1
|
Mohammadkhani A, Mitchell C, James MH, Borgland SL, Dayas CV. Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation. Br J Pharmacol 2024; 181:4430-4449. [PMID: 39317446 PMCID: PMC11458361 DOI: 10.1111/bph.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/26/2024] Open
Abstract
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Caitlin Mitchell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| | - Morgan H James
- Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
2
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Hopf FW. Nucleus accumbens shell cholinergic interneurons potently drive binge alcohol drinking: A commentary on Sharma et al., 2024. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1243-1245. [PMID: 38811254 DOI: 10.1111/acer.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Frederic Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Steiner MA, Botticelli L, Bergamini G, Micioni Di Bonaventura E, Gatfield J, Williams JT, Treiber A, Vaillant C, Cifani C, Micioni Di Bonaventura MV. Evaluating the efficacy of the selective orexin 1 receptor antagonist nivasorexant in an animal model of binge-eating disorder. Int J Eat Disord 2024; 57:1418-1432. [PMID: 38456603 DOI: 10.1002/eat.24181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Test the efficacy of the selective orexin 1 receptor (OX1R) antagonist (SO1RA) nivasorexant in an animal model of binge-eating disorder (BED) and study its dose-response relationship considering free brain concentrations and calculated OX1R occupancy. Compare nivasorexant's profile to that of other, structurally diverse SO1RAs. Gain understanding of potential changes in orexin-A (OXA) neuropeptide and deltaFosB (ΔFosB) protein expression possibly underlying the development of the binge-eating phenotype in the rat model used. METHOD Binge-like eating of highly palatable food (HPF) in rats was induced through priming by intermittent, repeated periods of dieting and access to HPF, followed by an additional challenge with acute stress. Effects of nivasorexant were compared to the SO1RAs ACT-335827 and IDOR-1104-2408. OXA expression in neurons and neuronal fibers as well as ΔFosB and OXA-ΔFosB co-expression was studied in relevant brain regions using immuno- or immunofluorescent histochemistry. RESULTS All SO1RAs dose-dependently reduced binge-like eating with effect sizes comparable to the positive control topiramate, at unbound drug concentrations selectively blocking brain OX1Rs. Nivasorexant's efficacy was maintained upon chronic dosing and under conditions involving more frequent stress exposure. Priming for binge-like eating or nivasorexant treatment resulted in only minor changes in OXA or ΔFosB expression in few brain areas. DISCUSSION Selective OX1R blockade reduced binge-like eating in rats. Neither ΔFosB nor OXA expression proved to be a useful classifier for their binge-eating phenotype. The current results formed the basis for a clinical phase II trial in BED, in which nivasorexant was unfortunately not efficacious compared with placebo. PUBLIC SIGNIFICANCE Nivasorexant is a new investigational drug for the treatment of binge-eating disorder (BED). It underwent clinical testing in a phase II proof of concept trial in humans but was not efficacious compared with placebo. The current manuscript investigated the drug's efficacy in reducing binge-like eating behavior of a highly palatable sweet and fat diet in a rat model of BED, which initially laid the foundation for the clinical trial.
Collapse
Affiliation(s)
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giorgio Bergamini
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - John Gatfield
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jodi T Williams
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Alexander Treiber
- CNS Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | |
Collapse
|
5
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Starski P, Siegle A, Hopf FW. Engagement for alcohol escalates in the 5-choice serial reaction time task after intermittent access. Alcohol 2024; 115:79-92. [PMID: 38286210 PMCID: PMC11278111 DOI: 10.1016/j.alcohol.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Excessive intake plays a significant role in the development of alcohol use disorder and impacts 15 million Americans annually, with approximately 88 000 dying from alcohol related deaths. Several facets we contribute to alcohol use disorder include impulsivity, motivation, and attention. Previous studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar, but recently we have published using 10% alcohol as the reward. This study analyzed 48 mice that were trained to respond for alcohol in the 5-Choice. All mice distributed and analyzed first by alcohol preference and then by consumption. Here, we became interested in a new classification called "engagement". High-engaged and low-engaged mice were determined by the number of correct responses during final Late-Stage training sessions. Interestingly, during Early-Stage training, the mice began to separate themselves into two groups based on their interaction with the task. Throughout both training stages, high-engaged mice displayed a greater number of trials and correct responses, as well as a lower percentage of omissions compared to low-engaged mice. Following three weeks of intermittent access homecage drinking, low-engaged mice showed greater increase in perseverative responding relative to high-engaged. Additionally, low-engaged mice decreased their reward and correct latencies compared to high-engaged mice suggesting an increase in motivation for alcohol. Overall, engagement analysis presents two clearly different groups, with only one being motivated to work for alcohol. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand alcohol use disorder.
