1
|
Zeng J, Mo J, Muroi M, Osada H, Xiang L, Qi J. A Novel Gastrodin Derivative with Neuroprotection Promotes NGF-Mimic Activity by Targeting INSR and ACTN4 to Activate PI3K/Akt Signaling Pathway in PC12 Cells. Antioxidants (Basel) 2025; 14:344. [PMID: 40227445 PMCID: PMC11939404 DOI: 10.3390/antiox14030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Gastrodin (gas) has been shown to promote neuroprotection and reverse Alzheimer's disease (AD) pathology. However, its high effective dose limits its potential in treating AD. In this study, a bioassay system using PC12 cells and the nerve growth factor (NGF)-mimic effect was employed to investigate the structure-activity relationship of gas derivatives. Among the synthesized compounds, GAD037 demonstrated the highest NGF-mimic activity, surpassing gas. Additionally, GAD037 exhibited significant neuroprotective effects, reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, thereby improving the survival of PC12 cells under oxidative stress. It also protected cells from Aβ-induced toxicity. Target protein identification and mechanistic studies revealed that insulin receptor (INSR) and alpha-actinin-4 (ACTN4) are potential targets of GAD037, confirmed through specific inhibitors, small interfering RNA (siRNA) analysis, a cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS). Moreover, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and rat sarcoma (Ras)/protooncogene serine-threonine protein kinase (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways were found to be involved in the NGF-mimic activity of GAD037. In conclusion, GAD037 exhibits superior NGF-mimic and neuroprotective activities compared to gas, suggesting its potential as a lead compound for anti-AD applications.
Collapse
Affiliation(s)
- Jiayuan Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.Z.)
| | - Jianxia Mo
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.Z.)
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Saitama, Japan
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.Z.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (J.Z.)
| |
Collapse
|
2
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2025; 36:161-175. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Moon S, Alsarkhi L, Lin TT, Inoue R, Tahiri A, Colson C, Cai W, Shirakawa J, Qian WJ, Zhao JY, El Ouaamari A. Transcriptome and secretome profiling of sensory neurons reveals sex differences in pathways relevant to insulin sensing and insulin secretion. FASEB J 2023; 37:e23185. [PMID: 37695721 PMCID: PMC10503313 DOI: 10.1096/fj.202300941r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic β cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of β-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Cecilia Colson
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey. New Brunswick, NJ, 08901, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 01595, USA
| |
Collapse
|
4
|
Chau DDL, Li W, Chan WWR, Sun JKL, Zhai Y, Chow HM, Lau KF. Insulin stimulates atypical protein kinase C-mediated phosphorylation of the neuronal adaptor FE65 to potentiate neurite outgrowth by activating ARF6-Rac1 signaling. FASEB J 2022; 36:e22594. [PMID: 36250347 DOI: 10.1096/fj.202200757r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration. Insulin is a pivotal hormone in the regulation of glucose homeostasis. There is increasing evidence for the neurotrophic functions of insulin, including the induction of neurite outgrowth. However, the associated mechanism remains elusive. Here, we demonstrate that insulin potentiates neurite outgrowth mediated by the small GTPases ADP-ribosylation factor 6 (ARF6) and Ras-related C3 botulinum toxin substrate 1 (Rac1) through the neuronal adaptor FE65. Moreover, insulin enhances atypical protein kinase Cι/λ (PKCι/λ) activation and FE65 phosphorylation at serine 459 (S459) in neurons and mouse brains. In vitro and cellular assays show that PKCι/λ phosphorylated FE65 at S459. Consistently, insulin potentiates FE65 S459 phosphorylation only in the presence of PKCι/λ. Phosphomimetic studies show that an FE65 S459E mutant potently activates ARF6, Rac1, and neurite outgrowth. Notably, this phosphomimetic mutation enhances the FE65-ARF6 interaction, a process that promotes ARF6-Rac1-mediated neurite outgrowth. Likewise, insulin treatment and PKCι/λ overexpression potentiate the FE65-ARF6 interaction. Conversely, PKCι/λ knockdown suppresses the stimulatory effect of FE65 on ARF6-Rac1-mediated neurite outgrowth. The effect of insulin on neurite outgrowth is also markedly attenuated in PKCι/λ knockdown neurons, in the presence and absence of FE65. Our findings reveal a novel mechanism linking insulin with ARF6-Rac1-dependent neurite extension through the PKCι/λ-mediated phosphorylation of FE65.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Calco GN, Maung JN, Jacoby DB, Fryer AD, Nie Z. Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice. JCI Insight 2022; 7:e161898. [PMID: 36107629 PMCID: PMC9714782 DOI: 10.1172/jci.insight.161898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity-induced asthma responds poorly to all current pharmacological interventions, including steroids, suggesting that classic, eosinophilic inflammation is not a mechanism. Since insulin resistance and hyperinsulinemia are common in obese individuals and associated with increased risk of asthma, we used diet-induced obese mice to study how insulin induces airway hyperreactivity. Inhaled 5-HT or methacholine induced dose-dependent bronchoconstriction that was significantly potentiated in obese mice. Cutting the vagus nerves eliminated bronchoconstriction in both obese and nonobese animals, indicating that it was mediated by a neural reflex. There was significantly greater density of airway sensory nerves in obese compared with nonobese mice. Deleting insulin receptors on sensory nerves prevented the increase in sensory nerve density and prevented airway hyperreactivity in obese mice with hyperinsulinemia. Our data demonstrate that high levels of insulin drives obesity-induced airway hyperreactivity by increasing sensory innervation of the airways. Therefore, pharmacological interventions to control metabolic syndrome and limit reflex-mediated bronchoconstriction may be a more effective approach to reduce asthma exacerbations in obese and patients with asthma.
