1
|
Qi F, Zhang N, Nitsche MA, Yi L, Zhang Y, Yue T. Effects of Dual-Site Anodal Transcranial Direct Current Stimulation on Attention, Decision-Making, and Working Memory during Sports Fatigue in Elite Soccer Athletes. J Integr Neurosci 2025; 24:26401. [PMID: 39862014 DOI: 10.31083/jin26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored. This study investigated the effect of dual-site tDCS targeting the dorsolateral prefrontal cortex (DLPFC) or primary motor cortex (M1) on attention, decision-making, and working memory in elite soccer athletes during sports fatigue. METHODS Sports fatigue was induced in 23 (non-goalkeeper) elite soccer athletes, who then participated in three counterbalanced intervention sessions: dual-site tDCS over the M1, dual-site tDCS over the DLPFC, and sham tDCS. Following tDCS, participants completed the Stroop, Iowa Gambling, and 2-back tasks. RESULTS We found a significant improvement in Stroop task accuracy following dual-site anodal tDCS over the M1 compared with the sham intervention in the incongruent condition (p = 0.036). Net scores in the Iowa Gambling task during blocks 4 (p = 0.019) and 5 (p = 0.014) significantly decreased under dual-site tDCS targeting the DLPFC compared with the sham intervention. No differences in 2-back task performance were observed between sessions (all p > 0.05). CONCLUSIONS We conclude that dual-site anodal tDCS applied to the M1 enhanced attention performance while tDCS targeting the DLPFC increased risk propensity in a decision-making task during sports fatigue in elite soccer athletes. However, dual-site anodal tDCS targeting either the M1 or DLPFC did not significantly influence working memory performance during sports fatigue in this population. These preliminary findings suggest that dual-site tDCS targeting the M1 has beneficial effects on attention performance, potentially informing future research on sports fatigue in athletes. CLINICAL TRIAL REGISTRATION No: NCT06594978. Registered 09 September, 2024; https://clinicaltrials.gov/search?cond=NCT06594978.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China
| | - Na Zhang
- Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
- German Centre for Mental Health (DZPG), 44787 Bochum, Germany
| | - Longyan Yi
- China Institute of Sport and Health Science, Beijing Sport University, 100084 Beijing, China
| | - Yingqiu Zhang
- Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China
| | - Tian Yue
- Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China
| |
Collapse
|
2
|
Salice S, Antonietti A, Colautti L. The effect of transcranial Direct Current Stimulation on the Iowa Gambling Task: a scoping review. Front Psychol 2024; 15:1454796. [PMID: 39744021 PMCID: PMC11688180 DOI: 10.3389/fpsyg.2024.1454796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Among the tasks employed to investigate decisional processes, the Iowa Gambling Task (IGT) appears to be the most effective since it allows for deepening the progressive learning process based on feedback on previous choices. Recently, the study of decision making through the IGT has been combined with the application of transcranial direct current stimulation (tDCS) to understand the cognitive mechanisms and the neural structures involved. However, to date no review regarding the effects of tDCS on decisional processes assessed through the IGT is available. This scoping review aims to provide a comprehensive exploration of the potential effects of tDCS in enhancing decisional processes, assessed with the IGT, through the evaluation of the complete range of target cases. Methods The existing literature was analyzed through the PRISMA approach. Results Results reported that tDCS can enhance performance in the IGT and highlighted a pivotal role of the dorsolateral prefrontal cortex and the orbitofrontal cortex in risky and ambiguous decisions. Discussion Thus, tDCS over the brain regions identified improves the decisional processes in healthy subjects and patients, confirming its potential to enhance decision making in everyday contexts and deepen the neural correlates. Suggestions for further studies are provided to delve into decisional mechanisms and how to better support them.
