1
|
Gao G, Rong B, Huang J, Zhou M, Zhao H, Tu N, Bu L, Xiao L, Wang G. Altered resting-state network connectivity in internet gaming disorder. Ann Gen Psychiatry 2025; 24:14. [PMID: 40098002 PMCID: PMC11917094 DOI: 10.1186/s12991-025-00553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The growing popularity of internet gaming among adolescents and young adults has driven an increase in both casual and excessive gaming behavior. Nevertheless, it remains unclear how progressive increases in internet gaming engagement led to changes within and between brain networks. This study aims to investigate these connectivity alterations across varying levels of gaming involvement. METHODS In this cross-sectional study, 231 participants were recruited and classified into three groups according to Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria for Internet Gaming Disorder (IGD): IGD group, highly engaged gaming(HEG) group, and lowly engaged gaming (LEG) group. Resting-state fMRI data from 217 participants (143 males, 74 females) were included in the final analysis. Independent component analysis was used to examine differences in intra- and inter-network functional connectivity (FC)across the three groups. RESULTS No significant differences were found in intra-network FC across the three groups. However, significant inter-network differences between the dorsal attention network(dAN)and the visual network (VN) among the three groups were observed. The HEG group exhibited significantly higher dAN-VN functional network connectivity (FNC) compared to the LEG group. Linear correlation analyses showed no significant correlation between the dAN-VN FNC values and IGD-20T scores. CONCLUSION Throughout the development of IGD, increasing levels of engagement are associated with a rise and subsequent decline in FNC of DAN-VN. This pattern may reflect top-down attentional regulation in the early stages of addiction, followed by attentional bias as addiction progresses.
Collapse
Affiliation(s)
- Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Rong
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Tu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihong Bu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Lv M, Wang L, Huang R, Wang A, Li Y, Zhang G. Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods. Sci Rep 2025; 15:3289. [PMID: 39865152 PMCID: PMC11770180 DOI: 10.1038/s41598-025-87168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region. The least absolute shrinkage and selection operator was used to reduce and select the optimal features. The support vector machine (SVM), random forest (RF) and logistic regression (LR) algorithms, were used to establish the classification model for NIHL. Finally, the SVM model based on combined fMRI indices, achieved the best performance, with area under the receiver operating characteristic curve of 0.97 and an accuracy of 95%. The SVM classification model that integrates fMRI indicators has the greatest potential for identifying NIHL patients and healthy people, revealing the complementary role of fMRI indicators in classification and indicating that it is necessary to include multiple indicators of the brain when establishing a classification model.
Collapse
Affiliation(s)
- Minghui Lv
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Liping Wang
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Ranran Huang
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Aijie Wang
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Yunxin Li
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Guowei Zhang
- Imaging Department, Yantaishan Hospital, Yantai, China.
| |
Collapse
|
3
|
Caso A, Griffiths TD, Holmes E. Spatial selective auditory attention is preserved in older age but is degraded by peripheral hearing loss. Sci Rep 2024; 14:26243. [PMID: 39482327 PMCID: PMC11527878 DOI: 10.1038/s41598-024-77102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
Interest in how ageing affects attention is long-standing, although interactions between sensory and attentional processing in older age are not fully understood. Here, we examined interactions between peripheral hearing and selective attention in a spatialised cocktail party listening paradigm, in which three talkers spoke different sentences simultaneously and participants were asked to report the sentence spoken by a talker at a particular location. By comparing a sample of older (N = 61; age = 55-80 years) and younger (N = 58; age = 18-35 years) adults, we show that, as a group, older adults benefit as much as younger adults from preparatory spatial attention. Although, for older adults, this benefit significantly reduces with greater age-related hearing loss. These results demonstrate that older adults with excellent hearing retain the ability to direct spatial selective attention, but this ability deteriorates, in a graded manner, with age-related hearing loss. Thus, reductions in spatial selective attention likely contribute to difficulties communicating in social settings for older adults with age-related hearing loss. Overall, these findings demonstrate a relationship between mild perceptual decline and attention in older age.