Collapse
|
6
|
Reboredo C, González-Navarro CJ, Martínez-López AL, Irache JM. Oral administration of zein-based nanoparticles reduces glycemia and improves glucose tolerance in rats. Int J Pharm 2022; 628:122255. [DOI: 10.1016/j.ijpharm.2022.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
|
7
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
8
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
9
|
Mizuno M, Hotta N, Ishizawa R, Kim HK, Iwamoto G, Vongpatanasin W, Mitchell JH, Smith SA. The Impact of Insulin Resistance on Cardiovascular Control During Exercise in Diabetes. Exerc Sport Sci Rev 2021; 49:157-167. [PMID: 33965976 PMCID: PMC8195845 DOI: 10.1249/jes.0000000000000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Gary Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| |
Collapse
|
10
|
Dearden L, Bouret SG, Ozanne SE. Nutritional and developmental programming effects of insulin. J Neuroendocrinol 2021; 33:e12933. [PMID: 33438814 DOI: 10.1111/jne.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM.
Collapse
Affiliation(s)
- Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, Lille, France
- University of Lille, Lille, France
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| |
Collapse
|
11
|
Lázár BA, Jancsó G, Sántha P. Modulation of Sensory Nerve Function by Insulin: Possible Relevance to Pain, Inflammation and Axon Growth. Int J Mol Sci 2020; 21:E2507. [PMID: 32260335 PMCID: PMC7177741 DOI: 10.3390/ijms21072507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin, besides its pivotal role in energy metabolism, may also modulate neuronal processes through acting on insulin receptors (InsRs) expressed by neurons of both the central and the peripheral nervous system. Recently, the distribution and functional significance of InsRs localized on a subset of multifunctional primary sensory neurons (PSNs) have been revealed. Systematic investigations into the cellular electrophysiology, neurochemistry and morphological traits of InsR-expressing PSNs indicated complex functional interactions among specific ion channels, proteins and neuropeptides localized in these neurons. Quantitative immunohistochemical studies have revealed disparate localization of the InsRs in somatic and visceral PSNs with a dominance of InsR-positive neurons innervating visceral organs. These findings suggested that visceral spinal PSNs involved in nociceptive and inflammatory processes are more prone to the modulatory effects of insulin than somatic PSNs. Co-localization of the InsR and transient receptor potential vanilloid 1 (TRPV1) receptor with vasoactive neuropeptides calcitonin gene-related peptide and substance P bears of crucial importance in the pathogenesis of inflammatory pathologies affecting visceral organs, such as the pancreas and the urinary bladder. Recent studies have also revealed significant novel aspects of the neurotrophic propensities of insulin with respect to axonal growth, development and regeneration.