Collapse
Affiliation(s)
| | | | - Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
3
|
Ghayebzadeh S, Zardoshtian S, Amiri E, Giboin LS, Machado DGDS. Anodal Transcranial Direct Current Stimulation over the Right Dorsolateral Prefrontal Cortex Boosts Decision Making and Functional Impulsivity in Female Sports Referees. Life (Basel) 2023; 13:life13051131. [PMID: 37240776 DOI: 10.3390/life13051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effect of anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (rDLPFC) on the sensitive decision making of female team sports referees. Twenty-four female referees voluntarily participated in this randomized, double-blind, crossover, and sham-controlled study. In three different sessions, participants received either anodal (a-tDCS; anode (+) over F4, cathode (-) over the supraorbital region (SO)), cathodal (c-tDCS; -F4/+SO), or sham tDCS (sh-tDCS) in a randomized and counterbalanced order. a-tDCS and c-tDCS were applied with 2 mA for 20 min. In sh-tDCS, the current was turned off after 30 s. Before and after tDCS, participants performed the computerized Iowa Gambling Task (IGT) and Go/No Go impulsivity (IMP) tests. Only a-tDCS improved IGT and IMP scores from pre to post. The delta (Δ = post-pre) analysis showed a significantly higher ΔIGT in a-tDCS compared to c-tDCS (p = 0.02). The ΔIMP was also significantly higher in a-tDCS compared to sh-tDCS (p = 0.01). Finally, the reaction time decreased significantly more in a-tDCS (p = 0.02) and sh-tDCS (p = 0.03) than in c-tDCS. The results suggest that the a-tDCS improved factors related to sensitive decision making in female team sports referees. a-tDCS might be used as an ergogenic aid to enhance decision performance in female team sports referees.
Collapse
Affiliation(s)
| | | | - Ehsan Amiri
- Faculty of Sport Sciences, Razi University, Kermanshah 6714414971, Iran
| | | | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
4
|
Lim JYL, Boardman J, Dyche J, Anderson C, Dickinson DL, Drummond SPA. Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep 2022; 45:6603432. [PMID: 35667000 PMCID: PMC9453615 DOI: 10.1093/sleep/zsac120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep loss has been shown to alter risk preference during decision-making. However, research in this area has largely focussed on the effects of total sleep deprivation (TSD), while evidence on the effects of sleep restriction (SR) or the potentially moderating role of sex on risk preference remains scarce and unclear. The present study investigated risky decision-making in 47 healthy young adults who were assigned to either of two counterbalanced protocols: well-rested (WR) and TSD, or WR and SR. Participants were assessed on the Lottery Choice Task (LCT), which requires a series of choices between two risky gambles with varying risk levels. Analyses on the pooled dataset indicated across all sleep conditions, participants were generally more risk-seeking when trying to minimise financial loss (LOSSES) than while trying to maximise financial gain (GAINS). On GAINS trials, female participants were more risk-averse during TSD and SR, whereas male participants remained unchanged. On LOSSES trials, female participants remained unchanged during TSD and SR, whereas male participants became more risk-seeking during TSD. Our findings suggest the relationship between sleep loss and risk preference is moderated by sex, whereby changes in risk preference after TSD or SR differ in men and women depending on whether the decision is framed in terms of gains or losses.
