1
|
Minami-Ogawa Y, Kiyokage E, Yamanishi H, Horie S, Ichikawa S, Toida K. Structural Basis for Histaminergic Regulation of Neural Circuits in the Mouse Olfactory Bulb. J Comp Neurol 2024; 532:e25671. [PMID: 39387358 DOI: 10.1002/cne.25671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Odor information is modulated by centrifugal inputs from other brain regions to the olfactory bulb (OB). Neurons containing monoamines, such as serotonin, acetylcholine, and noradrenaline, are well known as centrifugal inputs; however, the role of histamine, which is also present in the OB, is not well understood. In this study, we examined the histaminergic neurons projecting from the hypothalamus to the OB. We used an antibody against histidine decarboxylase (HDC), a synthesizing enzyme of histamine, to identify histaminergic neurons and assess their localization within the OB and the ultrastructure of their fibers and synapses using multiple immunostaining laser microscopy, ultra-high voltage electron microscopy (EM), and EM to confirm their relationships with other neurons. To further identify the origin nucleus of the histaminergic neurons projecting to the OB, we injected the retrograde tracer FluoroGold and analyzed the pathway to the OB anterogradely. HDC-immunoreactive (-ir) fibers were abundant in the olfactory nerve (ON) layer compared to other monoamines. HDC-ir neurons received asymmetrical synapses from ONs and formed synapses containing pleomorphic vesicles with variable postsynaptic densities to non-ON elements, thus forming serial synapses. We also confirmed that histaminergic neurons project from the rostral ventral tuberomammillary nucleus to the granule cell layer of the OB and, for the first time, successfully visualized their axons from the hypothalamus to the OB. These findings indicate that histamine may regulate odor discrimination in the OB, suggesting a regulatory relationship between hypothalamic function and olfaction. We thus elucidate morphological mechanisms with tuberomammillary nucleus-derived histaminergic neurons involved in olfactory information.
Collapse
Affiliation(s)
| | - Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Haruyo Yamanishi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| |
Collapse
|
2
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|
3
|
Shalaby AM, Sharaf Eldin HEM, Abdelsameea AA, Abdelnour HM, Alabiad MA, Elkholy MR, Aboregela AM. Betahistine Attenuates Seizures, Neurodegeneration, Apoptosis, and Gliosis in the Cerebral Cortex and Hippocampus in a Mouse Model of Epilepsy: A Histological, Immunohistochemical, and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-15. [PMID: 35686434 DOI: 10.1017/s1431927622012107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epilepsy is a prevalent and chronic neurological disorder marked by recurring, uncontrollable seizures of the brain. Chronic or repeated seizures produce memory problems and induce damage to different brain regions. Histamine has been reported to have neuroprotective effects. Betahistine is a histamine analogue. The current research investigated the effects of convulsions on the cerebral cortex and hippocampus of adult male albino mice and assessed the possible protective effect of betahistine. Four groups of 40 adult male mice were organized: control, betahistine (10 mg/kg/day), pentylenetetrazole (PTZ) (40 mg/kg/ on alternate days), and Betahistine-PTZ group received betahistine 1 h before PTZ. PTZ induced a substantial rise in glutamate level and a considerable decrease in histamine level. Structural changes in the cerebral cortex and cornu ammonis (CA1) of the hippocampus were detected in the pattern of neuron degeneration. Some neurons were shrunken with dark nuclei, and others had faintly stained ones. Focal accumulation of neuroglial cells and ballooned nerve cells of the cerebral cortex were also detected. Cleaved caspase-3, glial fibrillary acidic protein, and ionized calcium-binding adaptor molecule 1 showed substantial increases, while synaptophysin expression was significantly reduced. Interestingly, these changes were less prominent in mice pretreated with betahistine. In conclusion, betahistine had shown neuroprotective properties against brain damage induced by convulsions.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Heba E M Sharaf Eldin
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Hanim Magdy Abdelnour
- Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Mohamed Aboregela
