1
|
Martinez P, Dutschmann M, Epercieux V, Gourjon G, Joulia F. Breath-hold diving as a tool to harness a beneficial increase in cardiac vagal tone. Respir Physiol Neurobiol 2025; 334:104416. [PMID: 40096873 DOI: 10.1016/j.resp.2025.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Here we review central mechanisms that mediate the diving bradycardia and propose that breath-hold diving (BH-D) is a powerful therapeutic tool to improve cardiac vagal tone (CVT). Physiological fluctuations in CVT are known as the respiratory heart rate variability (respirHRV) and involve two respiratory-related brainstem mechanisms. During inspiration pre-Bötzinger complex (pre-BötC) neurons inhibit cardiac vagal motor neurons to increase heart rate and subsequently cardiac vagal disinhibition and a decrease in heart rate is associated with a Kölliker-Fuse (KF) nucleus-mediated partial glottal constriction during early expiration. Both KF and pre-BötC receive direct descending cortical inputs that could mediate volitional glottal closure as critical anatomical framework to volitionally target brainstem circuits that generate CVT during BH-D. Accordingly we show that volitional and reflex glottal closure during BH-D appropriates the respirHRV core network to mediate the diving bradycardia via converging trigeminal afferents inputs from the nose and forehead. Additional sensory inputs linked to prolonged BH-D after regular training further increase CVT during the acute dive and can yield a long-term increase in CVT. Centrally, evidence of Hebbian plasticity within respirHRV/BH-D core circuit further support the notion that regular BH-D exercise can yield a permanent increase in CVT specifically via a sensitization of synapse involved in the generation of the respirHRV. Contrary to other regular physical activity, BH-D reportedly does not cause structural remodeling of the heart and therefore we suggest that regular BH-D exercise could be employed as a save and non-invasive approach to treat sympathetic hyperactivity, particularly in elderly patients with cardio-vascular predispositions.
Collapse
Affiliation(s)
- Pierrick Martinez
- Laboratory « Jeunesse - Activité Physique et Sportive, Santé »(J-AP2S), University of Toulon, Toulon, France.
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Center for Sleep Disorders Research, Louis Stokes Cleveland VA Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vincent Epercieux
- Aix Marseille Univ., CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 403 Rue Marcel Demonque, Avignon, France
| | - Fabrice Joulia
- Laboratory « Jeunesse - Activité Physique et Sportive, Santé »(J-AP2S), University of Toulon, Toulon, France; Center for Cardiovascular and Nutrition Research C2VN, INSERM 1263 INRAE 1260 Aix Marseille Université, Marseille, France
| |
Collapse
|
2
|
Baus TL, Ackermann SP, Laborde S. Effects of Adding Facial Immersion to Chest-Level Water Immersion on Vagally-Mediated Heart Rate Variability. Sports (Basel) 2025; 13:64. [PMID: 40137788 PMCID: PMC11946671 DOI: 10.3390/sports13030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Recent studies have shown that both facial immersion and head-out water immersion up to the chest (HOIC) positively influence cardiac vagal activity, as indexed non-invasively through vagally mediated heart rate variability (vmHRV). While facial immersion activates the diving reflex, HOIC induces effects via hydrostatic pressure, each engaging distinct physiological mechanisms. This study aims to investigate whether combining facial immersion with HOIC results in an additional increase in vmHRV. In total, the vmHRV [log10RMSSD] of 37 participants (14 females, Mage = 23.8; SDage = 4.4 years) was assessed under two conditions, with resting and recovery measurements taken before and after each condition. The first condition involved HOIC alone (M = 1.97, SD = 0.27), followed by HOIC combined with facial immersion (M = 1.87, SD = 0.29). HOIC alone significantly increased RMSSD compared to baseline (p < 0.001); however, no additional increase was observed when facial immersion was added (p = 0.436). This suggests that, while HOIC effectively increases vmHRV, the addition of facial immersion does not provide any further enhancement under the conditions tested. Potential methodological limitations, such as the absence of breath holding, variability in immersion depth, and the use of thermoneutral water temperatures, may have influenced the outcomes and warrant further investigation.