Collapse
Affiliation(s)
- Phillip Starski
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Addyson Siegle
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - F Woodward Hopf
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Starski P, Siegle A, Hopf F. Engagement for Alcohol Escalates in the 5-Choice Serial Reaction Time Task After Intermittent Access. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569396. [PMID: 38077076 PMCID: PMC10705492 DOI: 10.1101/2023.11.30.569396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Uncontrollable binge drinking is becoming an increasingly prevalent issue in our society. This is a factor that plays a role in the development of alcohol use disorder (AUD). AUD impacts 15 million Americans annually, with approximately 88,000 dying from alcohol related deaths. There are several aspects of AUD that encourage a strong dependence on alcohol. Impulsivity, motivation, and attention are the primary behavioral facets we contribute to AUD. Many past studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar as the reward. We have recently published a study where alcohol was used as a reward in the 5-Choice. 48 mice were trained to respond for alcohol in the 5-Choice, and the analyses for these animals were originally categorized by their alcohol preference and consumption. Upon looking at the data, we became more interested in a new way to classify these mice into groups. High engaged (HE) and low engaged (LE) mice were classified based on their number of correct responses in the last five late-stage sessions. During early-stage training, mice began to separate themselves into two groups based on their interaction with the task. The high-engaged (HE) mice were much more engaged with the task by having a high number of trials and correct responses, as well as a much lower percentage of omissions. The low engaged (LE) mice were not as engaged, this was apparent because of their lower number of trials and correct responses. They also had a much higher percentage of omissions in comparison to HE mice. LE mice presented no significant changes in late-stage training, while HE mice began responding and engaging more. These mice went through a period of intermittent access (IA), where they were allowed to drink alcohol in their cage for 3 weeks. After intermittent access, LE mice increased their responding which suggests an increase in motivation for alcohol as a reward. Engagement analysis presents two clearly different groups, one being motivated to work for alcohol and the other not wanting to work for this reward. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand AUD.
Collapse
Affiliation(s)
- Phillip Starski
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Addyson Siegle
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederic Hopf
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
De Oliveira Sergio T, Wean S, Katner SN, Hopf FW. The role of beta- and alpha-adrenergic receptors on alcohol drinking. Neuropharmacology 2023; 234:109545. [PMID: 37100382 PMCID: PMC11071639 DOI: 10.1016/j.neuropharm.2023.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Alcohol Use Disorders (AUD) is characterized by compulsion-like alcohol drinking (CLAD), where intake despite negative consequences can be a major clinical obstacle. With few treatment options available for AUD, there is a significant need for novel therapies. The noradrenergic system is an important hub for regulating stress responses and maladaptive drives for alcohol. Studies have shown that drugs targeting α1 adrenenergic receptors (ARs) may represent a pharmacological treatment for pathological drinking. However, the involvement of β ARs for treating human drinking has received scant investigation, and thus we sought to provide pre-clinical validation for possible AR utility for CLAD by analyzing whether β AR antagonists propranolol (β1/2), betaxolol (β1), and ICI, 118,551 (β2) impacted CLAD and alcohol-only drinking (AOD) in male Wistar rats. We found that the highest dose of propranolol tested systemically (10 mg/kg) reduced alcohol drinking, while 5 mg/kg propranolol reduced drinking with a trend to impact CLAD more than AOD, and with no effects of 2.5 mg/kg. Betaxolol (2.5 mg/kg) also decreased drinking, while ICI 118.551 had no effects. Also, while AR compounds might have utility for AUD, they can also lead to undesirable side effects. Here, a combination of ineffective doses of propranolol and prazosin reduced both CLAD and AOD. Finally, we investigated the effect of propranolol and betaxolol in two brain areas related to pathological drinking, the anterior insula (aINS) and medial prefrontal cortex (mPFC). Surprisingly, propranolol (1-10 μg) in aINS or mPFC did not affect CLAD or AOD. Together, our findings provide new pharmacological insights into noradrenergic regulation of alcohol consumption, which may inform AUD therapy.
