1
|
Abreu CA, Ferraz G, Dos Santos RC, Conde L, Dantas DP, Archanjo BS, Linden R, Pimentel-Coelho PM, Allodi S. Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation. Vision Res 2025; 227:108544. [PMID: 39842056 DOI: 10.1016/j.visres.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT). A pigmented rat model was used, with OHT induced through low-temperature cauterization of the limbal vascular plexus. To assess the effects at early time points after OHT, transmission electron microscopy (TEM) was employed to analyze ultrastructural changes in the retina and ON, while immunofluorescence was used to evaluate cellular responses. Flow cytometry was used to examine alterations in immune-cell populations. Within 24 h post-OHT, ultrastructural changes were detected in the cytoplasm of RGCs, indicating early cellular alterations undetectable by conventional microscopy. These ultrastructural modifications progressed further at 48 and 72 h, despite the absence of overt RGC loss or disruptions in retinal layer integrity. Changes in the axons and nodes of Ranvier were evident within the first 24 h after ocular hypertension, becoming more pronounced by 72 h. These findings offer novel insights into the early pathogenesis of glaucoma, highlighting critical early impacts that could guide the development of new therapeutic strategies to prevent irreversible RGC loss.
Collapse
Affiliation(s)
- Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Gabriel Ferraz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rômulo C Dos Santos
- Plataforma de Microscopia Eletrônica Rudolf Barth, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danillo P Dantas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bráulio S Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, RJ, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Wang D, Pu Y, Gao X, Zeng L, Li H. Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification. J Inflamm Res 2025; 18:367-380. [PMID: 39802509 PMCID: PMC11725236 DOI: 10.2147/jir.s497525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG. Methods We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis. Results PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (P SMR < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups. Conclusion This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Liang S. Role of T cell-induced autoimmune response in the pathogenesis of glaucoma. Int Ophthalmol 2024; 44:241. [PMID: 38904796 DOI: 10.1007/s10792-024-03224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE This review aims to elucidate the role of T cell-induced autoimmune responses in the pathogenesis of glaucoma, focusing on the immunological changes contributing to retinal ganglion cell (RGC) damage. METHODS A comprehensive review of recent studies examining immunological mechanisms in glaucoma was conducted. This included analyses of T cell interactions, heat shock proteins (HSPs), and resultant autoimmune responses. Key findings from experimental models and clinical observations were synthesized to present a coherent understanding of immune dynamics in glaucoma. RESULTS Glaucoma is a neurodegenerative disease marked by optic nerve atrophy and irreversible vision loss due to RGC damage. The disease is etiologically heterogeneous, with multiple risk factors and pathogenic mechanisms. Recent research highlights the dual immunomodulatory role of T cells in immune protection and injury. T cells, pre-sensitized by bacterial HSPs, can cross-react with endogenous HSPs in RGCs under stress, leading to autoimmune damage. Elevated levels of HSP autoantibodies and abnormal T cell activity have been observed in glaucoma patients, indicating a significant autoimmune component in disease progression. CONCLUSIONS T cell-induced autoimmune responses are crucial in the pathogenesis of glaucoma, contributing to RGC degeneration beyond the effects of elevated intraocular pressure. Understanding these immunological mechanisms is vital for developing targeted neuroprotective therapies for glaucoma.
