1
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Cai JL, Wang JJ, Zhang Y, Gao H, Huang W, Cai YJ, Jia WX, Chen X, Sun HY. Characterization, expression and functional analysis of Hsp40 during LPS challenge in blood parrot Amphilophus citrinellus ×Vieja melanura. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109910. [PMID: 39299406 DOI: 10.1016/j.fsi.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Heat shock protein 40 belonging to heat shock protein family plays an important role in the immune responses of organisms. In this study, the full length cDNA of Hsp40 was 2426 bp including a 1368 bp open reading frame (ORF) encoding 455 amino acids with a molecular weight of 49.16 kDa and a theoretical isoelectric point of 9.34 in blood parrot Vieja synspila ♀ × Amphilophus citrinellus ♂, an important ornamental fish in China. It had three conserved domains DnaJ, CRR and DnaJ_C. Phylogenetic analysis showed that the sequence of Hsp40 among species was conserved, and the blood parrot Hsp40 was closely related to Neolamprologus brichardi. Blood parrot Hsp40 mRNA could be detected in all of the tissues examined and mainly distributed in the cytoplasm. The expression of Hsp40 was upregulated during lipopolysaccharide (LPS) challenge. Upregulated Hsp40 inhibited the activity of nuclear factor κB (NF-κB) and activated protein 1 (AP-1) and reduced the ratio of Bax/Bcl-2 mRNA expression. This study provides a theoretical basis for further exploring the role of Hsp40 gene in the anti-bacterial immunity of blood parrot.
Collapse
Affiliation(s)
- Jie-Li Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun-Jie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Yue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Jie Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Xin Jia
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
4
|
Chen Y, Li Z, Ge X, Lv H, Geng Z. Identification of novel hub genes for Alzheimer's disease associated with the hippocampus using WGCNA and differential gene analysis. Front Neurosci 2024; 18:1359631. [PMID: 38516314 PMCID: PMC10954837 DOI: 10.3389/fnins.2024.1359631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's disease (AD) is a common, refractory, progressive neurodegenerative disorder in which cognitive and memory deficits are highly correlated with abnormalities in hippocampal brain regions. There is still a lack of hippocampus-related markers for AD diagnosis and prevention. Methods Differently expressed genes were identified in the gene expression profile GSE293789 in the hippocampal brain region. Enrichment analyses GO, KEGG, and GSEA were used to identify biological pathways involved in the DEGs and AD-related group. WGCNA was used to identify the gene modules that are highly associated with AD in the samples. The intersecting genes of the genes in DEGs and modules were extracted and the top ten ranked hub genes were identified. Finally GES48350 was used as a validation cohort to predict the diagnostic efficacy of hub genes. Results From GSE293789, 225 DEGs were identified, which were mainly associated with calcium response, glutamatergic synapses, and calcium-dependent phospholipid-binding response. WGCNA analysis yielded dark green and bright yellow modular genes as the most relevant to AD. From these two modules, 176 genes were extracted, which were taken to be intersected with DEGs, yielding 51 intersecting genes. Then 10 hub genes were identified in them: HSPA1B, HSPB1, HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, SOX9, YAP1, and AHNAK. Validation of these genes was found to have excellent diagnostic performance. Conclusion Ten AD-related hub genes in the hippocampus were identified, contributing to further understanding of AD development in the hippocampus and development of targets for therapeutic prevention.