Collapse
Affiliation(s)
| | - Sarah Wean
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Simon N Katner
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Frederic W Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
10
|
De Oliveira Sergio T, Frasier RM, Hopf FW. Animal models of compulsion alcohol drinking: Why we love quinine-resistant intake and what we learned from it. Front Psychiatry 2023; 14:1116901. [PMID: 37032937 PMCID: PMC10080007 DOI: 10.3389/fpsyt.2023.1116901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Alcohol Use Disorder (AUD) ranks among the most prevalent mental disorders, extracting ~$250 billion/year in the US alone and producing myriad medical and social harms. Also, the number of deaths related to problem drinking has been increasing dramatically. Compulsive alcohol drinking, characterized by intake that persists despite negative consequences, can be particularly important and a major obstacle to treatment. With the number of people suffering from AUD increasing during the past years, there is a critical need to understand the neurobiology related to compulsive drives for alcohol, as well as the development of novel AUD pharmacological therapies. Here we discuss rodent compulsion-like alcohol drinking (CLAD) models, focusing on the two most widely used adverse stimuli to model rodent compulsion-like responding, quinine adulteration of alcohol and footshook-resistant alcohol intake. For both cases, the goal is to uncover behavior patterns and brain circuits that underlie drive for alcohol even in the face of negative consequences. We discuss caveats, benefits, and potential brain mechanisms, of models for consequence-resistant responding for alcohol more generally, and especially highlight some advantages of quinine-resistance over footshook-resistance. Further, since this review contributes to a Special issue focused on Molecular Aspects of Compulsive Drug Use, we discuss our new findings showing how the noradrenergic system is related to CLAD responding. In particular, we comment on the importance of α1 and β adrenergic receptors (ARs) as potential targets for treating AUD.
Collapse
|
11
|
James MH, Aston-Jones G. Orexin Reserve: A Mechanistic Framework for the Role of Orexins (Hypocretins) in Addiction. Biol Psychiatry 2022; 92:836-844. [PMID: 36328706 PMCID: PMC10184826 DOI: 10.1016/j.biopsych.2022.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
In 2014, we proposed that orexin signaling transformed motivationally relevant states into adaptive behavior directed toward exploiting an opportunity or managing a threat, a process we referred to as motivational activation. Advancements in animal models since then have permitted higher-resolution measurements of motivational states; in particular, the behavioral economics approach for studying drug demand characterizes conditions that lead to the enhanced motivation that underlies addiction. This motivational plasticity is paralleled by persistently increased orexin expression in a topographically specific manner-a finding confirmed across species, including in humans. Normalization of orexin levels also reduces drug motivation in addiction models. These new advancements lead us to update our proposed framework for the orexin function. We now propose that the capacity of orexin neurons to exhibit dynamic shifts in peptide production contributes to their role in adaptive motivational regulation and that this is achieved via a pool of reserve orexin neurons. This reserve is normally bidirectionally recruited to permit motivational plasticity that promotes flexible, adaptive behavior. In pathological states such as addiction, however, we propose that the orexin system loses capacity to adaptively adjust peptide production, resulting in focused hypermotivation for drug, driven by aberrantly and persistently high expression in the orexin reserve pool. This mechanistic framework has implications for the understanding and treatment of several psychiatric disorders beyond addiction, particularly those characterized by motivational dysfunction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey.