Collapse
Affiliation(s)
- Shuxin Liang
- The Red Bird Program, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Deppe L, Mueller-Buehl AM, Tsai T, Erb C, Dick HB, Joachim SC. Protection against Oxidative Stress by Coenzyme Q10 in a Porcine Retinal Degeneration Model. J Pers Med 2024; 14:437. [PMID: 38673065 PMCID: PMC11051541 DOI: 10.3390/jpm14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress plays an important role in neurodegenerative diseases, including glaucoma. Therefore, we analyzed if the antioxidant coenzyme Q10 (CoQ10), which is also commercially available, can prevent retinal degeneration induced by hydrogen peroxide (H2O2) in a porcine organ culture model. Retinal explants were cultivated for eight days, and H2O2 (500 µM, 3 h) induced the oxidative damage. CoQ10 therapy was applied (700 µM, 48 h). Retinal ganglion cells (RGCs) and microglia were examined immunohistologically in all groups (control, H2O2, H2O2 + CoQ10). Cellular, oxidative, and inflammatory genes were quantified via RT-qPCR. Strong RGC loss was observed with H2O2 (p ≤ 0.001). CoQ10 elicited RGC protection compared to the damaged group at a histological (p ≤ 0.001) and mRNA level. We detected more microglia cells with H2O2, but CoQ10 reduced this effect (p = 0.004). Cellular protection genes (NRF2) against oxidative stress were stimulated by CoQ10 (p ≤ 0.001). Furthermore, mitochondrial oxidative stress (SOD2) increased through H2O2 (p = 0.038), and CoQ10 reduced it to control level. Our novel results indicate neuroprotection via CoQ10 in porcine retina organ cultures. In particular, CoQ10 appears to protect RGCs by potentially inhibiting apoptosis-related pathways, activating intracellular protection and reducing mitochondrial stress.
Collapse
Affiliation(s)
- Leonie Deppe
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Ana M. Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Carl Erb
- Private Institute for Applied Ophthalmology, Eye Clinic at Wittenbergplatz, 10787 Berlin, Germany;
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| |
Collapse
|
5
|
Chen J, Zhang C, Peng J, Tang C, Zhang C, Zhang M, Zou X, Zou Y. Gender-specific lncRNA-miRNA-mRNA regulatory network to reveal potential genes for primary open-angle glaucoma. Exp Eye Res 2023; 236:109668. [PMID: 37774963 DOI: 10.1016/j.exer.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Investigation of biomarkers may facilitate understanding the mechanisms of primary open-angle glaucoma (POAG) and developing therapeutic targets. This study aimed to identify potential genes based on competing endogenous RNA (ceRNA) network for POAG. METHODS Based on long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs) from the Gene Expression Omnibus (GEO) database, we identified differential expressed lncRNAs (DELs), differential expressed miRNAs (DEMis) and differential expressed mRNAs (DEMs) and then constructed a ceRNA network. Through weighted gene co-expression network analysis (WGCNA), we identified gender-specific genes for gender-associated ceRNA network construction, followed by the protein-protein interaction (PPI) network and functional enrichment analysis to screen hub genes and reveal their functions. The expression levels of hub genes were measured in steroid-induced ocular hypertension (SIOH) mice. RESULTS A total of 175 DELs, 727 DEMs and 45 DEMis were screened between control and POAG samples. Seven modules were identified through WGCNA and one module was associated with gender of POAG patients. We discovered 41 gender-specific genes for gender-associated ceRNA construction and then identified 8 genes (NAV3, C1QB, RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1), which were enriched in cell cycle-related pathways and immune-related pathways. C1QB, RXRB, Top1 and ZNF207 were highly interacted with other proteins. The expression levels of NAV3 and C1QB were downregulated in SIOH, while the levels of RXRB, P2RY4, ADAM15, VAV3, ZNF207 and TOP1 were upregulated in SIOH. CONCLUSION This study identifies hub genes associated with the pathogenesis of gender-specific POAG and provides potential biomarkers for POAG.
Collapse
Affiliation(s)
- Jingxia Chen
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chu Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Jinyan Peng
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Cuicui Tang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Chunli Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Mengyi Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China
| | - Xiulan Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| | - Yuping Zou
- Department of Ophthalmology, General Hospital of Southern Theatre Command of PLA, No.111, Liuhua Road, Guangzhou City, Guangdong Province, 510010, China.
| |
Collapse
|
6
|
Harper MM, Gramlich OW, Elwood BW, Boehme NA, Dutca LM, Kuehn MH. Immune responses in mice after blast-mediated traumatic brain injury TBI autonomously contribute to retinal ganglion cell dysfunction and death. Exp Eye Res 2022; 225:109272. [PMID: 36209837 DOI: 10.1016/j.exer.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.
