencies in brain structural anomalies reported in ADHD.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Qiulu Shou
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
29
|
Aiello EN, Contarino VE, Conte G, Solca F, Curti B, Maranzano A, Torre S, Casale S, Doretti A, Colombo E, Verde F, Silani V, Liu C, Cinnante C, Triulzi FM, Morelli C, Poletti B, Ticozzi N. QSM-detected iron accumulation in the cerebellar gray matter is selectively associated with executive dysfunction in non-demented ALS patients. Front Neurol 2024; 15:1426841. [PMID: 39364420 PMCID: PMC11448125 DOI: 10.3389/fneur.2024.1426841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background This study aimed to assess whether quantitative susceptibility imaging (QSM)-based measures of iron accumulation in the cerebellum predict cognitive and behavioral features in non-demented amyotrophic lateral sclerosis (ALS) patients. Methods A total of ALS patients underwent 3-T MRI and a clinical assessment using the ALS Functional Rating Scale-Revised (ALSFRS-R) and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Regression models were applied to each subscale of the cognitive section of the ECAS and the ECAS-Carer Interview to examine the effect of QSM-based measures in white and gray matter (WM; GM) of the cerebellum, separately for right, left, and bilateral cerebellar regions of interest (ROIs). These effects were compared to those of cerebellar volumetrics in WM/GM, right and left hemispheres while controlling for demographics, disease status, and total intracranial volume. Results Higher QSM measures of the cerebellar GM on the left, right, and bilateral sides significantly predicted (ps ≤ 0.003) a greater number of errors on the executive functioning (EF) subscale of the ECAS (ECAS-EF). Moreover, higher GM-related, QSM measures of the cerebellum were associated with an increased probability of a below-cut-off performance on the ECAS-EF (ps ≤ 0.024). No significant effects were observed for QSM measures of the cerebellar WM or for volumetric measures on the ECAS-EF. Other ECAS measures showed no significant effects. Bilateral QSM measures of the cerebellar GM also selectively predicted performance on backward digit span and social cognition tasks. Discussion Iron accumulation within the cerebellar GM, particularly in the cerebellar cortices, may be associated with executive functioning deficits in non-demented ALS patients. Therefore, QSM-based measures could be useful for identifying the neural correlates of extra-motor cognitive deficits in ALS patients.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Beatrice Curti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Claudia Cinnante
- Department of Diagnostic Imaging, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
30
|
Bahri M, Farrahi H, Mahdavinataj H, Batouli SAH. Eight brain structures mediate the age-related alterations of the working memory: forward and backward digit span tasks. Front Psychol 2024; 15:1377342. [PMID: 39295767 PMCID: PMC11409254 DOI: 10.3389/fpsyg.2024.1377342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Working memory (WM) as one of the executive functions is an essential neurocognitive ability for daily life. Findings have suggested that aging is often associated with working memory and neural decline, but the brain structures and resting-state brain networks that mediate age-related differences in WM remain unclear. Methods A sample consisting of 252 healthy participants in the age range of 20 to 70years was used. Several cognitive tasks, including the n-back task and the forward and backward digit span tests were used. Also, resting-state functional imaging, as well as structural imaging using a 3T MRI scanner, were performed, resulting in 85 gray matter volumes and five resting-state networks, namely the anterior and posterior default mode, the right and left executive control, and the salience networks. Also, mediation analyses were used to investigate the role of gray matter volumes and resting-state networks in the relationship between age and WM. Results Behaviorally, aging was associated with decreased performance in the digit span task. Also, aging was associated with a decreased gray matter volume in 80 brain regions, and with a decreased activity in the anterior default mode network, executive control, and salience networks. Importantly, the path analysis showed that the GMV of the medial orbitofrontal, precentral, parieto-occipital, amygdala, middle occipital, posterior cingulate, and thalamus areas mediated the age-related differences in the forward digit span task, and the GMV of superior temporal gyrus mediated the age-related differences in the backward digit span task. Discussion This study identified the brain structures mediating the relationship between age and working memory, and we hope that our research provides an opportunity for early detection of individuals at risk of age-related memory decline.