| |
Collapse
|
12
|
Starski P, Maulucci D, Mead H, Hopf F. Adaptation of the 5-choice serial reaction time task to measure engagement and motivation for alcohol in mice. Front Behav Neurosci 2022; 16:968359. [PMID: 36187376 PMCID: PMC9522902 DOI: 10.3389/fnbeh.2022.968359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is related to excessive binge alcohol consumption, and there is considerable interest in associated factors that promote intake. AUD has many behavioral facets that enhance inflexibility toward alcohol consumption, including impulsivity, motivation, and attention. Thus, it is important to understand how these factors might promote responding for alcohol and can change after protracted alcohol intake. Previous studies have explored such behavioral factors using responding for sugar in the 5-Choice Serial Reaction Time Task (5-CSRTT), which allows careful separation of impulsivity, attention, and motivation. Importantly, our studies uniquely focus on using alcohol as the reward throughout training and testing sessions, which is critical for beginning to answer central questions relating to behavioral engagement for alcohol. Alcohol preference and consumption in male C57BL/6 mice were determined from the first 9 sessions of 2-h alcohol drinking which were interspersed among 5-CSRTT training. Interestingly, alcohol preference but not consumption level significantly predicted 5-CSRTT responding for alcohol. In contrast, responding for strawberry milk was not related to alcohol preference. Moreover, high-preference (HP) mice made more correct alcohol-directed responses than low-preference (LP) during the first half of each session and had more longer reward latencies in the second half, with no differences when performing for strawberry milk, suggesting that HP motivation for alcohol may reflect “front-loading.” Mice were then exposed to an Intermittent Access to alcohol paradigm and retested in 5-CSRTT. While both HP and LP mice increased 5-CSRTT responding for alcohol, but not strawberry milk, LP performance rose to HP levels, with a greater change in correct and premature responding in LP versus HP. Overall, this study provides three significant findings: (1) alcohol was a suitable reward in the 5-CSRTT, allowing dissection of impulsivity, attention, and motivation in relation to alcohol drinking, (2) alcohol preference was a more sensitive indicator of mouse 5-CSRTT performance than consumption, and (3) intermittent alcohol drinking promoted behavioral engagement with alcohol, especially for individuals with less initial engagement.
Collapse
Affiliation(s)
- Phillip Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hunter Mead
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, United States
| | - Frederic Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Frederic Hopf,
| |
Collapse
|
13
|
Widespread subclinical cellular changes revealed across a neural-epithelial-vascular complex in choroideremia using adaptive optics. Commun Biol 2022; 5:893. [PMID: 36100689 PMCID: PMC9470576 DOI: 10.1038/s42003-022-03842-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractChoroideremia is an X-linked, blinding retinal degeneration with progressive loss of photoreceptors, retinal pigment epithelial (RPE) cells, and choriocapillaris. To study the extent to which these layers are disrupted in affected males and female carriers, we performed multimodal adaptive optics imaging to better visualize the in vivo pathogenesis of choroideremia in the living human eye. We demonstrate the presence of subclinical, widespread enlarged RPE cells present in all subjects imaged. In the fovea, the last area to be affected in choroideremia, we found greater disruption to the RPE than to either the photoreceptor or choriocapillaris layers. The unexpected finding of patches of photoreceptors that were fluorescently-labeled, but structurally and functionally normal, suggests that the RPE blood barrier function may be altered in choroideremia. Finally, we introduce a strategy for detecting enlarged cells using conventional ophthalmic imaging instrumentation. These findings establish that there is subclinical polymegathism of RPE cells in choroideremia.
Collapse
|
14
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Kalló I, Omrani A, Meye FJ, de Jong H, Liposits Z, Adan RAH. Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens. Brain Struct Funct 2022; 227:1083-1098. [PMID: 35029758 PMCID: PMC8930802 DOI: 10.1007/s00429-021-02449-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Orexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.
Collapse
Affiliation(s)
- Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Center, Budapest, 1083, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Azar Omrani
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Han de Jong
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Center, Budapest, 1083, Hungary.