Collapse
Affiliation(s)
- Tina L. Baus
- University of Konstanz, 78464 Konstanz, Germany;
- Department of Performance Psychology, German Sport University, 50933 Köln, Germany;
| | - Stefan P. Ackermann
- Department of Performance Psychology, German Sport University, 50933 Köln, Germany;
| | - Sylvain Laborde
- Department of Performance Psychology, German Sport University, 50933 Köln, Germany;
- Normandie Université Caen, 14000 Caen, France
| |
Collapse
|
3
|
Budde R, RoaFiore L, Irazoqui P. High density probes reveal medullary seizure and rapid medullary shutdown in a model of fatal apnea in seizure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637524. [PMID: 39990313 PMCID: PMC11844396 DOI: 10.1101/2025.02.10.637524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Objective Sudden unexpected death in epilepsy (SUDEP) is suggested to be a cardiorespiratory collapse that occurs shortly after a seizure. Prior work in rats suggests that reflexive apneas (produced by stimulation of trigeminal or vagal peripheral sensory targets) is highly fatal during seizure but well tolerated otherwise. These reflexes share network connectivity in the medulla, particularly the caudal solitary nucleus (NTS) and ventral respiratory column (VRC), and possibly other intermediate structures. We sought to observe the electrographic activity in these regions. Methods We use urethane anesthetized long evans rats. We utilized either 125 μm silver wire in the caudal NTS or a Neuropixel 1.0 probe along a dorsoventral trajectory that spanned the caudal NTS to the VRC. We additionally recorded cardiorespiratory activity via several methods. We induced a reflexive apnea - the diving reflex - by nasal irrigation of cold water for several seconds, which produces a period of apnea, then gasping, and then a gradual return to eupnea. We repeated several trials while the animal was healthy and subsequently induced continuous seizure activity with kainate and repeated the reflexes, which are ultimately fatal during seizure. Results Seizure activity confounds many established methods of analyzing high-density single unit data such as provided by Neuropixels probes, and so our analyses focus on averaging responses over larger anatomical regions (120 μm) covering small populations of neurons. Seizure produces broad increases in neuronal activity across the medullary tract, which by itself is not dangerous. Ictal reflexive apneas were broadly more inhibitory (producing a reduction in firing rate) than they were preictally, and fatal ictal responses resulted in a very rapid shutdown of all medullary activity. We only rarely observed ictal central apneas (apneas with no apparent stimuli), but when we did they were apparently safe, always survived, and produced no significant change in network activity (neither increase nor decrease). Conclusions These data support the theory that central apnea events in seizure are relatively safe as we observed they produce little change in the medullary tract network, while stimuli-induced-reflexive-apneas are dangerous because they produce profound quieting across respiratory centers. Our data suggest that seizure spreads to this medullary tract at approximately the same rate and intensity as forebrain, as previously described in this model. These data are supportive of SUDEP mechanisms involving brainstem inhibition as a primary cause, such as spreading depolarization waves. These findings likely extend beyond nasal irrigation to any sensory reflexive apnea caused by airway irritation of any kind, and may bear relevance to similar deaths seen in infants.
Collapse
Affiliation(s)
- Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura RoaFiore
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pedro Irazoqui
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Boys RM, Kot BCW, Lye G, Beausoleil NJ, Hunter S, Stockin KA. Evaluation of ballistics euthanasia applied to stranded cetaceans using ethological and post-mortem computed tomography assessment. Vet Res Commun 2024; 48:3989-4006. [PMID: 39287893 PMCID: PMC11538159 DOI: 10.1007/s11259-024-10537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Debilitated stranded cetaceans with low survival likelihood, may require euthanasia to avoid further suffering. Euthanasia can involve chemical or physical methods, including ballistics. Ballistics should cause instantaneous, permanent insensibility through brainstem disruption. Despite wide application, there is limited understanding of ballistics-related welfare outcomes. We opportunistically examined behaviour of three maternally-dependent cetaceans following shooting and the related cranial disruption post-mortem using computed tomography (PMCT). Our aim was to understand whether a 'humane death', i.e., euthanasia, was achieved. Each animal was shot using different projectile types: soft non-bonded, solid, and soft bonded. In two animals, insensibility was not immediately assessed following shooting, although both were reported as 'instantaneously insensible'. From our analysis, all animals displayed musculoskeletal responses to shooting, including peduncle stiffening and slack lower jaw, followed by musculature relaxation 24-, 10.3- and 20.8-seconds post-ballistics, respectively. The animal shot with a soft non-bonded projectile also displayed agonal convulsions and tail-lifting for 16-seconds post-shot; these were not observed for solid or soft bonded projectiles. PMCT findings indicated projectile disruption to the brainstem and/or spinal cord likely to cause near-instantaneous insensibility. However, extra-cranial wounding was also evident for the soft non-bonded projectile, highlighting potential for additional welfare compromise. Our results demonstrate that ballistics can achieve a relatively rapid death in young, stranded cetaceans, but careful equipment selection is required. To ensure a humane death, verification of insensibility must be undertaken immediately following shooting. Further studies should be undertaken to improve knowledge of appropriate procedures and equipment for euthanasia, ensuring humane deaths for compromised cetaceans.
Collapse
Affiliation(s)
- Rebecca M Boys
- Cetacean Ecology Research Group, College of Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand.
| | - Brian C W Kot
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Gordon Lye
- Animal Referral Centre, 224 Albany Highway, Schnapper Rock, Auckland, 0632, New Zealand
| | - Ngaio J Beausoleil
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Stuart Hunter
- School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Karen A Stockin
- Cetacean Ecology Research Group, College of Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand.