Collapse
Affiliation(s)
- Maryam Bahri
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Farrahi
- Kavosh Cognitive Behavior Sciences and Addiction Research Center, Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hami Mahdavinataj
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
32
|
Arif Y, Song RW, Springer SD, John JA, Embury CM, Killanin AD, Son JJ, Okelberry HJ, McDonald KM, Picci G, Wilson TW. High-definition transcranial direct current stimulation of the parietal cortices modulates the neural dynamics underlying verbal working memory. Hum Brain Mapp 2024; 45:e70001. [PMID: 39169661 PMCID: PMC11339318 DOI: 10.1002/hbm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Verbal working memory (vWM) is an essential limited-capacity cognitive system that spans the fronto-parietal network and utilizes the subprocesses of encoding, maintenance, and retrieval. With the recent widespread use of noninvasive brain stimulation techniques, multiple recent studies have examined whether such stimulation may enhance cognitive abilities such as vWM, but the findings to date remain unclear in terms of both behavior and critical brain regions. In the current study, we applied high-definition direct current stimulation to the left and right parietal cortices of 39 healthy adults in three separate sessions (left anodal, right anodal, and sham). Following stimulation, participants completed a vWM task during high-density magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer and whole-brain ANOVAs were used to identify the specific neuromodulatory effects of the stimulation conditions on neural responses serving distinct phases of vWM. We found that right stimulation had a faciliatory effect relative to left stimulation and sham on theta oscillations during encoding in the right inferior frontal, while the opposite pattern was observed for left supramarginal regions. Stimulation also had a faciliatory effect on theta in occipital regions and alpha in temporal regions regardless of the laterality of stimulation. In summary, our data suggest that parietal HD-tDCS both facilitates and interferes with neural responses underlying both the encoding and maintenance phases of vWM. Future studies are warranted to determine whether specific tDCS parameters can be tuned to accentuate the facilitation responses and attenuate the interfering aspects.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Richard W. Song
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Vanderbilt UniversityNashvilleTennesseeUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jake J. Son
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Kellen M. McDonald
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of Medicine, University of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
33
|
Killanin AD, Ward TW, Embury CM, Calhoun VD, Wang Y, Stephen JM, Picci G, Heinrichs‐Graham E, Wilson TW. Effects of endogenous testosterone on oscillatory activity during verbal working memory in youth. Hum Brain Mapp 2024; 45:e26774. [PMID: 38949599 PMCID: PMC11215982 DOI: 10.1002/hbm.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Testosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies have investigated the effects of chronological age on the neural oscillations supporting verbal working memory, none have probed the impact of endogenous testosterone levels during this developmental period. Using a sample of 89 youth aged 6-14 years-old, we collected salivary testosterone samples and recorded magnetoencephalography during a modified Sternberg verbal working memory task. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting maps were subjected to whole-brain ANCOVAs examining the effects of testosterone and sex, controlling for age, during verbal working memory encoding and maintenance. Our primary results indicated robust testosterone-related effects in theta (4-7 Hz) and alpha (8-14 Hz) oscillatory activity, controlling for age. During encoding, females exhibited weaker theta oscillations than males in right cerebellar cortices and stronger alpha oscillations in left temporal cortices. During maintenance, youth with greater testosterone exhibited weaker alpha oscillations in right parahippocampal and cerebellar cortices, as well as regions across the left-lateralized language network. These results extend the existing literature on the development of verbal working memory processing by showing region and sex-specific effects of testosterone, and are the first results to link endogenous testosterone levels to the neural oscillatory activity serving verbal working memory, above and beyond the effects of chronological age.
Collapse
Affiliation(s)
- Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Christine M. Embury
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | | | - Giorgia Picci
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalNebraskaUSA
- Center for Pediatric Brain HealthBoys Town National Research HospitalNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
34
|
Forde NJ, Llera A, Beckmann C. Linking functional and structural brain organisation with behaviour in healthy adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602076. [PMID: 39005426 PMCID: PMC11245078 DOI: 10.1101/2024.07.04.602076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Multimodal data integration approaches, such as Linked Independent Component Analysis (LICA), increase sensitivity to brain-behaviour relationships and allow us to probe the relationship between modalities. Here we focus on inter-regional functional and structural organisation to determine if organisational patterns persist across modalities and if investigating multi-modality organisations provides increased sensitivity to brain-behaviour associations. We utilised multimodal magnetic resonance imaging (MRI; T1w, resting-state functional [fMRI] and diffusion weighted [DWI]) and behavioural data from the Human Connectome Project (HCP, n=676; 51% female). Unimodal features were extracted to produce individual grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps from the T1w, DWI and fMRI data, respectively. DWI and fMRI analyses were restricted to subcortical regions for computational reasons. LICA was then used to integrate features, generating 100 novel independent components. Associations between these components and demographic/behavioural (n=308) variables were examined. 15 components were significantly associated with various demographic/behavioural measures. 2 components were strongly related to various measures of intoxication, driven by DWI and resemble components previously identified. Another component was driven by striatal functional data and related to working memory. A small number of components showed shared variance between structure and function but none of these displayed any significant behavioural associations. Our working memory findings provide support for the use of fMRI connectopic mapping in future research of working memory. Given the lack of behaviourally relevant shared variance between functional and structural organisation, as indexed here, we question the utility of integrating connectopic maps and tractography data.