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, 1083, Hungary.
| | - Roger A H Adan
- Department of Translational Neuroscience, UMC Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584, Utrecht, The Netherlands.
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Goteborg, Sweden.
| |
Collapse
|
16
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
17
|
Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sci 2022; 12:brainsci12020150. [PMID: 35203914 PMCID: PMC8870430 DOI: 10.3390/brainsci12020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Orexin peptides comprise two neuropeptides, orexin A and orexin B, that bind two G-protein coupled receptors (GPCRs), orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2). Although cell bodies that produce orexin peptides are localized in a small area comprising the lateral hypothalamus and adjacent regions, orexin-containing fibres project throughout the neuraxis. Although orexins were initially described as peptides that regulate feeding behaviour, research has shown that orexins are involved in diverse functions that range from the modulation of autonomic functions to higher cognitive functions, including reward-seeking, behaviour, attention, cognition, and mood. Furthermore, disruption in orexin signalling has been shown in mood disorders that are associated with low hedonic tone or anhedonia, including depression, anxiety, attention deficit hyperactivity disorder, and addiction. Notably, projections of orexin neurons overlap circuits involved in the modulation of hedonic tone. Evidence shows that orexins may potentiate hedonic behaviours by increasing the feeling of pleasure or reward to various signalling, whereas dysregulation of orexin signalling may underlie low hedonic tone or anhedonia. Further, orexin appears to play a key role in regulating behaviours in motivationally charged situations, such as food-seeking during hunger, or drug-seeking during withdrawal. Therefore, it would be expected that dysregulation of orexin expression or signalling is associated with changes in hedonic tone. Further studies investigating this association are warranted.
Collapse
|
18
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
19
|
Sharma R, Mishra V, Parikh M, Soni A, Sahota P, Thakkar M. Antisense-induced knockdown of cAMP response element-binding protein downregulates Per1 gene expression in the shell region of nucleus accumbens resulting in reduced alcohol consumption in mice. Alcohol Clin Exp Res 2021; 45:1940-1949. [PMID: 34424532 PMCID: PMC8602740 DOI: 10.1111/acer.14687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We recently showed that circadian genes expressed in the shell region of nucleus accumbens (NAcSh) play a key role in alcohol consumption, though, the molecular mechanism of those effects is unclear. Because CREB-binding protein (CBP) promotes Per1 gene expression, we hypothesized that alcohol consumption would increase CBP expression in the NAcSh and antisense-induced knockdown of CBP would reduce Per1 expression and result in a reduction in alcohol consumption. METHODS To test our hypothesis, we performed two experiments. The Drinking-in-the-dark (DID) paradigm was used to evaluate alcohol consumption in male C57BL/6J mice. In Experiment 1 we examined the effects of alcohol consumption on CBP gene expression in the NAcSh. Control animals were exposed to, sucrose [10% (w/v) taste and calorie] and water (consummatory behavior). In Experiment 2 examined the effects of CBP gene silencing on the expression of the Per1 gene in the NAcSh and alcohol consumption in mice exposed to alcohol using the DID paradigm. CBP gene silencing was achieved by local infusion of two doses of either CBP antisense oligodeoxynucleotides (AS-ODNs; Antisense group) or nonsense ODNs (NS-ODNs; Nonsense group) bilaterally microinjected into the NAcSh within 24 h before alcohol consumption on Day 4 of the DID paradigm. The microinfusion sites were verified by cresyl violet staining. RESULTS Compared to sucrose, alcohol consumption, under the DID paradigm, significantly increased the expression of CBP in the NAcSh. Compared to Controls, bilateral infusion of CBP AS-ODNs significantly reduced the expression of Per1 in the NAcSh and alcohol consumption without affecting the amount of sucrose consumed. CONCLUSIONS Our results suggest that CBP is an upstream regulator of Per1 expression in the NAcSh and may act via Per1 to modulate alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Anshul Soni