Collapse
Affiliation(s)
- Yang Chen
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Zhaoxiang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xin Ge
- Science and Education Section, Baoding First Central Hospital, Baoding, China
| | - Huandi Lv
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Son D, Lee M. Gene regulation of RMR-related DNAJC6 on adipogenesis and mitochondria function in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2023; 672:1-9. [PMID: 37331165 DOI: 10.1016/j.bbrc.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
In the pilot GWAS of children obesity, DNAJC6 gene was found as a regulator for resting metabolic rate (RMR) and obesity in children aged 8-9 years. To investigate whether DNAJC6 gene regulated obesity and energy metabolism, the physiological mechanisms during adipogenesis of 3T3-L1 preadipocytes were confirmed after DNAJC6 gene was overexpressed or inhibited. Overexpressing DNAJC6 gene maintained a 3T3-L1 preadipocyte status during cell differentiation (MTT, ORO, DAPI/BODIPY). It suppressed adipogenesis and adipokine production (leptin, adiponectin), insulin signaling with IRS-GLUT4 system (RT-PCR, Western blotting), and mitochondrial function (Mito Stress Test). DNAJC6 overexpressed cells inhibited mTOR expression, but maintained LC3 expression at a high level, indicating that autophagy occurred and energy was obtained. However, when DNAJC6 gene was inhibited, fat synthesis factor was highly expressed during differentiation (PPARr, C/EBPa, aP2, etc) and the intracellular stress level increased accordingly, which affected the reduction of reserve respiratory capacity during mitochondrial respiration. Our study confirmed gene regulation of DNAJC6, overexpression or inhibition, affects adipogenesis with energy metabolism and mitochondrial functions. This basic data can be used for clinic obesity studies to control an energy imbalance.
Collapse
Affiliation(s)
- Dajeong Son
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Myougsook Lee
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea.
| |
Collapse
|
6
|
Fathinejad F, Ghafouri H, Barzegari E, Sarikhan S, Alizadeh A, Howard N. Gene cloning and characterization of a novel recombinant 40-kDa heat shock protein from Mesobacillus persicus B48. World J Microbiol Biotechnol 2023; 39:248. [PMID: 37436487 DOI: 10.1007/s11274-023-03693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
The present study reports the recognition and characterization of the gene encoding the co-chaperone DnaJ in the halophilic strain Mesobacillus persicus B48. The new extracted gene was sequenced and cloned in E. coli, followed by protein purification using a C-terminal His-tag. The stability and function of the recombinant DnaJ protein under salt and pH stress conditions were evaluated. SDS-PAGE revealed a band on nearly 40-kDa region. The homology model structure of new DnaJ demonstrated 56% similarity to the same protein from Streptococcus pneumonia. Fluorescence spectra indicated several hydrophobic residues located on the protein surface, which is consistent with the misfolded polypeptide recognition function of DnaJ. Spectroscopic results showed 56% higher carbonic anhydrase activity in the presence of the recombinant DnaJ homolog compared to its absence. In addition, salt resistance experiments showed that the survival of recombinant E. coli+DnaJ was 2.1 times more than control cells in 0.5 M NaCl. Furthermore, the number of recombinant E. coli BL21+DnaJ colonies was 7.7 times that of the control colonies in pH 8.5. Based on the results, DnaJ from the M. persicus can potentially be employed for improving the functional features of enzymes and other proteins in various applications.
Collapse
Affiliation(s)
- Fatemeh Fathinejad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Arghavan Alizadeh
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Newton Howard
- Nuffield Department of Surgical Science, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
8
|
Abstract
Molecular chaperones and co-chaperones facilitate the assembly of newly synthesized polypeptides and refolding of unfolded or misfolded proteins, thereby maintaining protein homeostasis in cells. As co-chaperones of the master chaperone heat shock protein (HSP) 70, the HSP40 (DNAJ) proteins are largest chaperone family in eukaryotic cells. They contain a characteristic J-domain which mediates interaction with HSP70, thereby helping protein folding. It is well perceived that protein homeostasis is vital for neuronal health. DNAJ family proteins have been linked to the occurrence and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, Charcot-Marie-Tooth disease, spinal muscular atrophy, distal hereditary motor neuropathy, limb-girdle type muscular dystrophy, neuronal ceroid lipofuscinosis and essential tremor in recent studies. DNAJA1 effectively degrades huntington aggregates; DNAJB1 can degrade protein aggregates ataxin-3; DNAJB2 can inhibit the formation of huntington aggregates; DNAJB6 can inhibit the aggregation of Aβ 42 and α-synuclein; DNAJC5 can promote the release of TDP-43, τ protein, and α-synuclein into the extracellular space. Mutations in the essential tremor-associated DNAJC13 gene can prevent endosome protein trafficking. This article reviews the mechanism of DNAJ protein family in neurodegenerative diseases.