Collapse
Affiliation(s)
- Natalie J Forde
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Alberto Llera
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christian Beckmann
- Radboud University Medical Centre, Donders Centre for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
35
|
Zhong X, Dai Y, Xu M, Jiang C. Volleyball training improves working memory in children aged 7 to 12 years old: an fNIRS study. Cereb Cortex 2024; 34:bhae275. [PMID: 39030744 DOI: 10.1093/cercor/bhae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024] Open
Abstract
This study aimed to investigate the effect of a 12-wk extracurricular volleyball training on working memory from both behavioral and cerebral aspects. A total of 80 children were randomized assigned to (i) the experimental group, who engaged in extracurricular volleyball training for 60 min, thrice a week for 12 wk, and (ii) the control group, who maintained their regular daily routine. Working memory was evaluated in both groups using the N-back task before and after the intervention. Furthermore, functional near-infrared spectroscopy was employed to monitor the level of oxygenated hemoglobin in the prefrontal cortex. The experimental group performed better in the behavioral task than the control group, as evidenced by a shorter response time and a higher correct rate. The functional near-infrared spectroscopy results suggested that the activation of the left dorsolateral prefrontal cortex was significantly higher in the experimental group than in the control group. In addition, correlation analyses showed that the enhancement of left dorsolateral prefrontal cortex activation was significantly correlated with decreasing response time and improving response accuracy in the N-back task. These findings suggest that the left dorsolateral prefrontal cortex is likely the neural substrate for improved working memory performance elicited by 12-wk open skill exercise.
Collapse
Affiliation(s)
- Xiaoke Zhong
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
- School of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou, 350108 Fujian, China
| | - Yuanfu Dai
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| | - Mingchao Xu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| | - Changhao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, 100191, Beijing, China
| |
Collapse
|
36
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
38
|
Chiang H, Mudar RA, Dugas CS, Motes MA, Kraut MA, Hart J. A modified neural circuit framework for semantic memory retrieval with implications for circuit modulation to treat verbal retrieval deficits. Brain Behav 2024; 14:e3490. [PMID: 38680077 PMCID: PMC11056716 DOI: 10.1002/brb3.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.
Collapse
Affiliation(s)
- Hsueh‐Sheng Chiang
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Raksha A. Mudar
- Department of Speech and Hearing ScienceUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Christine S. Dugas
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Motes
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Kraut
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - John Hart
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
39
|
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Aricò P, Greco A, Babiloni F, Mancini P. Two are better than one: Differences in cortical EEG patterns during auditory and visual verbal working memory processing between Unilateral and Bilateral Cochlear Implanted children. Hear Res 2024; 446:109007. [PMID: 38608331 DOI: 10.1016/j.heares.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main results revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.
Collapse
Affiliation(s)
- Bianca Maria Serena Inguscio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy.
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy
| | | | - Maria Nicastri
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Ilaria Giallini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 125, Rome 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer Science, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| |
Collapse
|
40
|
Zotev V, McQuaid JR, Robertson-Benta CR, Hittson AK, Wick TV, Ling JM, van der Horn HJ, Mayer AR. Validation of real-time fMRI neurofeedback procedure for cognitive training using counterbalanced active-sham study design. Neuroimage 2024; 290:120575. [PMID: 38479461 PMCID: PMC11060147 DOI: 10.1016/j.neuroimage.2024.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.