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
De Oliveira Sergio T, Lei K, Kwok C, Ghotra S, Wegner SA, Walsh M, Waal J, Darevsky D, Hopf FW. The role of anterior insula-brainstem projections and alpha-1 noradrenergic receptors for compulsion-like and alcohol-only drinking. Neuropsychopharmacology 2021; 46:1918-1926. [PMID: 34168279 PMCID: PMC8429444 DOI: 10.1038/s41386-021-01071-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Compulsion-like alcohol drinking (CLAD), where consumption continues despite negative consequences, is a major obstacle to treating alcohol use disorder. The locus coeruleus area in the brainstem and norepinephrine receptor (NER) signaling in forebrain cortical regions have been implicated in adaptive responding under stress, which is conceptually similar to compulsion-like responding (adaptive responding despite the presence of stress or conflict). Thus, we examined whether anterior insula (aINS)-to-brainstem connections and alpha-1 NERs regulated compulsion-like intake and alcohol-only drinking (AOD). Halorhodopsin inhibition of aINS-brainstem significantly reduced CLAD, with no effect on alcohol-only or saccharin intake, suggesting a specific aINS-brainstem role in aversion-resistant drinking. In contrast, prazosin inhibition of alpha-1 NERs systemically reduced both CLAD and AOD. Similar to systemic inhibition, intra-aINS alpha-1-NER antagonism reduced both CLAD and AOD. Global aINS inhibition with GABAR agonists also strongly reduced both CLAD and AOD, without impacting saccharin intake or locomotion, while aINS inhibition of calcium-permeable AMPARs (with NASPM) reduced CLAD without impacting AOD. Finally, prazosin inhibition of CLAD and AOD was not correlated with each other, systemically or within aINS, suggesting the possibility that different aINS pathways regulate CLAD versus AOD, which will require further study to definitively address. Together, our results provide important new information showing that some aINS pathways (aINS-brainstem and NASPM-sensitive) specifically regulate compulsion-like alcohol consumption, while aINS more generally may contain parallel pathways promoting CLAD versus AOD. These findings also support the importance of the adaptive stress response system for multiple forms of alcohol drinking.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Kelly Lei
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claudina Kwok
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Shahbaj Ghotra
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Margaret Walsh
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Jaclyn Waal
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Barr JL, Zhao P, Brailoiu GC, Brailoiu E. Choline-Sigma-1R as an Additional Mechanism for Potentiation of Orexin by Cocaine. Int J Mol Sci 2021; 22:5160. [PMID: 34068146 PMCID: PMC8152999 DOI: 10.3390/ijms22105160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Orexin A, an endogenous peptide involved in several functions including reward, acts via activation of orexin receptors OX1 and OX2, Gq-coupled GPCRs. We examined the effect of a selective OX1 agonist, OXA (17-33) on cytosolic calcium concentration, [Ca2+]i, in neurons of nucleus accumbens, an important area in the reward circuit. OXA (17-33) increased [Ca2+]i in a dose-dependent manner; the effect was prevented by SB-334867, a selective OX1 receptors antagonist. In Ca2+-free saline, the OXA (17-33)-induced increase in [Ca2+]i was not affected by pretreatment with bafilomycin A1, an endo-lysosomal calcium disrupter, but was blocked by 2-APB and xestospongin C, antagonists of inositol-1,4,5-trisphosphate (IP3) receptors. Pretreatment with VU0155056, PLD inhibitor, or BD-1047 and NE-100, Sigma-1R antagonists, reduced the [Ca2+]i response elicited by OXA (17-33). Cocaine potentiated the increase in [Ca2+]i by OXA (17-33); the potentiation was abolished by Sigma-1R antagonists. Our results support an additional signaling mechanism for orexin A-OX1 via choline-Sigma-1R and a critical role for Sigma-1R in the cocaine-orexin A interaction in nucleus accumbens neurons.