Collapse
|
9
|
Aghazadeh N, Beilankouhi EAV, Fakhri F, Gargari MK, Bahari P, Moghadami A, Khodabandeh Z, Valilo M. Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson's disease. Mol Biol Rep 2022; 49:11061-11070. [PMID: 36097120 DOI: 10.1007/s11033-022-07900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurological diseases, next only to Alzheimer's disease (AD) in terms of prevalence. It afflicts about 2-3% of individuals over 65 years old. The etiology of PD is unknown and several environmental and genetic factors are involved. From a pathological point of view, PD is characterized by the loss of dopaminergic neurons in the substantia nigra, which causes the abnormal accumulation of α-synuclein (α-syn) (a component of Lewy bodies), which subsequently interact with heat shock proteins (HSPs), leading to apoptosis. Apoptosis is a vital pathway for establishing homeostasis in body tissues, which is regulated by pro-apoptotic and anti-apoptotic factors. Recent findings have shown that HSPs, especially HSP27 and HSP70, play a pivotal role in regulating apoptosis by influencing the factors involved in the apoptosis pathway. Moreover, it has been reported that the expression of these HSPs in the nervous system is high. Apart from this finding, investigations have suggested that HSP27 and HSP70 (related to parkin) show a potent protective and anti-apoptotic impact against the damaging outcomes of mutant α-syn toxicity to nerve cells. Therefore, in this study, we aimed to investigate the relationship between these HSPs and apoptosis in patients with PD.
Collapse
Affiliation(s)
- Nina Aghazadeh
- Department of biology, Islamic Azad University, Tabriz, Iran
| | | | - Farima Fakhri
- Research Institute for Neuroscience, Kerman University of Medical Sciences, Kerman, Iran
| | - Morad Kohandel Gargari
- Faculty of Medicine, Imamreza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Moghadami
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
K A, Mishra A, Singh S. Implications of intracellular protein degradation pathways in Parkinson's disease and therapeutics. J Neurosci Res 2022; 100:1834-1844. [PMID: 35819247 DOI: 10.1002/jnr.25101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) pathology is the most common motor neurodegenerative disease that occurs due to the progressive degeneration of dopaminergic neurons of the nigrostriatal pathway of the brain. The histopathological hallmark of the disease is fibrillary aggregate called Lewy bodies which majorly contain α-synuclein, suggesting the critical implication of diminished protein degradation mechanisms in disease pathogenesis. This α-synuclein-containing Lewy bodies are evident in both experimental models as well as in postmortem PD brain and are speculated to be pathogenic but still, the lineal association between these aggregates and the complexity of disease pathology is not yet well established and needs further attention. However, it has been reported that α-synuclein aggregates have consorted with the declined proteasome and lysosome activities. Therefore, in this review, we reappraise intracellular protein degradation mechanisms during PD pathology. This article focused on the findings of the last two decades suggesting the implications of protein degradation mechanisms in disease pathogenesis and based on shreds of evidence, some of the approaches are also suggested which may be adopted to find out the novel therapeutic targets for the management of PD patients.