Collapse
Affiliation(s)
- Andrea Caso
- Department of Speech Hearing and Phonetic Sciences, Division of Psychology and Language Sciences, University College London, Chandler House, 2 Wakefield Street, London, WC1N 3PF, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Human Brain Research Laboratory, University of Iowa, Iowa City, IA, USA
| | - Emma Holmes
- Department of Speech Hearing and Phonetic Sciences, Division of Psychology and Language Sciences, University College London, Chandler House, 2 Wakefield Street, London, WC1N 3PF, UK.
| |
Collapse
|
4
|
Shin S, Nam HY. Characteristics of brain glucose metabolism and metabolic connectivity in noise-induced hearing loss. Sci Rep 2023; 13:21889. [PMID: 38081979 PMCID: PMC10713681 DOI: 10.1038/s41598-023-48911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The purpose of this study was to evaluate the differences in cerebral glucose metabolism and metabolic connectivity between noise-induced hearing loss (NIHL) subjects and normal subjects. Eighty-nine subjects who needed close observation for NIHL or were diagnosed with NIHL and 89 normal subjects were enrolled. After pre-processing of positron emission tomography images including co-registration, spatial normalization, and smoothing, a two-sample t-test was conducted to compare cerebral glucose metabolism between the two groups. To evaluate metabolic connectivity between two groups, BRAPH-BRain Analysis using graPH theory, a software package to perform graph theory analysis of the brain connectome was used. NIHL subjects showed hypometabolism compared to normal subjects in both insulae (x - 38, y - 18, z 4; × 42, y - 12, z 4) and right superior temporal gyrus (× 44, y 16, z - 20). No brain regions showed hypermetabolism in the NIHL subjects. In metabolic connectivity analysis, NIHL subjects showed decreased average strength, global efficiency, local efficiency, and mean clustering coefficient when compared with normal subjects. Decreased glucose metabolism and metabolic connectivity in NIHL subject might reflect decreased auditory function. It might be characteristic of sensorineural hearing loss.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
5
|
Guerrieri M, Di Mauro R, Di Girolamo S, Di Stadio A. Hearing and Ageing. Subcell Biochem 2023; 103:279-290. [PMID: 37120472 DOI: 10.1007/978-3-031-26576-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Age-related hearing loss (ARHL), or presbycusis, occurs in most mammals, humans included, with a different age of onset and magnitude of loss. It is associated with two major symptoms: loss of sensitivity to sound, especially for high pitches, and a reduced ability to understand speech in background noise. This phenomenon involves both the peripheral structures of the inner ear and the central acoustic pathways. Several mechanisms have been identified as pro-ageing in the human cochlea. The main one is the oxidative stress. The inner ear physiological degeneration can be affected by both intrinsic conditions, such as genetic predisposition, and extrinsic ones, such as noise exposure. The magnitude of neuronal loss precedes and exceeds that of inner hair cell loss, which is also less important than the loss of outer hair cells. Patients with HL often develop atrophy of the temporal lobe (auditory cortex) and brain gliosis can contribute to the development of a central hearing loss. The presence of white matter hyperintensities (WMHs) on the MRI, which is radiologic representation of brain gliosis, can justify a central HL due to demyelination in the superior auditory pathways. Recently, the presence of WMHs has been correlated with the inability to correctly understand words in elderly with normal auditory thresholds.
Collapse
Affiliation(s)
| | - Roberta Di Mauro
- ENT Department, MVZ Dr. Roser und Kollegen, Remchingen, Baden-Württemberg, Germany
| | | | - Arianna Di Stadio
- GF Ingrassia Department, University of Catania, Catania, Italy.