Collapse
Affiliation(s)
- Matthew M Harper
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Biology, And Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA.
| | - Oliver W Gramlich
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Benjamin W Elwood
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Nickolas A Boehme
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Laura M Dutca
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Markus H Kuehn
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
7
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
8
|
Zeng H, Dumitrescu AV, Wadkins D, Elwood BW, Gramlich OW, Kuehn MH. Systemic Treatment with Pioglitazone Reverses Vision Loss in Preclinical Glaucoma Models. Biomolecules 2022; 12:281. [PMID: 35204782 PMCID: PMC8961625 DOI: 10.3390/biom12020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation significantly contributes to the pathophysiology of several neurodegenerative diseases. This is also the case in glaucoma and may be a reason why many patients suffer from progressive vision loss despite maximal reduction in intraocular pressure. Pioglitazone is an agonist of the peroxisome proliferator-activated receptor gamma (PPARγ) whose pleiotrophic activities include modulation of cellular energy metabolism and reduction in inflammation. In this study we employed the DBA2/J mouse model of glaucoma with chronically elevated intraocular pressure to investigate whether oral low-dose pioglitazone treatment preserves retinal ganglion cell (RGC) survival. We then used an inducible glaucoma model in C57BL/6J mice to determine visual function, pattern electroretinographs, and tracking of optokinetic reflex. Our findings demonstrate that pioglitazone treatment does significantly protect RGCs and prevents axonal degeneration in the glaucomatous retina. Furthermore, treatment preserves and partially reverses vision loss in spite of continuously elevated intraocular pressure. These data suggest that pioglitazone may provide treatment benefits for those glaucoma patients experiencing continued vision loss.
Collapse
Affiliation(s)
- Huilan Zeng
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
- Human Clinical Research Center of Ophthalmic Disease, Changsha 410011, China
| | - Alina V. Dumitrescu
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| | - Oliver W. Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (A.V.D.); (D.W.); (B.W.E.); (O.W.G.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| |
Collapse
|
9
|
Li S, Qiu Y, Yu J, Shao M, Li Y, Cao W, Sun X. Serum complement component 3, complement component 4 and complement component 1q levels predict progressive visual field loss in older women with primary angle closure glaucoma. Br J Ophthalmol 2022; 107:828-835. [PMID: 35017157 DOI: 10.1136/bjophthalmol-2021-320541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023]
Abstract
AIM To evaluate the association between serum levels of complement component (C) 3, C4 and C1q and visual field (VF) loss in patients with primary angle closure glaucoma (PACG). METHODS In this prospective cohort study, a total of 308 patients with PACG were included. The patients were followed up every 6 months (at least 2 years), with clinical examination and VF testing. Based on their sex and age, the subjects were stratified into male and female subgroups, and by age at <60 and ≥60 years per subgroup. RESULTS One hundred twenty-three (39.94%) patients showed glaucoma VF progression. The serum levels of C3, C4 and C1q were significantly lower (p<0.05) in the progression group compared with the non-progression group in the ≥60 years female subgroup. In female patients with age ≥60 years, (1) lower levels of baseline C3 (HR=0.98, p<0.001), C4 (HR=0.96, p=0.01) and C1q levels (HR=0.99, p=0.003) were associated with a greater risk of VF progression; (2) patients with lower C3 levels had significantly (p<0.05) higher rates of VF loss progression, similar to those with lower C4 and lower C1q levels; and (3) the generalised additive model revealed a negative correlation between baseline C3 (p<0.001), C4 (p<0.001) and C1q (p<0.001) levels with the risk of VF progression. No statistical significance was observed in the male (<60 and ≥60 years) and female (<60 years) subgroups. CONCLUSION Decreased C3, C4 and C1q levels at baseline were significantly associated with a greater risk of VF loss progression only in older women with PACG.