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Basic Medical Sciences Department, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Curr Top Behav Neurosci 2021; 59:261-288. [PMID: 34432259 DOI: 10.1007/7854_2021_235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histamine is a biogenic amine playing a central role in allergy and peripheral inflammatory reactions and acts as a neurotransmitter and neuromodulator in the brain. In the adult, histamine is produced mainly by mast cells and hypothalamic neurons, which project their axons throughout the brain. Thus, histamine exerts a range of functions, including wakefulness control, learning and memory, neurogenesis, and regulation of glial activity. Histamine is also known to modulate innate immune responses induced by brain-resident microglia cells and peripheral circulating monocytes, and monocyte-derived cells (macrophages and dendritic cells). In physiological conditions, histamine per se causes mainly a pro-inflammatory phenotype while counteracting lipopolysaccharide-induced inflammation both in microglia, monocytes, and monocyte-derived cells. In turn, the activation of the innate immune system can profoundly affect neuronal survival and function, which plays a critical role in the onset and development of brain disorders. Therefore, the dual role of histamine/antihistamines in microglia and monocytes/macrophages is relevant for identifying novel putative therapeutic strategies for brain diseases. This review focuses on the effects of histamine in innate immune responses and the impact on neuronal survival, function, and differentiation/maturation, both in physiological and acute (ischemic stroke) and chronic neurodegenerative conditions (Parkinson's disease).
Collapse
|
5
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Natarajan S, Govender K, Shobo A, Baijnath S, Arvidsson PI, Govender T, Lin J, Maguire GE, Naicker T, Kruger HG. Potential of brain mast cells for therapeutic application in the immune response to bacterial and viral infections. Brain Res 2021; 1767:147524. [PMID: 34015358 DOI: 10.1016/j.brainres.2021.147524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
A wide range of microorganisms can infect the central nervous system (CNS). The immune response of the CNS provides limited protection against microbes penetrating the blood-brain barrier. This results in a neurological deficit and sometimes leads to high morbidity and mortality rates despite advanced therapies. For the last two decades, different studies have expanded our understanding of the molecular basis of human neuroinfectious diseases, especially concerning the contributions of mast cell interactions with other central nervous system compartments. Brain mast cells are multifunctional cells derived from the bone marrow and reside in the brain. Their proximity to blood vessels, their role as "first responders" their unique receptors systems and their ability to rapidly release pathogen responsive mediators enable them to exert a crucial defensive role in the host-defense system. This review describes key biological and physiological functions of mast cells, concerning their ability to recognize pathogens via various receptor systems, followed by a coordinated and selective mediator release upon specific interactions with pathogenic stimulating factors. The goal of this review is to direct attention to the possibilities for therapeutic applications of mast cells against bacterial and viral related infections. We also focus on opportunities for future research activating mast cells via adjuvants.
Collapse
Affiliation(s)
- Satheesh Natarajan
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Kamini Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Adeola Shobo
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa; Science for Life Laboratory, Drug Discovery and Development, Platform and Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Thavendran Govender
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Glenn Em Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, E-Block, 6th Floor, Room E1-06-016, Durban, South Africa.
| |
Collapse
|
7
|
Dioli C, Patrício P, Pinto LG, Marie C, Morais M, Vyas S, Bessa JM, Pinto L, Sotiropoulos I. Adult neurogenic process in the subventricular zone-olfactory bulb system is regulated by Tau protein under prolonged stress. Cell Prolif 2021; 54:e13027. [PMID: 33988263 PMCID: PMC8249793 DOI: 10.1111/cpr.13027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The area of the subventricular zone (SVZ) in the adult brain exhibits the highest number of proliferative cells, which, together with the olfactory bulb (OB), maintains constant brain plasticity through the generation, migration and integration of newly born neurons. Despite Tau and its malfunction is increasingly related to deficits of adult hippocampal neurogenesis and brain plasticity under pathological conditions [e.g. in Alzheimer's disease (AD)], it remains unknown whether Tau plays a role in the neurogenic process of the SVZ and OB system under conditions of chronic stress, a well‐known sculptor of brain and risk factor for AD. Materials and methods Different types of newly born cells in SVZ and OB were analysed in animals that lack Tau gene (Tau‐KO) and their wild‐type littermates (WT) under control or chronic stress conditions. Results We demonstrate that chronic stress reduced the number of proliferating cells and neuroblasts in the SVZ leading to decreased number of newborn neurons in the OB of adult WT, but not Tau‐KO, mice. Interestingly, while stress‐evoked changes were not detected in OB granular cell layer, Tau‐KO exhibited increased number of mature neurons in this layer indicating altered neuronal migration due to Tau loss. Conclusions Our findings suggest the critical involvement of Tau in the neurogenesis suppression of SVZ and OB neurogenic niche under stressful conditions highlighting the role of Tau protein as an essential regulator of stress‐driven plasticity deficits.