- , Rome, Italy.
| |
Collapse
|
6
|
Zhang L, Wang J, Sun H, Feng G, Gao Z. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem 2022; 189:107589. [DOI: 10.1016/j.nlm.2022.107589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
7
|
Fitzhugh MC, Pa J. Longitudinal Changes in Resting-State Functional Connectivity and Gray Matter Volume Are Associated with Conversion to Hearing Impairment in Older Adults. J Alzheimers Dis 2022; 86:905-918. [PMID: 35147536 PMCID: PMC10796152 DOI: 10.3233/jad-215288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hearing loss was recently identified as a modifiable risk factor for dementia although the potential mechanisms explaining this relationship are unknown. OBJECTIVE The current study examined longitudinal change in resting-state fMRI functional connectivity and gray matter volume in individuals who developed a hearing impairment compared to those whose hearing remained normal. METHODS This study included 440 participants from the UK Biobank: 163 who had normal hearing at baseline and impaired hearing at follow-up (i.e., converters, mean age = 63.11±6.33, 53% female) and 277 who had normal hearing at baseline and maintained normal hearing at follow-up (i.e., non-converters, age = 63.31±5.50, 50% female). Functional connectivity was computed between a priori selected auditory seed regions (left and right Heschl's gyrus and cytoarchitectonic subregions Te1.0, Te1.1, and Te1.2) and select higher-order cognitive brain networks. Gray matter volume within these same regions was also obtained. RESULTS Converters had increased connectivity from left Heschl's gyrus to left anterior insula and from right Heschl's gyrus to right anterior insula, and decreased connectivity between right Heschl's gyrus and right hippocampus, compared to non-converters. Converters also had reduced gray matter volume in left hippocampus and left lateral visual cortex compared to non-converters. CONCLUSION These findings suggest that conversion to a hearing impairment is associated with altered brain functional connectivity and gray matter volume in the attention, memory, and visual processing regions that were examined in this study.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Guo P, Lang S, Jiang M, Wang Y, Zeng Z, Wen Z, Liu Y, Chen BT. Alterations of Regional Homogeneity in Children With Congenital Sensorineural Hearing Loss: A Resting-State fMRI Study. Front Neurosci 2021; 15:678910. [PMID: 34690668 PMCID: PMC8526795 DOI: 10.3389/fnins.2021.678910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Brain functional alterations have been observed in children with congenital sensorineural hearing loss (CSNHL). The purpose of this study was to assess the alterations of regional homogeneity in children with CSNHL. Methods: Forty-five children with CSNHL and 20 healthy controls were enrolled into this study. Brain resting-state functional MRI (rs-fMRI) for regional homogeneity including the Kendall coefficient consistency (KCC-ReHo) and the coherence-based parameter (Cohe-ReHo) was analyzed and compared between the two groups, i.e., the CSNHL group and the healthy control group. Results: Compared to the healthy controls, children with CSNHL showed increased Cohe-ReHo values in left calcarine and decreased values in bilateral ventrolateral prefrontal cortex (VLPFC) and right dorsolateral prefrontal cortex (DLPFC). Children with CSNHL also had increased KCC-ReHo values in the left calcarine, cuneus, precentral gyrus, and right superior parietal lobule (SPL) and decreased values in the left VLPFC and right DLPFC. Correlations were detected between the ReHo values and age of the children with CSNHL. There were positive correlations between ReHo values in the pre-cuneus/pre-frontal cortex and age (p < 0.05). There were negative correlations between ReHo values in bilateral temporal lobes, fusiform gyrus, parahippocampal gyrus and precentral gyrus, and age (p < 0.05). Conclusion: Children with CSNHL had RoHo alterations in the auditory, visual, motor, and other related brain cortices as compared to the healthy controls with normal hearing. There were significant correlations between ReHo values and age in brain regions involved in information integration and processing. Our study showed promising data using rs-fMRI ReHo parameters to assess brain functional alterations in children with CSNHL.