Collapse
Affiliation(s)
- Jeryl Y L Lim
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - Johanna Boardman
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - Jeff Dyche
- Department of Psychology, James Madison University , Harrisonburg, VA , USA
| | - Clare Anderson
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - David L Dickinson
- Department of Economics and CERPA, Appalachian State University , Boone, NC , USA
- Economics Science Institute, Chapman University , Orange, CA , USA
- Institute of Labor Economics , Bonn , Germany
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
5
|
Orrù G, Cesari V, Malloggi E, Conversano C, Menicucci D, Rotondo A, Scarpazza C, Marchi L, Gemignani A. The effects of Transcranial Direct Current Stimulation on food craving and food intake in individuals affected by obesity and overweight: a mini review of the magnitude of the effects. AIMS Neurosci 2022; 9:358-372. [PMID: 36329902 PMCID: PMC9581736 DOI: 10.3934/neuroscience.2022020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity represents one of the wellness diseases concurring to increase the incidence of diabetes, cardiovascular diseases, and cancer. One of the main perpetuating factors of obesity is food craving, which is characterized by an urgent desire to eat a large and various amount of food, regardless of calories requirement or satiety signals, and it might be addressed to the alteration of the dorsolateral prefrontal cortex (DLPFC) activity. Despite most of the gold-standard therapies focus on symptom treatment only, non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) could help treat overeating by modulating specific neural pathways. The current systematic review was conducted to identify whether convergent evidence supporting the usefulness of tDCS to deal with food craving are present in the literature. The review was conducted by searching articles published up to January 1st 2022 on MEDLINE, Scopus and PsycInfo databases. We included studies investigating the effects of tDCS on food craving in subjects affected by overweight and obesity. According to eligibility criteria, 5 articles were included. Results showed that tDCS targeting left DLPFC with unipolar montage induced ameliorating effects on food craving. Controversial results were shown for the other studies, that might be ascribable to the use of bipolar montage, and the choice of other target areas. Further investigations including expectancy effect control, larger sample sizes and follow-up are needed to support more robust conclusions. To conclude, tDCS combined with the use of psychoeducative intervention, diet and physical activity, might represents a potential to manage food craving in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Eleonora Malloggi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Rotondo
- Department of Law, Criminal Law, University of Pisa, via Curtatone e Montanara, 15, 56126, Pisa, Italy
| | - Cristina Scarpazza
- Department of General Psychology, University of Padova, Via Venezia 8, Padova, 35131, Italy
- IRCCS S Camillo Hospital, Via Alberoni 70, 30126 Venezia, Italy
- Padova Neuroscience Centre, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| | - Laura Marchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| |
Collapse
|
6
|
Zou Y, Li J, Fan Y, Zhang C, Kong Y. Functional near-infrared spectroscopy during motor imagery and motor execution in healthy adults. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:920-927. [PMID: 36039589 PMCID: PMC10930295 DOI: 10.11817/j.issn.1672-7347.2022.210689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies on the influence of motor imagery (MI) on brain structure and function are limited to traditional imaging techniques and the mechanism for MI therapy is not clear. By observing the brain activation mode during MI and motor execution (ME) in healthy adults, this study aims to use near-infrared brain imaging technology to provide theoretical basis for the treatment of MI. METHODS A total of 30 healthy adults recruited to the public from June 2021 to August 2021. The MI and ME of the right knee movement served as the task mode. Block design was repeated 5 times alternately in a 20 s task period and a 30 s resting period. The activation patterns of brain regions were compared between the 2 tasks, and the regression coefficient was calculated to reflect the activation intensity of each brain region by Nirspark and SPSS 23.0 softwares. RESULTS Lane 2, 3, 4, 5, 7, 9, 19, 20, 21, 24, 25, 26, 27, 32, 33, and 34 were significantly activated during the ME task (P<0.05, corrected by FDR) and lane 2, 5, 9, 16, 27, 29, 33, 34, and 35 were significantly activated during the MI task (P<0.05, corrected by FDR). According to the channel brain region registration information, the brain region activation pattern was similar during both MI and ME tasks in healthy adults, including left primary motor cortex (LM1), left primary sensory cortex (LS1), prefrontal pole, Broca area, and right supramarginal gyrus. Both LM1 and left pre-motor cortex (LPMC) were activated during MI in healthy adults, whereas dorsolateral prefrontal cortex (DLPFC) and only LM1 of the motor region were activated during ME. Compared to MI, the activation intensity of left sensory and left motor cortex was significantly enhanced in ME, and that of left and right prefrontal cortex especially left and right pars triangularis Broca's area (P<0.001, corrected by FDR) were significantly enhanced. CONCLUSIONS The rationality of MI therapy is proved by functional near-infrared spectroscopy. The involvement of DLPFC in motor decision-making may regulate the two-way feedback of premoter cortex-M1 during ME; and Broca area, closely related to the motor program understanding, participates in MI and ME.