Collapse
Affiliation(s)
- Chrysoula Dioli
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - Patrícia Patrício
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia-Goreti Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Clemence Marie
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Morais
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sheela Vyas
- Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - João M Bessa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Tighilet B, Rastoldo G, Chabbert C. [The adult brain produces new neurons to restore balance after vestibular loss]. Med Sci (Paris) 2020; 36:581-591. [PMID: 32614308 DOI: 10.1051/medsci/2020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following partial or total loss of peripheral vestibular inputs, a phenomenon called central vestibular compensation takes place in the hours and days following the injury. This neuroplasticity process involves a mosaic of profound rearrangements within the brain stem vestibular nuclei. Among them, the setting of a new neuronal network is maybe the most original and unexpected, as it involves an adult reactive neurogenesis in a brain area not reported as neurogenic so far. Both the survival and functionality of this newly generated neuronal network will depend on its integration to pre-existing networks in the deafferented structure. Far from being aberrant, this new structural organization allows the use of inputs from other sensory modalities (vision and proprioception) to promote the restoration of the posture and equilibrium. We choose here to detail this model, which does not belong to the traditional niches of adult neurogenesis, but it is the best example so far of the reparative role of the adult neurogenesis. Not only it represents an original neuroplasticity mechanism, interesting for basic neuroscience, but it also opens new medical perspectives for the development of therapeutic approaches to alleviate vestibular disorders.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de neurosciences sensorielles et cognitives, LNSC UMR 7260. Équipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), 3 place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
9
|
Yazdi A, Doostmohammadi M, Pourhossein Majarshin F, Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 2020; 105:106956. [PMID: 32062106 DOI: 10.1016/j.yebeh.2020.106956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
A seizure may occur because of the imbalance between glutamate and gamma-aminobutyric acid (GABA). Recurrent seizures induce some cognitive problems, such as, depression, learning and memory deficits, and neurodegeneration. Histamine is an appropriate therapeutic target for epilepsy via its effect on regulating neurotransmitter release. Also, evidence indicates the effect of histamine on neuroprotection and alleviating cognitive disorders. An ideal antiepileptic drug is a substance, which has both anticonvulsant effects and decreases the comorbidities that are induced by repeated seizures. Betahistine dihydrochloride (betahistine) is a structural analog of histamine. It acts as histamine H1 receptor agonist and H3 receptor antagonist, which enhances histaminergic neuronal activities. In the present study, we examined the effect of betahistine administration on seizure scores, memory deficits, depression, and neuronal loss induced by pentylenetetrazole (PTZ). Eight- to ten-week-old BALB/c male mice (20-25 g) received betahistine, 1, and 10 mg/kg daily from 7 days before the onset of PTZ-induced kindling until the end of the establishment of the kindling. We found that betahistine prevented generalized tonic-clonic seizures induction and diminished forelimb clonic seizures intensity. Also, it decreased cell death in the hippocampus and cortex, ameliorated the memory deficit and depression induced by PTZ in the kindled animals. Altogether, these results indicate that pretreatment and repetitive administration with betahistine exerts antiepileptogenic and anticonvulsant activity. These findings might be due to the neuroprotective impact of betahistine in the hippocampus and cortex.