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Rodrigo MJ, Subías M, Montolío A, Méndez-Martínez S, Martínez-Rincón T, Arias L, García-Herranz D, Bravo-Osuna I, Garcia-Feijoo J, Pablo L, Cegoñino J, Herrero-Vanrell R, Carretero A, Ruberte J, Garcia-Martin E, Pérez del Palomar A. Analysis of Parainflammation in Chronic Glaucoma Using Vitreous-OCT Imaging. Biomedicines 2021; 9:biomedicines9121792. [PMID: 34944608 PMCID: PMC8698891 DOI: 10.3390/biomedicines9121792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Glaucoma causes blindness due to the progressive death of retinal ganglion cells. The immune response chronically and subclinically mediates a homeostatic role. In current clinical practice, it is impossible to analyse neuroinflammation non-invasively. However, analysis of vitreous images using optical coherence tomography detects the immune response as hyperreflective opacities. This study monitors vitreous parainflammation in two animal models of glaucoma, comparing both healthy controls and sexes over six months. Computational analysis characterizes in vivo the hyperreflective opacities, identified histologically as hyalocyte-like Iba-1+ (microglial marker) cells. Glaucomatous eyes showed greater intensity and number of vitreous opacities as well as dynamic fluctuations in the percentage of activated cells (50–250 microns2) vs. non-activated cells (10–50 microns2), isolated cells (10 microns2) and complexes (>250 microns2). Smaller opacities (isolated cells) showed the highest mean intensity (intracellular machinery), were the most rounded at earlier stages (recruitment) and showed the greatest change in orientation (motility). Study of vitreous parainflammation could be a biomarker of glaucoma onset and progression.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-976765558; Fax: +34-976566234
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Alberto Montolío
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Lorena Arias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, UCM, 28040 Madrid, Spain;
| | - Luis Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - José Cegoñino
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana Carretero
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - Amaya Pérez del Palomar
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Hohberger B, Schlötzer-Schrehard U, Mardin C, Lämmer R, Munoz L, Kunze R, Herrmann M, Wallukat G. Inhibitory and Agonistic Autoantibodies Directed Against the β 2-Adrenergic Receptor in Pseudoexfoliation Syndrome and Glaucoma. Front Neurosci 2021; 15:676579. [PMID: 34421514 PMCID: PMC8377674 DOI: 10.3389/fnins.2021.676579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudoexfoliation syndrome (PEXS) and glaucoma (PEXG) are assumed to be caused by a generalized elastosis leading to the accumulation of PEX material in ocular as well as in extraocular tissues. The exact pathophysiology of PEXS is still elusive. PEXG, the most common type of secondary open-angle glaucoma (OAG), is characterized by large peaks of intraocular pressure (IOP) with a progressive loss of the visual field. Agonistic autoantibodies (agAAbs) against the β2-adrenergic receptor (AR) have been shown to be present in sera of patients with primary and secondary OAG and ocular hypertension and are seemingly linked to IOP. In the present study, we investigated the autoantibodies directed against the β2-AR in sera of patients with PEXS and PEXG. We recruited 15, 10, and 15 patients with PEXG, PEXS, and primary OAG, respectively. Ten healthy individuals served as controls. All patients underwent standard ophthalmological examination with Octopus G1 perimetry. agAAbs prepared from serum samples were analyzed in a rat cardiomyocyte-based bioassay for the presence of agAAbs. We identified the interacting loop of the β2-AR and the immunoglobulin G (IgG) subclasses using synthetic peptides corresponding to the extracellular loops of the receptors and enzyme-linked immunosorbent assay, respectively. None of the controls were β2-agAAb-positive (0.2 ± 0.5 U). No β2-agAAbs (0.2 ± 0.4 U), but inhibitory β2-AAbs were observed in 80% of the patients that partially blocked the drug-induced β2-adrenergic stimulation; 5.8 ± 1.7 U vs. 11.1 ± 0.9 U for clenbuterol in the absence and the presence of sera from patients with PEXS, respectively. Epitope analyses identified the third extracellular loop of the β2-AR as the target of the inhibitory β2-AAbs, being of IgG3 subtype in PEXS patients. In contrast, patients with PEXG showed β2-agAAbs (5.6 ± 0.9 U), but no inhibitory ones. The β2-agAAbs levels of patients with PEXG and primary OAG patients (3.9 ± 2.8 U; p > 0.05) were at a similar level. In two cases of PEXG, the β2-agAAbs exert synergistic effects with clenbuterol. The activity increased from 11.5 ± 0.3 (clenbuterol only) to 16.3 ± 0.9 U. As autoimmune mechanisms were reportedly involved in the pathogenesis of glaucoma, agonistic and inhibitory β2-AAbs seem to be a part of this multifactorial interplay.