Collapse
Affiliation(s)
- Ying Zou
- Medical School, Yueyang Vocational Technical College, Yueyang Hunan 414000.
| | - Jing Li
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Changjie Zhang
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying Kong
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
7
|
Heinrichs-Graham E, Walker EA, Eastman JA, Frenzel MR, McCreery RW. Amount of Hearing Aid Use Impacts Neural Oscillatory Dynamics Underlying Verbal Working Memory Processing for Children With Hearing Loss. Ear Hear 2022; 43:408-419. [PMID: 34291759 PMCID: PMC8770672 DOI: 10.1097/aud.0000000000001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Children with hearing loss (CHL) may exhibit spoken language delays and may also experience deficits in other cognitive domains including working memory. Consistent hearing aid use (i.e., more than 10 hours per day) ameliorates these language delays; however, the impact of hearing aid intervention on the neural dynamics serving working memory remains unknown. The objective of this study was to examine the association between the amount of hearing aid use and neural oscillatory activity during verbal working memory processing in children with mild-to-severe hearing loss. DESIGN Twenty-three CHL between 8 and 15 years-old performed a letter-based Sternberg working memory task during magnetoencephalography (MEG). Guardians also completed a questionnaire describing the participants' daily hearing aid use. Each participant's MEG data was coregistered to their structural MRI, epoched, and transformed into the time-frequency domain using complex demodulation. Significant oscillatory responses corresponding to working memory encoding and maintenance were independently imaged using beamforming. Finally, these whole-brain source images were correlated with the total number of hours of weekly hearing aid use, controlling for degree of hearing loss. RESULTS During the encoding period, hearing aid use negatively correlated with alpha-beta oscillatory activity in the bilateral occipital cortices and right precentral gyrus. In the occipital cortices, this relationship suggested that with greater hearing aid use, there was a larger suppression of occipital activity (i.e., more negative relative to baseline). In the precentral gyrus, greater hearing aid use was related to less synchronous activity (i.e., less positive relative to baseline). During the maintenance period, hearing aid use significantly correlated with alpha activity in the right prefrontal cortex, such that with greater hearing aid use, there was less right prefrontal maintenance-related activity (i.e., less positive relative to baseline). CONCLUSIONS This study is the first to investigate the impact of hearing aid use on the neural dynamics that underlie working memory function. These data show robust relationships between the amount of hearing aid use and phase-specific neural patterns during working memory encoding and maintenance after controlling for degree of hearing loss. Furthermore, our data demonstrate that wearing hearing aids for more than ~8.5 hours/day may serve to normalize these neural patterns. This study also demonstrates the potential for neuroimaging to help determine the locus of variability in outcomes in CHL.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Elizabeth A. Walker
- Wendell Johnson Speech and Hearing Center, Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, Nebraska, USA
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Ryan W. McCreery
- Audibility, Perception, and Cognition Laboratory, BTNRH, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Herrojo Ruiz M, Maudrich T, Kalloch B, Sammler D, Kenville R, Villringer A, Sehm B, Nikulin VV. Modulation of neural activity in frontopolar cortex drives reward-based motor learning. Sci Rep 2021; 11:20303. [PMID: 34645848 PMCID: PMC8514446 DOI: 10.1038/s41598-021-98571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants practiced novel sequences of finger movements on a digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback to discover a hidden performance goal along a continuous dimension: timing. We additionally modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.