Collapse
Affiliation(s)
- Amrutha K
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
12
|
Kim J, Lee M. RMR-Related DNAJC6 Expression Suppresses Adipogenesis in 3T3-L1 Cells. Cells 2022; 11:cells11081331. [PMID: 35456010 PMCID: PMC9031806 DOI: 10.3390/cells11081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity causes various complications such as type 2 diabetes, hypertension, fatty liver, cardiovascular diseases, and cancer. In a pilot GWAS study, we screened the DNAJC6 gene which is significantly related to the resting metabolic rate (RMR) in childhood obesity. With DNAJC6-overexpressed 3T3-L1 cells (TgHsp), we investigated the new obesity mechanism caused by an energy imbalance. After differentiation, lipid droplets (Oil red O staining) were not formed in TgHsp cells compared to the control. TgHsp preadipocyte fibroblast morphology was also not clearly observed in the cell morphology assay (DAPI/BODIPY). In TgHsp cells, the expression of PPARγ, C/EBPα, and aP2 (adipogenesis-related biomarkers) decreased 3-, 39-, and 200-fold, respectively. The expression of the adipokines leptin and adiponectin from adipose tissues also decreased 2.4- and 840-fold, respectively. In addition, the levels of pHSL(Ser563) and free glycerol, which are involved in lipolysis, were significantly lower in TgHsp cells than in the control. The reduction in insulin receptor expression in TgHsp cells suppressed insulin signaling systems such as AKT phosphorylation, and GLUT4 expression. Degradation of IRS-1 in 3T3-L1 adipocytes was caused by chronic exposure to insulin, but not TgHsp. Mitochondrial functions such as oxygen consumption and ATP production, as well as proton leak and UCP1 protein expression, decreased in TgHsp cells compared to the control. Moreover, autophagy was observed by increasing autophagosomal proteins, LC3, on Day 8 of differentiation in TgHsp cells. Through our first report on the DNAJC6 gene related to RMR, we found a new mechanism related to energy metabolism in obesity. DNAJC6 expression positively suppressed adipogenesis, leading to the subsequent resistance of lipolysis, adipokine expression, insulin signaling, and mitochondrial functions.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
- Medical Research Institute, Kangbuk Samsung Hospital, Seoul 04514, Korea
| | - Myoungsook Lee
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
- Research Institute of Obesity Sciences, Sungshin Women’s University, Kangbuk-ku, Seoul 01133, Korea
- Correspondence: ; Tel.: +82-2-920-7211
| |
Collapse
|
13
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
14
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
15
|
Yoshida S, Hasegawa T. Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochem Int 2022; 155:105307. [PMID: 35181393 DOI: 10.1016/j.neuint.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are hitherto classified based on their core clinical features, the anatomical distribution of neurodegeneration, and the cell populations mainly affected. On the other hand, the wealth of neuropathological, genetic, molecular and biochemical studies have identified the existence of distinct insoluble protein aggregates in the affected brain regions. These findings have spread the use of a collective term, proteinopathy, for neurodegenerative disorders with particular type of structurally altered protein accumulation. Particularly, a recent breakthrough in this field came with the discovery that these protein aggregates can transfer from one cell to another, thereby converting normal proteins to potentially toxic, misfolded species in a prion-like manner. In this review, we focus specifically on the molecular and cellular basis that underlies the seeding activity and transcellular spreading phenomenon of neurodegeneration-related protein aggregates, and discuss how these events contribute to the disease progression.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan; Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan.
| |
Collapse
|
16
|
Molecular chaperones and Parkinson's disease. Neurobiol Dis 2021; 160:105527. [PMID: 34626793 DOI: 10.1016/j.nbd.2021.105527] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs). Mutations in PD-related genes lead to neuronal pathogenesis through various mechanisms, with known examples including SNCA/α-synuclein (PAKR1), Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2 (PARK8). Molecular chaperones/co-chaperones are proteins that aid the folding of other proteins into a functionally active conformation. It has been demonstrated that chaperones/co-chaperones interact with PD-related proteins and regulate their function in PD. HSP70, HSP90 and small heat shock proteins can prevent neurodegeneration by regulating α-syn misfolding, oligomerization and aggregation. The function of chaperones is regulated by co-chaperones such as HSP110, HSP40, HOP, CHIP, and BAG family proteins. Parkin, PINK1 and DJ-1 are PD-related proteins which are associated with mitochondrial function. Molecular chaperones regulate mitochondrial function and protein homeostasis by interacting with these PD-related proteins. This review discusses critical molecular chaperones/co-chaperones and PD-related proteins which contribute to the pathogenesis of PD, hoping to provide new molecular targets for therapeutic interventions to thwart the disease progression instead of only bringing symptomatic relief. Moreover, appreciating the critical role of chaperones in PD can also help us screen efficient biomarkers to identify PD at an early stage.