Collapse
Affiliation(s)
- Vadim Zotev
- The Mind Research Network/LBRI, Albuquerque, NM, USA.
| | | | | | - Anne K Hittson
- The Mind Research Network/LBRI, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Tracey V Wick
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | - Josef M Ling
- The Mind Research Network/LBRI, Albuquerque, NM, USA
| | | | - Andrew R Mayer
- The Mind Research Network/LBRI, Albuquerque, NM, USA; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
41
|
Pereira DJ, Morais S, Sayal A, Pereira J, Meneses S, Areias G, Direito B, Macedo A, Castelo-Branco M. Neurofeedback training of executive function in autism spectrum disorder: distinct effects on brain activity levels and compensatory connectivity changes. J Neurodev Disord 2024; 16:14. [PMID: 38605323 PMCID: PMC11008042 DOI: 10.1186/s11689-024-09531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Deficits in executive function (EF) are consistently reported in autism spectrum disorders (ASD). Tailored cognitive training tools, such as neurofeedback, focused on executive function enhancement might have a significant impact on the daily life functioning of individuals with ASD. We report the first real-time fMRI neurofeedback (rt-fMRI NF) study targeting the left dorsolateral prefrontal cortex (DLPFC) in ASD. METHODS Thirteen individuals with autism without intellectual disability and seventeen neurotypical individuals completed a rt-fMRI working memory NF paradigm, consisting of subvocal backward recitation of self-generated numeric sequences. We performed a region-of-interest analysis of the DLPFC, whole-brain comparisons between groups and, DLPFC-based functional connectivity. RESULTS The ASD and control groups were able to modulate DLPFC activity in 84% and 98% of the runs. Activity in the target region was persistently lower in the ASD group, particularly in runs without neurofeedback. Moreover, the ASD group showed lower activity in premotor/motor areas during pre-neurofeedback run than controls, but not in transfer runs, where it was seemingly balanced by higher connectivity between the DLPFC and the motor cortex. Group comparison in the transfer run also showed significant differences in DLPFC-based connectivity between groups, including higher connectivity with areas integrated into the multidemand network (MDN) and the visual cortex. CONCLUSIONS Neurofeedback seems to induce a higher between-group similarity of the whole-brain activity levels (including the target ROI) which might be promoted by changes in connectivity between the DLPFC and both high and low-level areas, including motor, visual and MDN regions.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Meneses
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Graça Areias
- Psychology Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- IATV-Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
42
|
Pereira DJ, Pereira J, Sayal A, Morais S, Macedo A, Direito B, Castelo-Branco M. Functional and structural connectivity success predictors of real-time fMRI neurofeedback targeting DLPFC: Contributions from central executive, salience, and default mode networks. Netw Neurosci 2024; 8:81-95. [PMID: 38562293 PMCID: PMC10861170 DOI: 10.1162/netn_a_00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/10/2023] [Indexed: 04/04/2024] Open
Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF), a training method for the self-regulation of brain activity, has shown promising results as a neurorehabilitation tool, depending on the ability of the patient to succeed in neuromodulation. This study explores connectivity-based structural and functional success predictors in an NF n-back working memory paradigm targeting the dorsolateral prefrontal cortex (DLPFC). We established as the NF success metric the linear trend on the ability to modulate the target region during NF runs and performed a linear regression model considering structural and functional connectivity (intrinsic and seed-based) metrics. We found a positive correlation between NF success and the default mode network (DMN) intrinsic functional connectivity and a negative correlation with the DLPFC-precuneus connectivity during the 2-back condition, indicating that success is associated with larger uncoupling between DMN and the executive network. Regarding structural connectivity, the salience network emerges as the main contributor to success. Both functional and structural classification models showed good performance with 77% and 86% accuracy, respectively. Dynamic switching between DMN, salience network and central executive network seems to be the key for neurofeedback success, independently indicated by functional connectivity on the localizer run and structural connectivity data.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Siemens Healthineers Portugal, Lisboa, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Robison MK, Garner LD. Pupillary correlates of individual differences in n-back task performance. Atten Percept Psychophys 2024; 86:799-807. [PMID: 38326632 DOI: 10.3758/s13414-024-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
We used pupillometry during a 2-back task to examine individual differences in the intensity and consistency of attention and their relative role in a working memory task. We used sensitivity, or the ability to distinguish targets (2-back matches) and nontargets, as the measure of task performance; task-evoked pupillary responses (TEPRs) as the measure of attentional intensity; and intraindividual pretrial pupil variability as the measure of attentional consistency. TEPRs were greater on target trials compared with nontarget trials, although there was no difference in TEPR magnitude when participants answered correctly or incorrectly to targets. Importantly, this effect interacted with performance: high performers showed a greater separation in their TEPRs between targets and nontargets, whereas there was little difference for low performers. Further, in regression analysis, larger TEPRs on target trials predicted better performance, whereas larger TEPRs on nontarget trials predicted worse performance. Sensitivity positively correlated with average pretrial pupil diameter and negatively correlated with intraindividual variability in pretrial pupil diameter. Overall, we found evidence that both attentional intensity (TEPRs) and consistency (pretrial pupil variation) predict performance on an n-back working memory task.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA.