Collapse
Affiliation(s)
- M Herrojo Ruiz
- Psychology Department, Goldsmiths University of London, London, UK. .,Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - T Maudrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B Kalloch
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - D Sammler
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - R Kenville
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, University Hospital Halle (Saale), Halle, Germany
| | - V V Nikulin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
9
|
Yaqub MA, Hong KS, Zafar A, Kim CS. Control of Transcranial Direct Current Stimulation Duration by Assessing Functional Connectivity of Near-Infrared Spectroscopy Signals. Int J Neural Syst 2021; 32:2150050. [PMID: 34609264 DOI: 10.1142/s0129065721500507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to create neuroplasticity in healthy and diseased populations. The control of stimulation duration by providing real-time brain state feedback using neuroimaging is a topic of great interest. This study presents the feasibility of a closed-loop modulation for the targeted functional network in the prefrontal cortex. We hypothesize that we cannot improve the brain state further after reaching a specific state during a stimulation therapy session. A high-definition tDCS of 1[Formula: see text]mA arranged in a ring configuration was applied at the targeted right prefrontal cortex of 15 healthy male subjects for 10[Formula: see text]min. Functional near-infrared spectroscopy was used to monitor hemoglobin chromophores during the stimulation period continuously. The correlation matrices obtained from filtered oxyhemoglobin were binarized to form subnetworks of short- and long-range connections. The connectivity in all subnetworks was analyzed individually using a new quantification measure of connectivity percentage based on the correlation matrix. The short-range network in the stimulated hemisphere showed increased connectivity in the initial stimulation phase. However, the increase in connection density reduced significantly after 6[Formula: see text]min of stimulation. The short-range network of the left hemisphere and the long-range network gradually increased throughout the stimulation period. The connectivity percentage measure showed a similar response with network theory parameters. The connectivity percentage and network theory metrics represent the brain state during the stimulation therapy. The results from the network theory metrics, including degree centrality, efficiency, and connection density, support our hypothesis and provide a guideline for feedback on the brain state. The proposed neuro-feedback scheme is feasible to control the stimulation duration to avoid overdosage.
Collapse
Affiliation(s)
- M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Amad Zafar
- Department of Electrical Engineering, University of Lahore, Sihala Zone V, Islamabad, Pakistan
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
10
|
Ji S, Ma H, Yao M, Guo M, Li S, Chen N, Liu X, Shao X, Yao Z, Hu B. Aberrant Temporal Variability in Brain Regions during Risk Decision Making in Patients with Bipolar I Disorder: A Dynamic Effective Connectivity Study. Neuroscience 2021; 469:68-78. [PMID: 34153355 DOI: 10.1016/j.neuroscience.2021.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Bipolar I disorder (BD-I) is associated with high-risk behaviors, such as suicide attempts and addictive substance abuse. Understanding brain activity exposure to risk decision making provides evidence for the treatment of BD-I patients. This study aimed to investigate the temporal dynamics of brain connectivity underlying risk decision making in patients with BD-I. A total of 101 subjects (48 BD-I patients and 53 age- and gender-matched healthy controls (HCs)) were included in this research. We analyzed the fMRI data acquired during Balloon Analog Risk Task (BART) performance. Voxel-wise dynamic effective connectivity (dEC) was employed to measure the activities in 264 brain regions. The coefficient of variation (CV) was calculated as temporal dynamics of brain connectivity. Finally, we used structural equation modeling (SEM) to determine the relationships of dEC in brain regions with clinical symptoms, behavior performances in patients. Results showed that BD-I patients exhibited increased dynamics in four lobes and exhibited decreased in three frontal regions. Besides, SEM results showed that the impulsive symptoms of patients were affected by the dEC during both resting and task states. Moreover, the dEC of left supramarginal gyrus (SMG) influenced those of left orbital frontal and right cuneus (CUN), as well as the affective symptoms and BART behaviors in patients with BD-I. Our results suggested that the altered temporal dynamics of brain connectivity might contribute to the impulsivity of BD-I during resting and task states. More importantly, the left SMG might be a therapeutic target to reduce the risk behavior in BD-I patients.
Collapse
Affiliation(s)
- Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Hongxia Ma
- School of Clinical Medicine, Jining Medical University, Jining, Shandong Province, China
| | - Mengyuan Yao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Man Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Xia Liu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Xuexiao Shao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China; School of Computer Science, Qinghai Normal University, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China.