Collapse
Affiliation(s)
- Pingping Guo
- Department of Medical Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Siyuan Lang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muliang Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zisan Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuguang Wen
- Department of Radiology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yikang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
10
|
Ponticorvo S, Manara R, Pfeuffer J, Cappiello A, Cuoco S, Pellecchia MT, Troisi D, Scarpa A, Cassandro E, Di Salle F, Esposito F. Long-Range Auditory Functional Connectivity in Hearing Loss and Rehabilitation. Brain Connect 2021; 11:483-492. [PMID: 33478362 DOI: 10.1089/brain.2020.0814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Patients with age-related sensorineural hearing loss (HL) may benefit from auditory input amplification by using hearing aids (HAs). However, the impact of both HL- and HA-based rehabilitation on central auditory functional connectivity (FC) is not clear. Methodology: Sixty-two HL (22 females, aged 64.4 ± 7.6 years, pure-tone average 50.9 ± 14.7 dB right ear, 50.7 ± 12.9 dB left ear) and 32 normal hearing (NH) subjects (22 females, aged 59.3 ± 7.3 years) were examined in a 3T magnetic resonance imaging (MRI) study. HL patients were analyzed cross-sectionally at baseline (vs. NH subjects) and longitudinally at 6-month follow-up. Between the 2 scans, 31/62 patients used the HA 9.5 ± 3.8 h a day. Arterial spin labeling and blood oxygen level-dependent resting-state functional MRI were performed to measure regional perfusion in the primary auditory cortex and, from here to the whole brain, seed-based FC was performed. Before each scan, HL patients underwent audiological and neurological assessments. Results: At baseline, the HL condition was associated with regional hypoperfusion in right Heschl's gyrus (seed) and negative seed-based FC (anticorrelation) in posterior brain regions. Long-range FC in the precuneus correlated negatively with pure-tone and speech reception average thresholds. At 6-month follow-up, HA usage was associated with seed-based FC increase in the right superior frontal gyrus (SFG) and seed-based FC reduction in the right middle temporal gyrus. Long-range FC changes in the SFG correlated positively with executive function improvements. Conclusions: These findings suggest that HA-based rehabilitation may not reverse HL-related neural effects and yet carry neurological benefits by retuning long-range FC of the auditory system. Impact statement Age-related sensorineural hearing loss (HL) affects 40% to 60% of the worldwide population and a common, viable rehabilitation strategy is to provide auditory input amplification through hearing aids (HAs). By targeting metabolically depressed, auditory cortical centers, our work reveals a possible neural link between peripheral and central vulnerability in HL patients in the form of aberrant, long-range, functional connectivity effects. Similarly, we unveil how wearing HAs for 6 months may induce neuroplastic changes that positively correlate with improved neuropsychological performances.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Renzo Manara
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,Department of Neuroscience, University of Padova, Padova, Italy
| | - Josef Pfeuffer
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Arianna Cappiello
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Donato Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Alfonso Scarpa
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Ettore Cassandro
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,University Hospital "San Giovanni di Dio e Ruggi D'Aragona," Scuola Medica Salernitana, Salerno, Italy
| |
Collapse
|
11
|
Dell Ducas K, Senra Filho ACDS, Silva PHR, Secchinato KF, Leoni RF, Santos AC. Functional and structural brain connectivity in congenital deafness. Brain Struct Funct 2021; 226:1323-1333. [PMID: 33740108 DOI: 10.1007/s00429-021-02243-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Several studies have been carried out to verify neural plasticity and the language process in deaf individuals. However, further investigations regarding the intrinsic brain organization on functional and structural neural networks derived from congenital deafness are still an open question. The objective of this study was to investigate the main differences in brain organization manifested in congenitally deaf individuals, concerning the resting-state functional patterns, and white matter structuring. Functional and diffusion magnetic resonance imaging modalities were acquired from 18 congenitally deaf individuals and 18 age-sex-matched hearing controls. Compared to the hearing group, the deaf individuals presented higher functional connectivity among the posterior cingulate cortex node of the default mode network with visual and motor networks, lower functional connectivity between salience networks, language networks, and prominence of functional connectivity changes in the right hemisphere, mostly in the frontoparietal and temporal lobes. In terms of structural connectivity, we found changes mainly in the occipital and parietal lobes, involving both classical sign language support regions as well as concentrated networks for focus activity, attention, and cognitive filtering. Our findings demonstrated that the congenital deaf individuals who learned sign language developed significant brain functional and structural reorganization, which provides prominent support for large-scale brain networks associated with attention decision-making, environmental monitoring based on the movement of objects, and on the motor and visual controls.