Collapse
Affiliation(s)
- Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Christian Mardin
- Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Robert Lämmer
- Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine III, Institute of Clinical Immunology and Rheumatology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rudolf Kunze
- Science Office, Berlin-Buch, Campus Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Martin Herrmann
- Department of Internal Medicine III, Institute of Clinical Immunology and Rheumatology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
12
|
Molinari C, Ruga S, Farghali M, Galla R, Fernandez-Godino R, Clemente N, Uberti F. Effects of a New Combination of Natural Extracts on Glaucoma-Related Retinal Degeneration. Foods 2021; 10:1885. [PMID: 34441662 PMCID: PMC8391439 DOI: 10.3390/foods10081885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glaucoma is currently the leading cause of irreversible blindness; it is a neuropathy characterized by structural alterations of the optic nerve, leading to visual impairments. The aim of this work is to develop a new oral formulation able to counteract the early changes connected to glaucomatous degeneration. The composition is based on gastrodin and vitamin D3 combined with vitamin C, blackcurrant, and lycopene. METHODS Cells and tissues of the retina were used to study biological mechanisms involved in glaucoma, to slow down the progression of the disease. Experiments mimicking the conditions of glaucoma were carried out to examine the etiology of retinal degeneration. RESULTS Our results show a significant ability to restore glaucoma-induced damage, by counteracting ROS production and promoting cell survival by inhibiting apoptosis. These effects were confirmed by the intracellular mechanism that was activated following administration of the compound, either before or after the glaucoma induction. In particular, the main results were obtained as a preventive action of glaucoma, showing a beneficial action on all selected markers, both on cells and on eyecup preparations. It is therefore possible to hypothesize both the preventive and therapeutic use of this formulation, in the presence of risk factors, and due to its ability to inhibit the apoptotic cycle and to stimulate cell survival mechanisms, respectively. CONCLUSION This formulation has exhibited an active role in the prevention or restoration of glaucoma damage for the first time.
Collapse
Affiliation(s)
- Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Sara Ruga
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Mahitab Farghali
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA;
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (S.R.); (M.F.); (R.G.)
| |
Collapse
|
13
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. BIOLOGY 2021; 10:biology10060538. [PMID: 34208432 PMCID: PMC8234675 DOI: 10.3390/biology10060538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Purpose: Drugs with cardiovascular protective properties (statins, acetylsalicylic acid (ASS)) were assumed to have positive effects on patients suffering from glaucoma disease. The present retrospective study aimed to investigate the influence of statins, ASS or a combination of both on the glaucoma conversion and progression rate in glaucoma suspects and glaucoma patients with a 20-year follow-up period. Methods: A retrospective analysis of 199 eyes of 120 patients (63 male, 57 female) of the Erlanger Glaucoma Registry (EGR; ClinicalTrials.gov Identifier: NCT00494923; ISSN 2191-5008, CS-2011) was performed considering systemic therapy with statins, ASS or a combination of both: 107 eyes with ocular hypertension (OHT) and 92 eyes with pre-perimetric primary open-angle glaucoma (pre-POAG). All patients received an ophthalmological examination including morphometric and functional glaucoma diagnostics. Glaucoma conversion was defined as the conversion of OHT to pre-POAG. Glaucoma progression was defined as confirmed visual field loss. Data were shown as percentages. Statistical analysis was performed by Chi-Quadrat tests. Results: 1. Glaucoma conversion/progression was observed in 46.7% of the subjects, additionally in combination with hypercholesterinemia in 76.8%. 2. Statins: 27.3% of eyes under systemic statin therapy showed a conversion/progression. Patients taking statins ≥ 10 years yielded a reduced conversion/progression rate (p = 0.028, non-significant after Bonferroni-Holm). 3. ASS: 34.7% of eyes under systemic ASS therapy showed a conversion/progression. A significantly lower conversion/progression rate was observed after ASS therapy ≥ 12 years (p = 0.017, significant after Bonferroni-Holm). 4. ASS and statins: 25.0% of eyes under combined therapy showed a conversion/progression. A significantly reduced conversion/progression rate was reached after 8 years of combined therapy (p = 0.049, non-significant after Bonferroni-Holm). Conclusions: Patients with ocular hypertension and early glaucoma seem to benefit from adjuvant cardiovascular protective therapy. However, the benefits and disadvantages of treatment with statins and/or ASS should be kept in mind. Thus, a thorough risk-benefit evaluation has to be performed for each patient individually to avoid unwanted side effects.