Collapse
|
17
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
18
|
Budrass L, Fahlman RP, Mok SA. Deciphering Network Crosstalk: The Current Status and Potential of miRNA Regulatory Networks on the HSP40 Molecular Chaperone Network. Front Genet 2021; 12:689922. [PMID: 34234816 PMCID: PMC8255926 DOI: 10.3389/fgene.2021.689922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperone networks fulfill complex roles in protein homeostasis and are essential for maintaining cell health. Hsp40s (commonly referred to as J-proteins) have critical roles in development and are associated with a variety of human diseases, yet little is known regarding the J-proteins with respect to the post-transcriptional mechanisms that regulate their expression. With relatively small alterations in their abundance and stoichiometry altering their activity, post-transcriptional regulation potentially has significant impact on the functions of J-proteins. MicroRNAs (miRNAs) are a large group of non-coding RNAs that form a complex regulatory network impacting gene expression. Here we review and investigate the current knowledge and potential intersection of miRNA regulatory networks with the J-Protein chaperone network. Analysis of datasets from the current version of TargetScan revealed a great number of predicted microRNAs targeting J-proteins compared to the limited reports of interactions to date. There are likely unstudied regulatory interactions that influence chaperone biology contained within our analysis. We go on to present some criteria for prioritizing candidate interactions including potential cooperative targeting of J-Proteins by multiple miRNAs. In summary, we offer a view on the scope of regulation of J-Proteins through miRNAs with the aim of guiding future investigations by identifying key regulatory nodes within these two complex cellular networks.
Collapse
Affiliation(s)
- Lion Budrass
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Sue-Ann Mok
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
20
|
Shan Q, Ma F, Wei J, Li H, Ma H, Sun P. Physiological Functions of Heat Shock Proteins. Curr Protein Pept Sci 2021; 21:751-760. [PMID: 31713482 DOI: 10.2174/1389203720666191111113726] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.
Collapse
Affiliation(s)
- Qiang Shan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Jingya Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Hongyang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Hui Ma
- Beijing Sunlon Livestock Development Co., Ltd, Beijing, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| |
Collapse
|
21
|
Ayala Mariscal SM, Kirstein J. J-domain proteins interaction with neurodegenerative disease-related proteins. Exp Cell Res 2021; 399:112491. [PMID: 33460589 DOI: 10.1016/j.yexcr.2021.112491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
HSP70 chaperones, J-domain proteins (JDPs) and nucleotide exchange factors (NEF) form functional networks that have the ability to prevent and reverse the aggregation of proteins associated with neurodegenerative diseases. JDPs can interact with specific substrate proteins, hold them in a refolding-competent conformation and target them to specific HSP70 chaperones for remodeling. Thereby, JDPs select specific substrates and constitute an attractive target for pharmacological intervention of neurodegenerative diseases. This, under the condition that the exact mechanism of JDPs interaction with specific substrates is unveiled. In this review, we provide an overview of the structural and functional variety of JDPs that interact with neurodegenerative disease-associated proteins and we highlight those studies that identified specific residues, domains or regions of JDPs that are crucial for substrate binding.
Collapse
Affiliation(s)
- Sara María Ayala Mariscal
- Leibniz Research Institute for Molecular Pharmacology Im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology Im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125, Berlin, Germany; University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
22
|
Martinez-Banaclocha M. Proteomic Complexity in Parkinson's Disease: A Redox Signaling Perspective of the Pathophysiology and Progression. Neuroscience 2020; 453:287-300. [PMID: 33212217 DOI: 10.1016/j.neuroscience.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a prevalent age-related neurodegenerative disorder that results in the progressive impairment of motor and cognitive functions. The majority of PD cases are sporadic, and only 5% of patients are associated with mutations in a few genes, which cause the early onset or familial PD. Environmental toxic substances and the individual genetic susceptibility play a role in sporadic cases, but despite significant efforts to treat and prevent the disease, the pathophysiological mechanisms leading to its onset and progress are not fully understood. In the last decade, genomic and proteomic studies have shown an increasing molecular complexity of sporadic PD, suggesting that a broad spectrum of biochemical pathways underlie its progression. Recent investigations and the literature review suggest the potential role of deregulation of the sensitive-cysteine proteome as a convergent pathogenic mechanism that may contribute to this complexity, opening new therapeutic opportunities.