Collapse
Affiliation(s)
- Karolyne Dell Ducas
- Department of Medical Clinics, FMRP, University of Sao Paulo, Ribeirão Preto, Brazil.
| | - Antonio Carlos da S Senra Filho
- Department of Computing and Mathematics, FFCLRP, University of Sao Paulo, Ribeirão Preto, Brazil.,Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Antonio Carlos Santos
- Department of Medical Clinics, FMRP, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Wei Z, Fan Z, Qi Z, Tong Y, Guo Q, Chen L. Reorganization of auditory-visual network interactions in long-term unilateral postlingual hearing loss. J Clin Neurosci 2021; 87:97-102. [PMID: 33863544 DOI: 10.1016/j.jocn.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Long-term unilateral hearing loss could reorganize the functional network association between the bilateral auditory cortices, while alterations of other functional networks need to be further explored. We attempted to investigate the pattern of the reorganization of functional network associations between the auditory and visual cortex caused by long-term postlingual unilateral hearing loss (UHI) and its relationship with clinical characteristics. Therefore, 48 patients with hearing loss caused by unilateral acoustic tumors and 52 matched healthy controls were enrolled, and their high-resolution structural MRI and resting-state functional MRI data were also collected to depict the brain network. Degree centrality (DC) was employed to evaluate the functional network association of the auditory-visual network interaction. Group comparisons were performed to investigate the network reorganization, and its correlations with clinical data were calculated. Compared with the healthy control group, patients with UHI showed significantly increased DC between the auditory network (superior temporal gyrus and the medial geniculate body) and the visual network. Meanwhile, this difference was positively correlated with the extent of hearing impairment, and the correlation was more significant with the ipsilateral superior temporal gyrus in cases of acoustic neuroma. These results suggest that long-term unilateral hearing impairment may lead to enhancement of the visual-auditory network interactions and that the degree of reorganization is positively correlated with the pure tone average (PTA) and is more significant for the ipsilateral superior temporal gyrus, which provides clinical evidence regarding cross-modal plasticity in the UHI and its lateralization.
Collapse
Affiliation(s)
- Zixuan Wei
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Zhen Fan
- Neurosurgical Institute of Fudan University, China
| | - Zengxin Qi
- Shanghai Clinical Medical Center of Neurosurgery, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Qinglong Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| |
Collapse
|
13
|
Hur JW, Kim T, Cho KIK, Kwon JS. Attenuated Resting-State Functional Anticorrelation between Attention and Executive Control Networks in Schizotypal Personality Disorder. J Clin Med 2021; 10:jcm10020312. [PMID: 33467694 PMCID: PMC7829946 DOI: 10.3390/jcm10020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Exploring the disruptions to intrinsic resting-state networks (RSNs) in schizophrenia-spectrum disorders yields a better understanding of the disease-specific pathophysiology. However, our knowledge of the neurobiological underpinnings of schizotypal personality disorders mostly relies on research on schizotypy or schizophrenia. This study aimed to investigate the RSN abnormalities of schizotypal personality disorder (SPD) and their clinical implications. Using resting-state data, the intra- and inter-network of the higher-order functional networks (default mode network, DMN; frontoparietal network, FPN; dorsal attention network, DAN; salience network, SN) were explored in 22 medication-free, community-dwelling, non-help seeking individuals diagnosed with SPD and 30 control individuals. Consequently, while there were no group differences in intra-network functional connectivity across DMN, FPN, DAN, and SN, the SPD participants exhibited attenuated anticorrelation between the right frontal eye field region of the DAN and the right posterior parietal cortex region of the FPN. The decreases in anticorrelation were correlated with increased cognitive–perceptual deficits and disorganization factors of the schizotypal personality questionnaire, as well as reduced independence–performance of the social functioning scale for all participants together. This study, which links SPD pathology and social functioning deficits, is the first evidence of impaired large-scale intrinsic brain networks in SPD.