Collapse
|
15
|
Axonopathy precedes cell death in ocular damage mediated by blast exposure. Sci Rep 2021; 11:11774. [PMID: 34083587 PMCID: PMC8175471 DOI: 10.1038/s41598-021-90412-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons—with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.
Collapse
|
16
|
Chen J, Sun J, Yu H, Huang P, Zhong Y. Evaluation of the Effectiveness of a Chronic Ocular Hypertension Mouse Model Induced by Intracameral Injection of Cross-Linking Hydrogel. Front Med (Lausanne) 2021; 8:643402. [PMID: 33829024 PMCID: PMC8019751 DOI: 10.3389/fmed.2021.643402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Glaucoma is an irreversible and blinding neurodegenerative disease that is characterized by progressive loss of retinal ganglion cells. The current animal models of glaucoma fail to provide a chronic elevated intraocular pressure and cannot maintain the optical media clarity for a long time, which brings some difficulties to the study of glaucoma. Here, we developed a new chronic ocular hypertension model of mice induced by cross-linking hydrogel intracameral injection. Methods: C57BL/6J mice aged 6–8 weeks were randomly divided into the control group and the operation group. The mice of the operation group were injected with cross-linking hydrogel to induce ocular hypertension. Intraocular pressure was measured preoperatively, 3 days after surgery, and weekly until the end of the study. Flash visual evoked potential (F-VEP) was used to observe optic nerve function at different times (preoperatively and 2, 4, and 6 weeks) after chronic ocular hypertension (COH). Retinal TNF-α, IL-1β, and IL-17A protein expression were measured by western blotting in the control group and in mice at 2, 4, and 6 weeks after COH. Microglial cell activation was evaluated by immunofluorescence staining and western blotting. Apoptosis and loss of retinal ganglion cells after 2, 4, and 6 weeks of intracameral injection of cross-linking hydrogel were observed by the TUNEL assay and Brn3a protein labeling. The loss of optic nerve axons in COH mice was evaluated by neurofilament heavy polypeptide protein labeling. Results: Intracameral injection of the cross-linking hydrogel induces increased intraocular pressure (IOP) to a mean value of 19.3 ± 4.1 mmHg, which was sustained for at least 8 weeks. A significant difference in IOP was noted between COH mice and sham-operation mice (p < 0.0001). The success rate was 75%. The average amplitude of F-VEP in mice with COH was reduced (p = 0.0149, 0.0012, and 0.0009 at 2, 4, and 6 weeks after COH vs. the control group, respectively), and the average latent period in mice with COH was longer (p = 0.0290, <0.0001, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively) compared with that in the control group. TNF-α, IL-1β, IL-17A, Iba-1, and CD68 protein expression increased in COH mice. During the processing of COH, the number of microglial cells increased along with cellular morphological changes of rounder bodies and thicker processes compared with the control group. Apoptosis of retinal ganglion cells (RGCs) was clearly observed in mice at 2, 4, and 6 weeks after COH (p = 0.0061, 0.0012, <0.0001, and 0.0371 at 2, 4, and 6 weeks after COH vs. the control group, respectively). The RGC density decreased significantly in the COH mice compared with the control group (p = 0.0042, 0.0036, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). There was a significant loss of optic nerve axons in mice after intracameral injection of cross-linking hydrogel (p = 0.0095, 0.0002, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). Conclusions: A single intracameral injection of cross-linking hydrogel can effectively induce chronic ocular hypertension in mice, which causes progressive loss of retinal ganglion cells, increased expression levels of inflammatory cytokines and microglial cell activation, and deterioration of optic nerve function.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
18
|