Collapse
Affiliation(s)
- Jeffrey L. Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - G. Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| |
Collapse
|
22
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
23
|
Sharma R, Puckett H, Kemerling M, Parikh M, Sahota P, Thakkar M. Antisense-Induced Downregulation of Clock Genes in the Shell Region of the Nucleus Accumbens Reduces Binge Drinking in Mice. Alcohol Clin Exp Res 2021; 45:530-542. [PMID: 33606281 PMCID: PMC8535763 DOI: 10.1111/acer.14549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTIONS Binge drinking is a deadly pattern of alcohol consumption. Evidence suggests that genetic variation in clock genes is strongly associated with alcohol misuse; however, the neuroanatomical basis for such a relationship is unknown. The shell region of the nucleus accumbens (NAcSh) is well known to play a role in binge drinking. Hence, we examined whether clock genes in the NAcSh regulate binge drinking. METHODS To address this question, 2 experiments were performed on male C57BL/6J mice. In the first experiment, mice exposed to alcohol or sucrose under the 4-day drinking-in-the-dark (DID) paradigm were euthanized at 2 different time points on day 4 [7 hours after light (pre-binge drinking) or dark (post-binge drinking) onset]. The brains were processed for RT-PCR to examine the expression of circadian clock genes (Clock, Per1, and Per2) in the NAcSh and suprachiasmatic nucleus (SCN). In the second experiment, mice were exposed to alcohol, sucrose, or water as described above. On day 4, 1 hour prior to the onset of alcohol exposure, mice were bilaterally infused with either a mixture of circadian clock gene antisense oligodeoxynucleotides (AS-ODNs; antisense group) or nonsense/random ODNs (R-ODNs; control group) through surgically implanted cannulas above the NAcSh. Alcohol/sucrose/water consumption was measured for 4 hours. Blood alcohol concentration was measured to confirm binge drinking. Microinfusion sites were histologically verified using cresyl violet staining. RESULTS As compared to sucrose, mice euthanized post-binge drinking (not pre-binge drinking) on day 4 displayed a greater expression of circadian genes in the NAcSh but not in the SCN. Knockdown of clock genes in the NAcSh caused a significantly lower volume of alcohol to be consumed on day 4 than in the control treatment. No differences were found in sucrose or water consumption. CONCLUSIONS Our results suggest that clock genes in the NAcSh play a crucial role in binge drinking.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Hunter Puckett
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Micaela Kemerling
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021; 11:231. [PMID: 33420199 PMCID: PMC7794293 DOI: 10.1038/s41598-020-79935-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol use disorder exhausts substantial social and economic costs, with recent dramatic increases in female problem drinking. Thus, it is critically important to understand signaling differences underlying alcohol consumption across the sexes. Orexin-1 receptors (Ox1Rs) can strongly promote motivated behavior, and we previously identified Ox1Rs within nucleus accumbens shell (shell) as crucial for driving binge intake in higher-drinking male mice. Here, shell Ox1R inhibition did not alter female mouse alcohol drinking, unlike in males. Also, lower dose systemic Ox1R inhibition reduced compulsion-like alcohol intake in both sexes, indicating that female Ox1Rs can drive some aspects of pathological consumption, and higher doses of systemic Ox1R inhibition (which might have more off-target effects) reduced binge drinking in both sexes. In contrast to shell Ox1Rs, inhibiting shell calcium-permeable AMPA receptors (CP-AMPARs) strongly reduced alcohol drinking in both sexes, which was specific to alcohol since this did not reduce saccharin intake in either sex. Our results together suggest that the shell critically regulates binge drinking in both sexes, with shell CP-AMPARs supporting intake in both sexes, while shell Ox1Rs drove drinking only in males. Our findings provide important new information about sex-specific and -general mechanisms that promote binge alcohol intake and possible targeted therapeutic interventions.