Collapse
Affiliation(s)
- Ji-Won Hur
- Department of Psychology, Korea University, Seoul 02841, Korea;
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, Korea;
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, Korea;
| | - Kang Ik K. Cho
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, Korea;
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-2972; Fax: +82-2-747-9063
| |
Collapse
|
14
|
Patil AU, Ghate S, Madathil D, Tzeng OJL, Huang HW, Huang CM. Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition. Sci Rep 2021; 11:165. [PMID: 33420212 PMCID: PMC7794287 DOI: 10.1038/s41598-020-80293-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Creative cognition is recognized to involve the integration of multiple spontaneous cognitive processes and is manifested as complex networks within and between the distributed brain regions. We propose that the processing of creative cognition involves the static and dynamic re-configuration of brain networks associated with complex cognitive processes. We applied the sliding-window approach followed by a community detection algorithm and novel measures of network flexibility on the blood-oxygen level dependent (BOLD) signal of 8 major functional brain networks to reveal static and dynamic alterations in the network reconfiguration during creative cognition using functional magnetic resonance imaging (fMRI). Our results demonstrate the temporal connectivity of the dynamic large-scale creative networks between default mode network (DMN), salience network, and cerebellar network during creative cognition, and advance our understanding of the network neuroscience of creative cognition.
Collapse
Affiliation(s)
- Abhishek Uday Patil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Sejal Ghate
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Deepa Madathil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ovid J L Tzeng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
- Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taipei, Taiwan
- College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Educational Psychology and Counseling, National Taiwan Normal University, Taipei, Taiwan
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong
| | - Hsu-Wen Huang
- Department of Linguistics and Translation, City University of Hong Kong, Kowloon, Hong Kong
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.
- Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
15
|
Di Stadio A, Ralli M, Roccamatisi D, Scarpa A, Della Volpe A, Cassandro C, Ricci G, Greco A, Bernitsas E. Hearing loss and dementia: radiologic and biomolecular basis of their shared characteristics. A systematic review. Neurol Sci 2021; 42:579-588. [PMID: 33409831 DOI: 10.1007/s10072-020-04948-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Dementia and hearing loss share radiologic and biologic findings that might explain their coexistence, especially in the elderly population. Brain atrophy has been observed in both conditions, as well as the presence of areas of gliosis. The brain atrophy is usually focal; it is located in the temporal lobe in patients with hearing loss, while it involves different part of brain in patients with dementia. Radiological studies have shown white matter hyperintensities (WMHs) in both conditions. WMHs have been correlated with the inability to correctly understand words in elderly persons with normal auditory thresholds and, the identification of these lesion in brain magnetic resonance imaging studies has been linked with an increased risk of developing cognitive loss. In addition to WMHs, some anatomopathological studies identified the presence of brain gliosis in the elderly's brain. The cause-effect link between hearing loss and dementia is still unknown, despite they might share some common findings. The aim of this systematic review is to analyze radiologic and biomolecular findings that these two conditions might share, identify a common pathological basis, and discuss the effects of hearing aids on prevention and treatment of cognitive decline in elderly patients with hearing loss.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Otolaryngology Department, University of Perugia, Perugia, Italy. .,Neuroinflammation Lab, UCL Queen Square Neurology, London, UK.
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Dalila Roccamatisi
- Psychology Department, Università Telematica Internazionale Uninettuno (UTIU), Rome, Italy
| | - Alfonso Scarpa
- Department of Otolaryngology, University of Salerno, Salerno, Italy
| | - Antonio Della Volpe
- Otology and Cochlear Implant Unit, Santobono-Pausilipon Hospital of Naples, Naples, Italy
| | | | - Giampietro Ricci
- Otolaryngology Department, University of Perugia, Perugia, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
16
|
Slade K, Plack CJ, Nuttall HE. The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function. Trends Neurosci 2020; 43:810-821. [PMID: 32826080 DOI: 10.1016/j.tins.2020.07.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022]
Abstract
Age-related hearing loss (ARHL) is a common problem for older adults, leading to communication difficulties, isolation, and cognitive decline. Recently, hearing loss has been identified as potentially the most modifiable risk factor for dementia. Listening in challenging situations, or when the auditory system is damaged, strains cortical resources, and this may change how the brain responds to cognitively demanding situations more generally. We review the effects of ARHL on brain areas involved in speech perception, from the auditory cortex, through attentional networks, to the motor system. We explore current perspectives on the possible causal relationship between hearing loss, neural reorganisation, and cognitive impairment. Through this synthesis we aim to inspire innovative research and novel interventions for alleviating hearing loss and cognitive decline.
