1
|
He J, Cui H, Jiang G, Fang L, Hao J. Knowledge mapping of trained immunity/innate immune memory: Insights from two decades of studies. Hum Vaccin Immunother 2024; 20:2415823. [PMID: 39434217 PMCID: PMC11497974 DOI: 10.1080/21645515.2024.2415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
This study employs knowledge mapping and bibliometric techniques to analyze the research landscape of trained immunity over the past 20 years and to identify current research hotspots and future development directions. The literature related to trained immunity was searched from the Web of Science Core Collection database, spanning 2004 to 2023. VOSViewer, CiteSpace and Bibliometrix were used for the knowledge mapping analysis. The foremost research institutions are Radboud University Nijmegen, University of Bonn, and Harvard University. Professor Netea MG of Radboud University Nijmegen has published the greatest number of articles. The current research focus encompasses immune memory, nonspecific effects, epigenetics, metabolic reprogramming, BCG vaccine, and the development of trained immunity-based vaccines. It is likely that research on trained immunity-based vaccines will become a major focus in the development of new vaccines in the future. It would be advantageous to observe a greater number of prospective clinical studies with robust evidence.
Collapse
Affiliation(s)
- Jiacheng He
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hongxia Cui
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Guoqian Jiang
- College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
2
|
Mansilla FC, Miraglia MC, Maidana SS, Cecilia R, Capozzo AV. Chronic NOD2 stimulation by MDP confers protection against parthanatos through M2b macrophage polarization in RAW264.7 cells. Immunobiology 2024; 229:152833. [PMID: 38963996 DOI: 10.1016/j.imbio.2024.152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized in-vitro the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 μg/ml, 48 h) and challenged with LPS (5 μg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.
Collapse
Affiliation(s)
- Florencia C Mansilla
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina.
| | - María C Miraglia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Silvina S Maidana
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Randazzo Cecilia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina
| | - Alejandra V Capozzo
- National Council for Scientific and Technical Research (CONICET); Center for Advanced Studies in Human Sciences and Health (CAECIHS), Interamerican Open University (UAI), Buenos Aires, Argentina
| |
Collapse
|
3
|
Camacho-Morales A, Cárdenas-Tueme M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol 2024; 61:6119-6134. [PMID: 38277116 DOI: 10.1007/s12035-024-03940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Monterrey, NL, Mexico.
| | - Marcela Cárdenas-Tueme
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud and The Institute for Obesity Research, 64710, Monterrey, Mexico
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, Mexico
| |
Collapse
|
4
|
Camacho-Morales A. Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacol Rep 2022; 74:818-831. [DOI: 10.1007/s43440-022-00363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
5
|
Jantsch J, Tassinari ID, Giovenardi M, Bambini-Junior V, Guedes RP, de Fraga LS. Mood Disorders Induced by Maternal Overnutrition: The Role of the Gut-Brain Axis on the Development of Depression and Anxiety. Front Cell Dev Biol 2022; 10:795384. [PMID: 35155424 PMCID: PMC8826230 DOI: 10.3389/fcell.2022.795384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Isadora D’Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- *Correspondence: Luciano Stürmer de Fraga,
| |
Collapse
|
6
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|