| | - Lauren D Garner
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
44
|
Menks WM, Ekerdt C, Lemhöfer K, Kidd E, Fernández G, McQueen JM, Janzen G. Developmental changes in brain activation during novel grammar learning in 8-25-year-olds. Dev Cogn Neurosci 2024; 66:101347. [PMID: 38277712 PMCID: PMC10839867 DOI: 10.1016/j.dcn.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
While it is well established that grammar learning success varies with age, the cause of this developmental change is largely unknown. This study examined functional MRI activation across a broad developmental sample of 165 Dutch-speaking individuals (8-25 years) as they were implicitly learning a new grammatical system. This approach allowed us to assess the direct effects of age on grammar learning ability while exploring its neural correlates. In contrast to the alleged advantage of children language learners over adults, we found that adults outperformed children. Moreover, our behavioral data showed a sharp discontinuity in the relationship between age and grammar learning performance: there was a strong positive linear correlation between 8 and 15.4 years of age, after which age had no further effect. Neurally, our data indicate two important findings: (i) during grammar learning, adults and children activate similar brain regions, suggesting continuity in the neural networks that support initial grammar learning; and (ii) activation level is age-dependent, with children showing less activation than older participants. We suggest that these age-dependent processes may constrain developmental effects in grammar learning. The present study provides new insights into the neural basis of age-related differences in grammar learning in second language acquisition.
Collapse
Affiliation(s)
- W M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
| | - C Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands
| | - K Lemhöfer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands
| | - E Kidd
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; ARC Centre of Excellence for the Dynamics of Language, Australian National University, Canberra, Australia; School of Literature, Languages, and Linguistics, Australian National University, Canberra, Australia
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands
| | - J M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - G Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
45
|
Magalhães TNC, Maldonado T, Jackson TB, Hicks TH, Herrejon IA, Rezende TJR, Symm AC, Bernard JA. Non-invasive neuromodulation of cerebello-hippocampal volume-behavior relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587400. [PMID: 38617367 PMCID: PMC11014496 DOI: 10.1101/2024.03.29.587400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The study here explores the link between transcranial direct current stimulation (tDCS) and brain-behavior relationships. We propose that tDCS may indirectly influence the complex relationships between brain volume and behavior. We focused on the dynamics between the hippocampus (HPC) and cerebellum (CB) in cognitive processes, a relationship with significant implications for understanding memory and motor skills. Seventy-four young adults (mean age: 22±0.42 years, mean education: 14.7±0.25 years) were randomly assigned to receive either anodal, cathodal, or sham stimulation. Following stimulation, participants completed computerized tasks assessing working memory and sequence learning in a magnetic resonance imaging (MRI) environment. We investigated the statistical interaction between CB and HPC volumes. Our findings showed that individuals with larger cerebellar volumes had shorter reaction times (RT) on a high-load working memory task in the sham stimulation group. In contrast, the anodal stimulation group exhibited faster RTs during the low-load working memory condition. These RT differences were associated with the cortical volumetric interaction between CB-HPC. Literature suggests that anodal stimulation down-regulates the CB and here, those with larger volumes perform more quickly, suggesting the potential need for additional cognitive resources to compensate for cerebellar downregulation. This new insight suggests that tDCS can aid in revealing structure-function relationships, due to greater performance variability, especially in young adults. It may also reveal new targets of interest in the study of aging or in diseases where there is also greater behavioral variability.