| |
Collapse
|
11
|
Tanae M, Ota K, Takiyama K. Competition Rather Than Observation and Cooperation Facilitates Optimal Motor Planning. Front Sports Act Living 2021; 3:637225. [PMID: 33733236 PMCID: PMC7959757 DOI: 10.3389/fspor.2021.637225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Humans tend to select motor planning with a high reward and low success compared with motor planning, which has a small reward and high success rate. Previous studies have shown such a risk-seeking property in motor decision tasks. However, it is unclear how to facilitate a shift from risk-seeking to optimal motor planning that maximizes the expected reward. Here, we investigate the effect of interacting with virtual partners/opponents on motor plans since interpersonal interaction has a powerful influence on human perception, action, and cognition. This study compared three types of interactions (competition, cooperation, and observation) and two types of virtual partners/opponents (those engaged in optimal motor planning and those engaged in risk-averse motor planning). As reported in previous studies, the participants took a risky aim point when they performed a motor decision task alone. However, we found that the participant's aim point was significantly modulated when they performed the same task while competing with a risk-averse opponent (p = 0.018) and that there was no significant difference from the optimal aim point (p = 0.63). No significant modulation in the aim points was observed during the cooperation and observation tasks. These results highlight the importance of competition for modulating suboptimal decision-making and optimizing motor performance.
Collapse
Affiliation(s)
- Mamoru Tanae
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keiji Ota
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Psychology, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| | - Ken Takiyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
12
|
郭 娅, 李 启, 姜 劲, 曹 勇, 冯 静, 楚 洪, 王 宏, 焦 学. [Review of cognitive enhancement techniques based on the combination of cognitive training and transcranial direct current stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:903-909. [PMID: 33140616 PMCID: PMC10320545 DOI: 10.7507/1001-5515.201911079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/03/2022]
Abstract
Cognitive enhancement refers to the technology of enhancing or expanding the cognitive and emotional abilities of people without psychosis based on relevant knowledge of neurobiology. The common methods of cognitive enhancement include transcranial direct current stimulation (tDCS) and cognitive training (CT). tDCS takes effect quickly, with a short effective time, while CT takes longer to work, requiring several weeks of training, with a longer effective time. In recent years, some researchers have begun to use the method of tDCS combined with CT to regulate the cognitive function. This paper will sort out and summarize this topic from five aspects: perception, attention, working memory, decision-making and other cognitive abilities. Finally, the application prospect and challenges of technology are prospected.
Collapse
Affiliation(s)
- 娅美 郭
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
- 中国航天员科研训练中心 人因工程国防科技重点实验室(北京 100094)Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Centre, Beijing 100094, P.R.China
| | - 启杰 李
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 劲 姜
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 勇 曹
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 静达 冯
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 洪祚 楚
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 宏伟 王
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| | - 学军 焦
- 航天工程大学 研究生院(北京 101416)Department of Graduate School, Space Engineering University, Beijing 101416, P.R.China
| |
Collapse
|
13
|
Optimizing motor decision-making through competition with opponents. Sci Rep 2020; 10:950. [PMID: 31969572 PMCID: PMC6976621 DOI: 10.1038/s41598-019-56659-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/14/2019] [Indexed: 11/17/2022] Open
Abstract
Although optimal decision-making is essential for sports performance and fine motor control, it has been repeatedly confirmed that humans show a strong risk-seeking bias, selecting a risky strategy over an optimal solution. Despite such evidence, the ideal method to promote optimal decision-making remains unclear. Here, we propose that interactions with other people can influence motor decision-making and improve risk-seeking bias. We developed a competitive reaching game (a variant of the “chicken game”) in which aiming for greater rewards increased the risk of no reward and subjects competed for the total reward with their opponent. The game resembles situations in sports, such as a penalty kick in soccer, service in tennis, the strike zone in baseball, or take-off in ski jumping. In five different experiments, we demonstrated that, at the beginning of the competitive game, the subjects robustly switched their risk-seeking strategy to a risk-averse strategy. Following the reversal of the strategy, the subjects achieved optimal decision-making when competing with risk-averse opponents. This optimality was achieved by a non-linear influence of an opponent’s decisions on a subject’s decisions. These results suggest that interactions with others can alter human motor decision strategies and that competition with a risk-averse opponent is key for optimizing motor decision-making.
Collapse
|