Hubens WHG, Beckers HJM, Gorgels TGMF, Webers CAB. Increased ratios of complement factors C3a to C3 in aqueous humor and serum mark glaucoma progression. Exp Eye Res 2021; 204:108460. [PMID: 33493474 DOI: 10.1016/j.exer.2021.108460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We recently performed a combined analysis of publicly available proteomic studies of aqueous humor (AH) of patients with primary open angle glaucoma (POAG). This analysis revealed changes in complement protein concentrations in the AH of progressive POAG patients, which suggested that the complement system may play a role in POAG progression. As the proteomic studies could not provide information on the activity of the complement system, we addressed this question in the current study. METHODS Blood serum and AH were obtained from 30 patients: 10 progressive POAG, 10 stable POAG and, as controls, 10 cataract patients. Glaucoma patients with a visual field Mean Deviation (MD) change of at least 1.0 dB/year were considered progressive; a MD change of less than 0.5 dB/year was considered stable. The ratio between the levels of complement factors C3a and C3 was used as indicator for activation of the complement cascade. The factors were measured with commercially available ELISA kits. RESULTS AH levels of complement factors C3 and C3a did not significantly differ between groups. In serum, complement factor C3 did not differ between groups whereas C3a was significantly elevated in progressive POAG patients compared to controls (p < 0.05). The resulting complement C3a/C3 ratio was significantly higher in progressive POAG patients in both AH (p < 0.05) and serum (p < 0.01), and this ratio significantly correlated between the two body fluids (p < 0.001). Furthermore, there was a strong correlation between disease progression and C3a/C3 activation ratio both in AH (p < 0.01) and in serum (p < 0.001). The higher the complement C3a/C3 ratio, the faster the disease progression. CONCLUSION Significant increases in AH and serum complement C3a/C3 ratios were observed in progressive POAG patients but not in stable POAG patients. Furthermore, the complement C3a/C3 ratio correlated strongly with the rate of disease progression in both AH and serum. These findings suggest that activation of the complement system plays a role in glaucoma progression and that progressive glaucoma patients may have systemic changes in complement activation.
Collapse
Affiliation(s)
- W H G Hubens
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands; Research School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - H J M Beckers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - T G M F Gorgels
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - C A B Webers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| |
Collapse
|
19
|
Song J, Zhang Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J Appl Biomater Funct Mater 2020; 18:2280800020942712. [PMID: 33151769 DOI: 10.1177/2280800020942712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A neurodegenerative disorder, glaucoma is a leading cause of blindness in the world. The conventional treatment strategies do not allow the significant penetration of the drug in the cornea. Therefore, we prepare a brinzolamide (Brz) loaded core-shell nanoparticles (NPs) to enhance the coronial penetration of the drug and thus treating the glaucoma. The shell of the NPs was composed of phosphatidylserine (PS; 1,2-diacyl-sn-glycero-3-phospho-L-serine), whereas the core of the NPs contains the Brz encapsulated in brinzolamide–phosphatidylserine–polymer poly-(DL-lactic acid-co-glycolic acid)–phosphatidylserine (Brz-PS-PLGA). The synthesis of Brz-PS-PLGA was achieved by using a coaxial electrospray process (CEP), which allows the preparation of the particles in a single step. The size of Brz-PS-PLGA with PS shell and brinzolamide–poly (lactic-co-glycolic) acid (Brz-PLGA) without shell was 571 ± 27.02 nm and 456 ± 19.17 nm, respectively. The charges on the surface of Brz-PS-PLGA and Brz-PLGA were (-) 27.45 ± 2.98 mV and (-) 19.47 ± 2.83 mV. The transmission electron microscopy images clearly reveal the PS shell as a light black layer over the dark black PLGA core. The CEP allows the high encapsulation of Brz in Brz-PS-PLGA where percentage of entrapment efficiency for Brz-PS-PLGA was 88.13 ± 6.43%. The release study conducted in a simulated tear fluid revealed the sustained release patterns of Brz from Brz-PS-PLGA and these were nontoxic to the cells as revealed by the cytotoxicity studies. Further, the Brz-PS-PLGA enhanced the coronial penetration of Brz and was capable of significantly reducing the intraocular pressure (IOP) after administration to the rabbit eye in comparison to the Brz-PLGA and free Brz. The results clearly suggest that the PS coating significantly enhances the capability of the particles in reducing IOP.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| | - Ziping Zhang