Collapse
Affiliation(s)
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary; (G.J.); (P.S.)
| | - Péter Sántha
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary; (G.J.); (P.S.)
| |
Collapse
|
12
|
|
13
|
Hotta N, Katanosaka K, Mizumura K, Iwamoto GA, Ishizawa R, Kim HK, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Insulin potentiates the response to mechanical stimuli in small dorsal root ganglion neurons and thin fibre muscle afferents in vitro. J Physiol 2019; 597:5049-5062. [PMID: 31468522 DOI: 10.1113/jp278527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Insulin is known to activate the sympathetic nervous system centrally. A mechanical stimulus to tissues activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, we report the novel finding that insulin augments the mechanical responsiveness of thin fibre afferents not only at dorsal root ganglion, but also at muscle tissue levels. Our data suggest that sympathoexcitation is mediated via the insulin-induced mechanical sensitization peripherally. The present study proposes a novel physiological role of insulin in the regulation of mechanical sensitivity in somatosensory thin fibre afferents. ABSTRACT Insulin activates the sympathetic nervous system, although the mechanism underlying insulin-induced sympathoexcitation remains to be determined. A mechanical stimulus to tissues such as skin and/or skeletal muscle, no matter whether the stimulation is noxious or not, activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion (DRG) neurons of these afferents. Accordingly, we investigated whether insulin augments whole-cell current responses to mechanical stimuli in small DRG neurons of normal healthy mice. We performed whole-cell patch clamp recordings using cultured DRG neurons and observed mechanically-activated (MA) currents induced by mechanical stimuli applied to the cell surface. Local application of vehicle solution did not change MA currents or mechanical threshold in cultured DRG neurons. Insulin (500 mU mL-1 ) significantly augmented the amplitude of MA currents (P < 0.05) and decreased the mechanical threshold (P < 0.05). Importantly, pretreatment with the insulin receptor antagonist, GSK1838705, significantly suppressed the insulin-induced potentiation of the mechanical response. We further examined the impact of insulin on thin fibre muscle afferent activity in response to mechanical stimuli in normal healthy rats in vitro. Using a muscle-nerve preparation, we recorded single group IV fibre activity to a ramp-shaped mechanical stimulation. Insulin significantly decreased mechanical threshold (P < 0.05), although it did not significantly increase the response magnitude to the mechanical stimulus. In conclusion, these data suggest that insulin augments the mechanical responsiveness of small DRG neurons and potentially sensitizes group IV afferents to mechanical stimuli at the muscle tissue level, possibly contributing to insulin-induced sympathoexcitation.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Japan.,Departments of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Gary A Iwamoto
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rie Ishizawa
- Departments of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Han-Kyul Kim
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanpen Vongpatanasin
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jere H Mitchell
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott A Smith
- Departments of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masaki Mizuno
- Departments of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Movassat J, Delangre E, Liu J, Gu Y, Janel N. Hypothesis and Theory: Circulating Alzheimer's-Related Biomarkers in Type 2 Diabetes. Insight From the Goto-Kakizaki Rat. Front Neurol 2019; 10:649. [PMID: 31293498 PMCID: PMC6606723 DOI: 10.3389/fneur.2019.00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data suggest an increased risk of developing Alzheimer's disease (AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an early progressive accumulation of Aβ leading to a gradual Tau hyperphosphorylation, which constitute the main characteristics of damaged brain in AD. Apart from these processes, mounting evidence suggests that specific features of diabetes, namely impaired glucose metabolism and insulin signaling in the brain, play a key role in AD. Moreover, several studies report a potential role of Aβ and Tau in peripheral tissues such as pancreatic β cells. Thus, it appears that several biological pathways associated with diabetes overlap with AD. The link between peripheral insulin resistance and brain insulin resistance with concomitant cognitive impairment may also potentially be mediated by a liver/pancreatic/brain axis, through the excessive trafficking of neurotoxic molecules across the blood-brain barrier. Insulin resistance incites inflammation and pro-inflammatory cytokine activation modulates the homocysteine cycle in T2D patients. Elevated plasma homocysteine level is a risk factor for AD pathology and is also closely associated with metabolic syndrome. We previously demonstrated a strong association between homocysteine metabolism and insulin via cystathionine beta synthase (CBS) activity, the enzyme implicated in the first step of the trans-sulfuration pathway, in Goto-Kakizaki (GK) rats, a spontaneous model of T2D, with close similarities with human T2D. CBS activity is also correlated with DYRK1A, a serine/threonine kinase regulating brain-derived neurotrophic factor (BDNF) levels, and Tau phosphorylation, which are implicated in a wide range of disease such as T2D and AD. We hypothesized that DYRK1A, BDNF, and Tau, could be among molecular factors linking T2D to AD. In this focused review, we briefly examine the main mechanisms linking AD to T2D and provide the first evidence that certain circulating AD biomarkers are found in diabetic GK rats. We propose that the spontaneous model of T2D in GK rat could be a suitable model to investigate molecular mechanisms linking T2D to AD.
Collapse
Affiliation(s)
- Jamileh Movassat
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Etienne Delangre
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Junjun Liu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - YuChen Gu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Nathalie Janel
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| |
Collapse
|