Collapse
|
23
|
Li C, Ou R, Chen Y, Gu X, Wei Q, Cao B, Zhang L, Hou Y, Liu K, Chen X, Song W, Zhao B, Wu Y, Shang H. Mutation Analysis of
DNAJC
Family for
Early‐Onset
Parkinson's Disease in a Chinese Cohort. Mov Disord 2020; 35:2068-2076. [PMID: 32662538 DOI: 10.1002/mds.28203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- ChunYu Li
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - RuWei Ou
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - YongPing Chen
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - XiaoJing Gu
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - QianQian Wei
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - Bei Cao
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - LingYu Zhang
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - YanBing Hou
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - KunCheng Liu
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - XuePing Chen
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - Wei Song
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - Bi Zhao
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - Ying Wu
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| | - HuiFang Shang
- Department of Neurology National Clinical Research Center for Geriatric, West China Hospital, Sichuan University Chengdu China
| |
Collapse
|
24
|
Joshi N, Raveendran A, Nagotu S. Chaperones and Proteostasis: Role in Parkinson's Disease. Diseases 2020; 8:diseases8020024. [PMID: 32580484 PMCID: PMC7349525 DOI: 10.3390/diseases8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proper folding to attain a defined three-dimensional structure is a prerequisite for the functionality of a protein. Improper folding that eventually leads to formation of protein aggregates is a hallmark of several neurodegenerative disorders. Loss of protein homeostasis triggered by cellular stress conditions is a major contributing factor for the formation of these toxic aggregates. A conserved class of proteins called chaperones and co-chaperones is implicated in maintaining the cellular protein homeostasis. Expanding the body of evidence highlights the role of chaperones as central mediators in the formation, de-aggregation and degradation of the aggregates. Altered expression and function of chaperones is associated with many neurodegenerative diseases including Parkinson’s disease. Several studies indicate that chaperones are at the center of the cause and effect cycle of this disease. An overview of the various chaperones that are associated with homeostasis of Parkinson’s disease-related proteins and their role in pathogenicity will be discussed in this review.
Collapse
|
25
|
Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK;
| |
Collapse
|
26
|
Zhang P, Chen JS, Li QY, Sheng LX, Gao YX, Lu BZ, Zhu WB, Zhan XY, Li Y, Yuan ZB, Xu G, Qiu BT, Yan M, Guo CX, Wang YQ, Huang YJ, Zhang JX, Liu FY, Tang ZW, Lin SZ, Cooper DN, Yang HM, Wang J, Gao YQ, Yin W, Zhang GJ, Yan GM. Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zool Res 2020; 41:3-19. [PMID: 31840949 PMCID: PMC6956719 DOI: 10.24272/j.issn.2095-8137.2020.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macacafascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,BGI-Shenzhen, Shenzhen, Guangdong 518083, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jie-Si Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qi-Ye Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Long-Xiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yi-Xing Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China
| | - Bing-Zheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wen-Bo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhi-Bing Yuan
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China
| | - Bi-Tao Qiu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | - You-Qiong Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yi-Jun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jing-Xia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fu-Yu Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China
| | - Zhong-Wei Tang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China
| | - Sui-Zhen Lin
- Guangzhou Cellprotek Pharmaceutical Co. Ltd., Guangzhou, Guangdong 510663, China
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Huan-Ming Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang 310058, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of High Altitude Medicine of People's Liberation Army, Chongqing 400038, China.,Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing 400038, China. E-mail:
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China. E-mail:
| | - Guo-Jie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China. E-mail:
| | - Guang-Mei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China. E-mail:
| |
Collapse
|
27
|
Lázaro DF, Outeiro TF. The Interplay Between Proteostasis Systems and Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:223-236. [DOI: 10.1007/978-3-030-38266-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Pandey M, Nabi J, Tabassum N, Pottoo FH, Khatik R, Ahmad N. Molecular Chaperones in Neurodegeneration. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular chaperones are essential players to this protein quality control network that functions to prevent protein misfolding, refold misfolded proteins, or degrade them, thereby maintaining neuronal proteostasis. Moreover, overexpression of cellular chaperones is considered to inhibit protein aggregation and apoptosis in various experimental models of neurodegeneration. Alterations or downregulation of chaperone machinery by age-related decline, molecular crowding, or genetic mutations are regarded as key pathological hallmarks of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Prion diseases. Therefore, chaperones may serve as potential therapeutic targets in these diseases. This chapter presents a generalized view of misfolding and aggregation of proteins in neurodegeneration and then critically analyses some of the known cellular chaperones and their role in several neurodegenerative disorders.