Collapse
|
25
|
Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020; 89:139-146. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Excessive, binge drinking is a major contributor to the great harm and cost of alcohol use disorder. We recently showed, using both limited and intermittent-access two-bottle-choice models, that inhibiting nucleus accumbens shell (Shell) orexin-1-receptors (Ox1Rs) reduces alcohol intake in higher-drinking male C57BL/6 mice (Lei et al., 2019). Other studies implicate Ox1Rs, tested systemically, for several higher-drinking models, including the single-bottle, Rhodes Drinking-in-the-Dark paradigm. Here, we report studies examining whether Shell Ox1Rs contribute to alcohol intake in male mice using a single-bottle Limited Daily Access (LDA) drinking model modified from drinking-in-the-dark paradigms (2-h access starting 3 h into the dark cycle, 5 days per week). In addition, some previous work has suggested possible differences in circuitry for one- versus two-choice behaviors, and thus other mice first drank under a single-bottle schedule, and then an additional water bottle was included 2 days a week starting in week 3. Surprisingly, at the same time we were determining Ox1R importance for two-bottle-choice models, parallel studies found that inhibiting Shell Ox1Rs had no impact on drinking using the single-bottle LDA model, or when a second bottle containing water was added later during drinking. Furthermore, we have related Shell Ox1R regulation of intake to basal consumption, but no such pattern was observed with single-bottle LDA drinking. Thus, unlike our previous work showing the importance of Shell Ox1Rs for male alcohol drinking under several two-bottle-choice models, Shell Ox1Rs were not required under a single-bottle paradigm, even if a second water-containing bottle was later added. These results raise the speculations that different mechanisms could promote intake under single- versus two-bottle access conditions, and that the conditions under which an animal learns to drink can impact circuitry driving future intake.
Collapse
|
26
|
James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2020; 183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
An estimated 50-90% of individuals with cocaine use disorder (CUD) also report using alcohol. Cocaine users report coabusing alcohol to 'self-medicate' against the negative emotional side effects of the cocaine 'crash', including the onset of anxiety. Thus, pharmaceutical strategies to treat CUD would ideally reduce the motivational properties of cocaine, alcohol, and their combination, as well as reduce the onset of anxiety during drug withdrawal. The hypothalamic orexin (hypocretin) neuropeptide system offers a promising target, as orexin neurons are critically involved in activating behavioral and physiological states to respond to both positive and negative motivators. Here, we seek to describe studies demonstrating efficacy of orexin receptor antagonists in reducing cocaine, alcohol- and stress-related behaviors, but note that these studies have largely focused on each of these phenomena in isolation. For orexin-based compounds to be viable in the clinical setting, we argue that it is imperative that their efficacy be tested in animal models that account for polysubstance use patterns. To begin to examine this, we present new data showing that rats' preferred level of cocaine intake is significantly increased following chronic homecage access to alcohol. We also report that cocaine intake and motivation are reduced by a selective orexin-1 receptor antagonist when rats have a history of cocaine + alcohol, but not a limited history of cocaine alone. In light of these proof-of-principle data, we outline what we believe to be the key priorities going forward with respect to further examining the orexin system in models of polysubstance use. This article is part of the special issue on Neurocircuitry Modulating Drug and Alcohol Abuse.
Collapse
Affiliation(s)
- Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Jennifer E Fragale
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Benjamin A Zimmer
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
27
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
28
|
Neurochemical Evidence of Preclinical and Clinical Reports on Target-Based Therapy in Alcohol Used Disorder. Neurochem Res 2020; 45:491-507. [PMID: 31898084 DOI: 10.1007/s11064-019-02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder, which enforces a person to compulsively seek alcohol, restricting control over alcohol intake leads to emergence of an undesired emotional state during abstinence. There are recent advances for better understanding of neurocircuitry involved in the pathophysiology of AUD. Alcohol interaction with neuronal membrane proteins results in changes in neuronal circuits. It is also linked with the potential medication and their clinical validation concerning their pharmacological targets for alcoholic abstinence. This review covers research work from the past few decades on the therapeutic advances on treatment of alcohol dependence; further detailing the fundamental neurochemical mechanisms after alcohol administration. It also covers interaction of alcohol with GABAergic, glutaminergic, dopaminergic, serotonergic and opioid systems. This review further elaborated the neurobiology of noradrenergic, cholinergic and cannabinoid systems and their interaction with AUD. Elaborative information of potential drug targets under current exploration for AUD treatment with their mechanisms are reported here along with clinical outcomes and the associated side effects.
Collapse
|