Collapse
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadmahdi Doostmohammadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farshid Pourhossein Majarshin
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
10
|
Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci Rep 2019; 9:8384. [PMID: 31182747 PMCID: PMC6558030 DOI: 10.1038/s41598-019-44816-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/24/2019] [Indexed: 01/30/2023] Open
Abstract
Evidence points to a dual role of histamine in microglia-mediated neuroinflammation, a key pathological feature of several neurodegenerative pathologies. Moreover, histamine has been suggested as a modulator of adult neurogenesis. Herein, we evaluated the effect of histamine in hippocampal neuroinflammation and neurogenesis under physiological and inflammatory contexts. For that purpose, mice were intraperitoneally challenged with lipopolysaccharide (LPS) followed by an intrahippocampal injection of histamine. We showed that histamine per se triggered glial reactivity and induced mild long-term impairments in neurogenesis, reducing immature neurons dendritic volume and complexity. Nevertheless, in mice exposed to LPS (2 mg/Kg), histamine was able to counteract LPS-induced glial activation and release of pro-inflammatory molecules as well as neurogenesis impairment. Moreover, histamine prevented LPS-induced loss of immature neurons complexity as well as LPS-induced loss of both CREB and PSD-95 proteins (essential for proper neuronal activity). Altogether, our results highlight histamine as a potential therapeutic agent to treat neurological conditions associated with hippocampal neuroinflammation and neurodegeneration.
Collapse
|
11
|
Parenchymal and non-parenchymal immune cells in the brain: A critical role in regulating CNS functions. Int J Dev Neurosci 2019; 77:26-38. [PMID: 31026497 DOI: 10.1016/j.ijdevneu.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
The presence of immune cells in the central nervous system has long been the subject of research to find out their role. For a long time it was believed that the CNS was a privileged area from an immunological point of view, due to the presence of the blood-brain barrier (BBB), as circulating immune cells were unable to penetrate the brain parenchyma, at least until the integrity of the BBB was preserved. For this reason the study of the CNS immune system has focused on the functions of microglia, the immunocompetent resident element of the brain parenchyma that retain the ability to divide and self-renew during lifespan without any significant contribution from circulating blood cells. More recently, the presence of lymphatic vessels in the dural sinuses has been demonstrated with accompanying lymphocytes, monocytes and other immune cells. Moreover, meningeal macrophages, that is macrophages along the blood vessels and in the choroid plexus (CP), are also present. These non-parenchymal immune cells, together with microglia, can affect multiple CNS functions. Here, we discuss the functional role of parenchymal and non-parenchymal immune cells and their contribution to the regulation of neurogenesis.
Collapse
|
12
|
MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson's disease. J Neuroinflammation 2018; 15:13. [PMID: 29329581 PMCID: PMC5767033 DOI: 10.1186/s12974-018-1053-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Background Parkinson’s disease (PD) is the most prevalent neurodegenerative disorder that is characterised by selective loss of midbrain dopaminergic (DA) neurons. Chronic inflammation of the central nervous system is mediated by microglial cells and plays a critical role in the pathological progression of PD. Brain-specific microRNA-124 (miR-124) expression is significantly downregulated in lipopolysaccharide (LPS)-treated BV2 cells and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. However, whether abnormal miR-124 expression could regulate the activation of microglia remains poorly understood. Methods BV2 cells were activated by exposure to LPS, and the expression levels of miR-124, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and the nuclear factor of kappaB (NF-κB) p-p65 were analysed. Over-expression and knockdown studies of miR-124 were performed to observe the effects on MEKK3/NF-κB signalling pathways, and the induction of pro-inflammatory and neurotoxic factors was assessed. In addition, a luciferase reporter assay was conducted to confirm whether MEKK3 is a direct target of miR-124. Meanwhile, production of miR-124, MEKK3, and p-p65; midbrain DA neuronal death; or activation of microglia were analysed when treated with or without miR-124 in the MPTP-induced model of PD. Results We found that the knockdown of MEKK3 could inhibit the activation of microglia by regulating NF-κB expression. Over-expression of miR-124 could effectively attenuate the LPS-induced expression of pro-inflammatory cytokines and promote the secretion of neuroprotective factors. We also first identified a unique role of miR-124 in mediating the microglial inflammatory response by targeting MEKK3/NF-κB signalling pathways. In the microglial culture supernatant (MCS) transfer model, over-expression of the miR-124 or knockdown of MEKK3 in BV2 cells prevented SH-SY5Y from apoptosis and death. Moreover, MEKK3 and p-p65 were abundantly expressed in the midbrain. Furthermore, their expression levels increased and microglial activation was observed in the MPTP-induced model of PD. In addition, exogenous delivery of miR-124 could suppress MEKK3 and p-p65 expression and attenuate the activation of microglia in the substantia nigra pars compacta of MPTP-treated mice. miR-124 also could prevent MPTP-dependent apoptotic midbrain DA cell death in a MPTP-induced PD model. Conclusions Taken together, our data suggest that miR-124 can inhibit neuroinflammation in the development of PD by regulating the MEKK3/NF-κB signalling pathways and implicate miR-124 as a potential therapeutic target for regulating the inflammatory response in PD.