Collapse
Affiliation(s)
- Thamires N. C. Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
| | - T. Bryan Jackson
- Vanderbilt Memory & Alzheimer’s Center, Nashville, Tennessee, United States of America
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan A. Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Thiago J. R. Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Abigail C. Symm
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
46
|
Sinha N, Nikki Arrington C, Malins JG, Pugh KR, Frijters JC, Morris R. The reading-attention relationship: Variations in working memory network activity during single word decoding in children with and without dyslexia. Neuropsychologia 2024; 195:108821. [PMID: 38340962 PMCID: PMC11284775 DOI: 10.1016/j.neuropsychologia.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study utilized a neuroimaging task to assess working memory (WM) network recruitment during single word reading. Associations between WM and reading comprehension skills are well documented. Several converging models suggest WM may also contribute to foundational reading skills, but few studies have assessed this contribution directly. Two groups of children (77 developmental dyslexia (DD), 22 controls) completed a functional magnetic resonance imaging (fMRI) task to identify activation of a priori defined regions of the WM network. fMRI trials consisted of familiar word, pseudoword, and false font stimuli within a 1-back oddball task to assess how activation in the WM network differs in response to stimuli that can respectively be processed using word recognition, phonological decoding, or non-word strategies. Results showed children with DD recruited WM regions bilaterally in response to all stimulus types, whereas control children recruited left-lateralized WM regions during the pseudoword condition only. Group-level comparisons revealed activation differences in the defined WM network regions for false font and familiar word, but not pseudoword conditions. This effect was driven by increased activity in participants with DD in right hemisphere frontal, parietal, and motor regions despite poorer task performance. Findings suggest the WM network may contribute to inefficient decoding and word recognition strategies in children with DD.
Collapse
Affiliation(s)
- Niki Sinha
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; GSU/GT Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, 30318, United States; Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, 30303, United States
| | - Jeffrey G Malins
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; Haskins Laboratories, New Haven, CT, 06511, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, 06511, United States; Department of Linguistics, Yale University, New Haven, CT, 06520, United States; Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
47
|
Schnaufer L, Gschaidmeier A, Heimgärtner M, Driever PH, Hauser TK, Wilke M, Lidzba K, Staudt M. Atypical language organization following perinatal infarctions of the left hemisphere is associated with structural changes in right-hemispheric grey matter. Dev Med Child Neurol 2024; 66:353-361. [PMID: 37691416 DOI: 10.1111/dmcn.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
AIM To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization. WHAT THIS PAPER ADDS Perinatal stroke leads to decreased grey matter in the contralesional hemisphere. Atypical language organization is associated with grey matter increases in contralesional language areas.
Collapse
Affiliation(s)
- Lukas Schnaufer
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Alisa Gschaidmeier
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Germany
| | - Magdalena Heimgärtner
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Pablo Hernáiz Driever
- Department of Paediatric Oncology and Haematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Experimental Paediatric Neuroimaging, Children's Hospital and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Karen Lidzba
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Division of Neuropaediatrics, Development and Rehabilitation, University Children's Hospital Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin Staudt
- Department of Paediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
- Centre for Paediatric Palliative Care, University Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
48
|
Karamaouna P, Zouraraki C, Economou E, Kafetsios K, Bitsios P, Giakoumaki SG. Cold executive function processes and their hot analogs in schizotypy. J Int Neuropsychol Soc 2024; 30:285-294. [PMID: 37750805 DOI: 10.1017/s1355617723000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To examine cold (based on logical reasoning) versus hot (having emotional components) executive function processes in groups with high individual schizotypal traits. METHOD Two-hundred and forty-seven participants were administered the Schizotypal Personality Questionnaire and were allocated into schizotypal (cognitive-perceptual, paranoid, negative, disorganized) or control groups according to pre-specified criteria. Participants were also administered a battery of tasks examining working memory, complex selective attention, response inhibition, decision-making and fluid intelligence and their affective counterparts. The outcome measures of each task were reduced to one composite variable thus formulating five cold and five hot cognitive domains. Between-group differences in the cognitive domains were examined with repeated measures analyses of covariance. RESULTS For working memory, the control and the cognitive-perceptual groups outperformed negative schizotypes, while for affective working memory controls outperformed the disorganized group. Controls also scored higher compared with the disorganized group in complex selective attention, while both the control and the cognitive-perceptual groups outperformed negative schizotypes in complex affective selective attention. Negative schizotypes also had striking difficulties in response inhibition, as they scored lower compared with all other groups. Despite the lack of differences in fluid intelligence, controls scored higher compared with all schizotypal groups (except from cognitive-perceptual schizotypes) in emotional intelligence; the latter group reported higher emotional intelligence compared with negative schizotypes. CONCLUSION Results indicate that there is no categorical association between the different schizotypal dimensions with solely cold or hot executive function processes and support impoverished emotional intelligence as a core feature of schizotypy.