Collapse
Affiliation(s)
- Kate Slade
- Department of Psychology, Lancaster University, Lancaster, UK
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, UK; Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Helen E Nuttall
- Department of Psychology, Lancaster University, Lancaster, UK.
| |
Collapse
|
17
|
Xing C, Zhang J, Cui J, Yong W, Hu J, Yin X, Wu Y, Chen YC. Disrupted Functional Network Connectivity Predicts Cognitive Impairment in Presbycusis Patients. Front Aging Neurosci 2020; 12:246. [PMID: 32903748 PMCID: PMC7438913 DOI: 10.3389/fnagi.2020.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose: Individuals with presbycusis often show deficits in cognitive function, however, the exact neurophysiological mechanisms are not well understood. This study explored the alterations in intra- and inter-network functional connectivity (FC) of multiple networks in presbycusis patients, and further correlated FC with cognitive assessment scores to assess their ability to predict cognitive impairment. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was performed in 40 presbycusis patients and 40 matched controls, and 12 resting-state networks (RSNs) were identified by independent component analysis (ICA) approach. A two-sample t-test was carried out to detect the intra-network FC differences, and functional network connectivity (FNC) was calculated to compare the inter-network FC differences. Pearson or Spearman correlation analysis was subsequently used to explore the correlation between altered FC and cognitive assessment scores. Results: Our study demonstrated that patients with presbycusis showed significantly decreased FC in the subcortical limbic network (scLN), default mode network (DMN), executive control network (ECN), and attention network (AN) compared with the control group. Moreover, the connectivity for scLN-AUN (auditory network) and VN (visual network)-DMN were found significantly increased while AN-DMN was found significantly decreased in presbycusis patients. Ultimately, this study revealed the intra- and inter-network alterations associated with some cognitive assessment scores. Conclusion: This study observed intra- and inter-network FC alterations in presbycusis patients, and investigated that presbycusis can lead to abnormal connectivity of RSNs and plasticity compensation mechanism, which may be the basis of cognitive impairment, suggesting that FNC can be used to predict potential cognitive impairment in their early stage.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Neurology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Jinluan Cui
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinghua Hu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Sanchez-Lopez R, Fereczkowski M, Neher T, Santurette S, Dau T. Robust Data-Driven Auditory Profiling Towards Precision Audiology. Trends Hear 2020; 24:2331216520973539. [PMID: 33272110 PMCID: PMC7720332 DOI: 10.1177/2331216520973539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
The sources and consequences of a sensorineural hearing loss are diverse. While several approaches have aimed at disentangling the physiological and perceptual consequences of different etiologies, hearing deficit characterization and rehabilitation have been dominated by the results from pure-tone audiometry. Here, we present a novel approach based on data-driven profiling of perceptual auditory deficits that attempts to represent auditory phenomena that are usually hidden by, or entangled with, audibility loss. We hypothesize that the hearing deficits of a given listener, both at hearing threshold and at suprathreshold sound levels, result from two independent types of "auditory distortions." In this two-dimensional space, four distinct "auditory profiles" can be identified. To test this hypothesis, we gathered a data set consisting of a heterogeneous group of listeners that were evaluated using measures of speech intelligibility, loudness perception, binaural processing abilities, and spectrotemporal resolution. The subsequent analysis revealed that distortion type-I was associated with elevated hearing thresholds at high frequencies and reduced temporal masking release and was significantly correlated with elevated speech reception thresholds in noise. Distortion type-II was associated with low-frequency hearing loss and abnormally steep loudness functions. The auditory profiles represent four robust subpopulations of hearing-impaired listeners that exhibit different degrees of perceptual distortions. The four auditory profiles may provide a valuable basis for improved hearing rehabilitation, for example, through profile-based hearing-aid fitting.
Collapse
Affiliation(s)
- Raul Sanchez-Lopez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michal Fereczkowski
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Research Unit for Oto-Rhino-Laryngology, Odense University Hospital, Odense, Denmark
| | - Tobias Neher
- Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Research Unit for Oto-Rhino-Laryngology, Odense University Hospital, Odense, Denmark
| | - Sébastien Santurette
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Centre for Applied Audiology Research, Oticon A/S, Smørum, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|