Collapse
Affiliation(s)
- Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
29
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
30
|
Jia C, Ma X, Liu Z, Gu J, Zhang X, Li D, Zhang S. Different Heat Shock Proteins Bind α-Synuclein With Distinct Mechanisms and Synergistically Prevent Its Amyloid Aggregation. Front Neurosci 2019; 13:1124. [PMID: 31749672 PMCID: PMC6842937 DOI: 10.3389/fnins.2019.01124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023] Open
Abstract
α-Synuclein (α-Syn) forms pathological amyloid aggregates deposited in Lewy bodies and Lewy neurites in the brain of Parkinson's disease (PD) patients. Heat shock proteins (Hsps) are the major components of the cellular chaperone network, which are responsible for preventing proteins from amyloid aggregation. Different Hsps were reported to interact with α-syn. However, the underlying mechanism of the interplay between α-syn and different Hsps remains unclear. Here, by combing NMR spectroscopy, electron microscope and other biochemical approaches, we systemically investigated the interaction between α-syn and three Hsps from different families including Hsp27, HDJ1, and Hsp104. We found that all three Hsps can weakly bind to α-syn and inhibit it from amyloid aggregation. Intriguingly, different Hsps recognize distinct regions of α-syn monomer, and act synergistically in chaperoning α-syn from fibril formation in sub-stoichiometry. Our results revealed the diverse binding mechanisms employed by different Hsps to tackle α-syn, and suggested that different Hsps form a network for cooperatively chaperoning α-syn from pathological aggregation.
Collapse
Affiliation(s)
- Chunyu Jia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
32
|
Kobayashi J, Hasegawa T, Sugeno N, Yoshida S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata Y, Fukuda M, Kawahata I, Yamakuni T, Ezura M, Kikuchi A, Baba T, Takeda A, Kanzaki M, Wakabayashi K, Okano H, Aoki M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J 2019; 33:10240-10256. [PMID: 31211923 DOI: 10.1096/fj.201802051r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.
Collapse
Affiliation(s)
- Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Akiyama
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Koki Fujimori
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Arata Tomiyama
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.,Department of Biomedical Sciences, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tohru Yamakuni
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
33
|
Gagliardi M, Annesi G, Procopio R, Morelli M, Iannello G, Bonapace G, Mancini M, Nicoletti G, Quattrone A. DNAJC13 mutation screening in patients with Parkinson's disease from South Italy. Parkinsonism Relat Disord 2018; 55:134-137. [PMID: 29887357 DOI: 10.1016/j.parkreldis.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/24/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder, and the most common neurodegenerative form of parkinsonism. Recently, a pathogenic mutation (p.N855S) in DNAJC13 was linked to autosomal dominant Lewy body PD in a Dutch-German-Russian Mennonite multi-incident kindred, and was found in five additional patients. In this study, we performed a comprehensive screening of the DNAJC13 gene in familial PD and sporadic PD to assess the frequency of known and novel rare nonsynonymous variants. METHODS We screened 563 sporadic and 168 familial PD patients and a control series (n = 1000) for the coding region of DNAJC13. RESULTS Our sequencing analysis identified two carriers of the c.2708G > A (p.R903K) variant in exon 24 of DNAJC13. One of these carriers is a familial PD. CONCLUSION The p. R903K variant was not found in 1000 healthy controls and it is localized in a functional domain of the DNAJC13 protein. Further studies are necessary to evaluate the role of DNAJC13 variants in PD.
Collapse
Affiliation(s)
- Monica Gagliardi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy.
| | - Grazia Annesi
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Radha Procopio
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy; Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Maurizio Morelli
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Grazia Iannello
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Giuseppe Bonapace
- Department of Medical and Surgical Science, Pediatrics Unit, University Magna Graecia, Catanzaro, Italy
| | - Manuela Mancini
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Giuseppe Nicoletti
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Germaneto, Catanzaro, Italy; Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| |
Collapse
|