Collapse
Affiliation(s)
- Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
- University of Crete Research Center for the Humanities, the Social and Education Sciences (UCRC), University of Crete, Rethymno, Crete, Greece
| | - Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
- University of Crete Research Center for the Humanities, the Social and Education Sciences (UCRC), University of Crete, Rethymno, Crete, Greece
| | - Elias Economou
- Laboratory of Experimental Psychology, Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
| | | | - Panos Bitsios
- Department of Psychiatry and Behavioural Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, School of Social Sciences, University of Crete, Rethymno, Crete, Greece
- University of Crete Research Center for the Humanities, the Social and Education Sciences (UCRC), University of Crete, Rethymno, Crete, Greece
| |
Collapse
|
49
|
Moncrieff D, Schmithorst V. Behavioral and Cortical Activation Changes in Children Following Auditory Training for Dichotic Deficits. Brain Sci 2024; 14:183. [PMID: 38391757 PMCID: PMC10887284 DOI: 10.3390/brainsci14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
We report changes following auditory rehabilitation for interaural asymmetry (ARIA) training in behavioral test performance and cortical activation in children identified with dichotic listening deficits. In a one group pretest-posttest design, measures of dichotic listening, speech perception in noise, and frequency pattern identification were assessed before and 3 to 4.5 months after completing an auditory training protocol designed to improve binaural processing of verbal material. Functional MRI scans were also acquired before and after treatment while participants passively listened in silence or to diotic or dichotic digits. Significant improvements occurred after ARIA training for dichotic listening and speech-in-noise tests. Post-ARIA, fMRI activation increased during diotic tasks in anterior cingulate and medial prefrontal regions and during dichotic tasks, decreased in the left precentral gyrus, right-hemisphere pars triangularis, and right dorsolateral and ventral prefrontal cortices, regions known to be engaged in phonologic processing and working memory. The results suggest that children with dichotic deficits may benefit from the ARIA program because of reorganization of cortical capacity required for listening and a reduced need for higher-order, top-down processing skills when listening to dichotic presentations.
Collapse
Affiliation(s)
- Deborah Moncrieff
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN 38152, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152, USA
| | - Vanessa Schmithorst
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Mizrachi N, Eviatar Z, Peleg O, Bitan T. Inter- and intra- hemispheric interactions in reading ambiguous words. Cortex 2024; 171:257-271. [PMID: 38048664 DOI: 10.1016/j.cortex.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 12/06/2023]
Abstract
The present study investigated how the brain processes words with multiple meanings. Specifically, we examined the inter- and intra-hemispheric connectivity of unambiguous words compared to two types of ambiguous words: homophonic homographs, which have multiple meanings mapped to a single phonological representation and orthography, and heterophonic homographs, which have multiple meanings mapped to different phonological representations but the same orthography. Using a semantic relatedness judgment task and effective connectivity analysis via Dynamic Causal Modeling (DCM) on previously published fMRI data (Bitan et al., 2017), we found that the two hemispheres compete in orthographic processing during the reading of unambiguous words. For heterophonic homographs, we observed increased connectivity within the left hemisphere, highlighting the importance of top-down re-activation of orthographic representations by phonological ones for considering alternative meanings. For homophonic homographs, we found a flow of information from the left to the right hemisphere and from the right to the left, indicating that the brain retrieves different meanings using different pathways. These findings provide novel insights into the complex mechanisms involved in language processing and shed light on the different communication patterns within and between hemispheres during the processing of ambiguous and unambiguous words.
Collapse
Affiliation(s)
- Nofar Mizrachi
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel.
| | - Zohar Eviatar
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel.
| | - Orna Peleg
- The Program of Cognitive Studies of Language and Its Uses, and Sagol School of Neuroscience, Tel-Aviv University, Israel.
| | - Tali Bitan
- Psychology Department, Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Department of Speech Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|