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
20
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
21
|
Association between Active Helicobacter pylori Infection and Glaucoma: A Systematic Review and Meta-Analysis. Microorganisms 2020; 8:microorganisms8060894. [PMID: 32545826 PMCID: PMC7355761 DOI: 10.3390/microorganisms8060894] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Glaucoma is the second most common cause of blindness worldwide affecting almost 70 million individuals. Helicobacter pylori (H. pylori) is a widespread pathogen with systematic pathogenicity. This meta-analysis aimed to estimate the contradictory data regarding a potential association between active H. pylori infection and glaucoma. Materials and Methods: A research in MEDLINE/PubMed and Google Scholar was conducted and original studies investigating the relationship between H. pylori infection and glaucoma were included. Analysis was performed with random effects model. The main outcome was the odds ratio (OR) with 95% confidence intervals (CI) of H. pylori infection as a risk factor for glaucoma. A parallel analysis studied the role of active infection as indicated by histology and the titer of anti-H. pylori antibodies. For the anti-H. pylori antibody titers, weighted mean differences (WMD) were estimated between patients and controls. Results: Fifteen studies were included, with 2664 participants (872 patients with glaucoma and 1792 controls), divided into primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) and pseudo-exfoliation glaucoma (PEG). The association between H. pylori infection and overall glaucoma was significant (OR = 2.08, CI 95% 1.48–2.93) with moderate heterogeneity (I2 = 61.54%). After stratification by glaucoma subtype, heterogeneity was eliminated in the NTG subgroup. Studies with healthy controls, and controls with anemia yielded very low or no heterogeneity, respectively. Gastric biopsy to document active H. pylori infection yielded the highest OR (5.4, CI: 3.17–9.2, p < 0.001) and null heterogeneity. For anti-H. pylori antibody titers, there was a significant difference in WMD between patients and controls (WMD 15.98 IU/mL; 95% CI: 4.09–27.87; p = 0.008); values were greater in glaucoma patients, with high heterogeneity (I2: 93.8%). Meta-regression analysis showed that mean age had a significant impact on glaucoma (p = 0.037). Conclusions: Active H. pylori infection may be associated with glaucoma with null heterogeneity, as, beyond histology, quantified by anti-H. pylori titers and increases with age.
Collapse
|
22
|
Species Differences in the Nutrition of Retinal Ganglion Cells among Mammals Frequently Used as Animal Models. Cells 2019; 8:cells8101254. [PMID: 31615137 PMCID: PMC6829614 DOI: 10.3390/cells8101254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022] Open
Abstract
The diffusion rate for proper nutrition of the inner retina depends mainly on four factors which are discussed in this review: 1. The diffusion distance between blood and retinal ganglion cells shows morphological variants in different mammalian species, namely a choroidal nutrition type, a retinal nutrition type, and a mixture of both types. 2. Low oxygen concentration levels in the inner retina force the diffusion of oxygen especially in the choroidal nutrition type. Other nutrients might be supplied by surrounding cells, mainly Müller cells. 3. Diffusion in the eye is influenced by the intraocular pressure, which is vital for the retinal ganglion cells but might also influence their proper function. Again, the nutrition types established might explain the differences in normal intraocular pressure levels among different species. 4. Temperature is a critical feature in the eye which has to be buffered to avoid neuronal damage. The most effective buffer system is the increased blood turnover in the choroid which has to be established in all species.
Collapse
|