Collapse
|
13
|
Wasielewska JM, Grönnert L, Rund N, Donix L, Rust R, Sykes AM, Hoppe A, Roers A, Kempermann G, Walker TL. Mast cells increase adult neural precursor proliferation and differentiation but this potential is not realized in vivo under physiological conditions. Sci Rep 2017; 7:17859. [PMID: 29259265 PMCID: PMC5736663 DOI: 10.1038/s41598-017-18184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
There is growing evidence that both peripheral and resident immune cells play an important part in regulating adult neural stem cell proliferation and neurogenesis, although the contribution of the various immune cell types is still unclear. Mast cells, a population of immune cells known for their role in the allergic response, have been implicated in the regulation of adult hippocampal neurogenesis. Mast cell-deficient c-kitW-sh/W-sh mice have previously been shown to exhibit significantly decreased adult hippocampal neurogenesis and associated learning and memory deficits. However, given that numerous other cell types also express high levels of c-kit, the utility of these mice as a reliable model of mast cell-specific depletion is questionable. We show here, using a different model of mast cell deficiency (Mcpt5CreR26DTA/DTA), that precursor proliferation and adult neurogenesis are not influenced by mast cells in vivo. Interestingly, when applied at supraphysiological doses, mast cells can activate latent hippocampal precursor cells and increase subventricular zone precursor proliferation in vitro, an effect that can be blocked with specific histamine-receptor antagonists. Thus, we conclude that while both mast cells and their major chemical mediator histamine have the potential to affect neural precursor proliferation and neurogenesis, this is unlikely to occur under physiological conditions.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Grönnert
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Nicole Rund
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lukas Donix
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ruslan Rust
- Brain Research Institute ETH and University of Zurich, Zurich, Switzerland
| | - Alexander M Sykes
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anja Hoppe
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Tara L Walker
- CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
15
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 2016; 235:291-305. [PMID: 27269730 DOI: 10.1016/j.jconrel.2016.06.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023]
Abstract
Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.
Collapse
Affiliation(s)
- C Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J Paiva
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - T Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - L Ferreira
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - L Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
17
|
Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology 2015; 106:135-45. [PMID: 26025658 DOI: 10.1016/j.neuropharm.2015.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/11/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr University Bochum, Germany
| | - Dorothea Dere
- Center for Psychological Consultation and Psychotherapy, Georg-August University Göttingen, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Germany
| | - Maria Angelica De Souza Silva
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Joseph P Huston
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; UFR des Sciences de la Vie (927), Université Pierre et Marie Curie Paris 6, France.
| |
Collapse
|
18
|
Peretto P, Bonfanti L. Adult neurogenesis 20 years later: physiological function vs. brain repair. Front Neurosci 2015; 9:71. [PMID: 25798084 PMCID: PMC4351634 DOI: 10.3389/fnins.2015.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paolo Peretto
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Life Sciences and Systems Biology, University of Turin Torino, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Department of Veterinary Sciences, University of Turin Torino, Italy
| |
Collapse
|