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| |
Collapse
|
5
|
Fahlman A, Burggren W, Milsom WK. The role of cognition as a factor regulating the diving responses of animals, including humans. J Exp Biol 2024; 227:jeb246472. [PMID: 39177084 DOI: 10.1242/jeb.246472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The dive response involves three main components - breath holding, reduced heart rate and increased peripheral vasoconstriction - and is ubiquitous during forced dives in air-breathing vertebrates; however, numerous studies in free-diving animals have shown that the heart rate response to diving varies considerably in a manner that suggests cognitive control. Furthermore, studies on free-diving animals and controlled experiments in trained animals both indicate that the dive response can be conditioned, such that the reduction in heart rate begins before submergence and the extent of the reduction is set early in the dive. In addition, numerous species also experience an increase in heart rate and blood flow during ascent at the end of a dive, a phenomenon commonly called 'ascent tachycardia'. Collectively, these data suggest that although the dive response is under autonomic control, many species can vary its magnitude depending on the length and type of the planned dive - an indication of a role for cognition in the overall physiological responses associated with diving. Here, we provide examples of the conditioned cardiac responses - including anticipatory changes in heart rate - in several diving species and propose potential underlying mechanisms. We also discuss how the anticipatory cardiovascular responses not only improve diving capacity, but also prevent diving-related problems, such as decompression sickness or barotrauma, through a mechanism described by the selective gas exchange hypothesis.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanogràfic, Gran Vıa Marques del Turia 19, 46005 Valencia, Spain
- Global Diving Research, 11540 San Lucar de Barrameda, Spain
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Warren Burggren
- Developmental Integrative Biology Group, School of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Downey G. Skill building in freediving as an example of embodied culture. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230150. [PMID: 39155712 PMCID: PMC11391316 DOI: 10.1098/rstb.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 08/20/2024] Open
Abstract
Skilled activity is a complex mix of automatized action, changed attention patterns, cognitive strategies and physiological adaptations developed within a community of practice. Drawing on physiological and ethnographic research on freediving, this article argues that skill acquisition demonstrates the variety of mechanisms that link biological and cultural processes to produce culturally shaped forms of embodiment. In particular, apneists alter phenotypic expression through patterned practices that canalize development, exaggerating the dive response, developing resistance to elevated carbon dioxide levels (hypercapnia) and accommodating hydrostatic pressure at depth. The community of divers provides technical advice and helps to orient individuals' motivations. Some biological processes are phenomenologically accessible, but others are sub-aware and must be accessed indirectly through behaviour or altered interactions with the environment. The close analysis of embodied skills like freediving illustrates how phenotypic plasticity is inflected by culturally patterned behaviours. Divers do developmental work on bodily traits like the dive response to achieve more dramatic performance, even if they cannot directly control all elements of the neurological and physiological responses. The example of expert freediving illustrates the imbrication of biology and culture in embodiment. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Greg Downey
- School of Social Science, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Wang W, Wu D, Wang H, Zhang Z, Jiang X, Li S, Shi Y, Gao X. Acute Effects of Breath-Hold Conditions on Aerobic Fitness in Elite Rugby Players. Life (Basel) 2024; 14:917. [PMID: 39202660 PMCID: PMC11355650 DOI: 10.3390/life14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The effects of face immersion and concurrent exercise on the diving reflex evoked by breath-hold (BH) differ, yet little is known about the combined effects of different BH conditions on aerobic fitness in elite athletes. This study aimed to assess the acute effects of various BH conditions on 18 male elite rugby players (age: 23.5 ± 1.8 years; height: 183.3 ± 3.4 cm; body mass: 84.8 ± 8.5 kg) and identify the BH condition eliciting the greatest aerobic fitness activation. Participants underwent five warm-up conditions: baseline regular breathing, dynamic dry BH (DD), static dry BH (SD), wet dynamic BH (WD), and wet static BH (WS). Significant differences (p < 0.05) were found in red blood cells (RBCs), red blood cell volume (RGB), and hematocrit (HCT) pre- and post-warm-up. Peak oxygen uptake (VO2peak) and relative oxygen uptake (VO2/kgpeak) varied significantly across conditions, with BH groups showing notably higher values than the regular breathing group (p < 0.05). Interaction effects of facial immersion and movement conditions were significant for VO2peak, VO2/kgpeak, and the cardiopulmonary optimal point (p < 0.05). Specifically, VO2peak and peak stroke volume (SVpeak) were significantly higher in the DD group compared to that in other conditions. Increases in VO2peak were strongly correlated with changes in RBCs and HCT induced by DD warm-up (r∆RBC = 0.84, r∆HCT = 0.77, p < 0.01). In conclusion, DD BH warm-up appears to optimize subsequent aerobic performance in elite athletes.
Collapse
Affiliation(s)
- Wendi Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| | - Dongzhe Wu
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hao Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| | - Zhiqiang Zhang
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Xuming Jiang
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Shufeng Li
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Yongjin Shi
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Xiaolin Gao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| |
Collapse
|
8
|
Burggren W, Fahlman A, Milsom W. Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire. Exp Physiol 2024; 109:1051-1065. [PMID: 38502538 PMCID: PMC11215480 DOI: 10.1113/ep091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Andreas Fahlman
- Fundación OceanogràficValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinkoping UniversityLinkopingSweden
| | - William Milsom
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
9
|
Lagman-Bartolome AM, Im J, Gladstone J. Headaches Attributed to Disorders of Homeostasis. Neurol Clin 2024; 42:521-542. [PMID: 38575264 DOI: 10.1016/j.ncl.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Headaches attributed to disorders of homeostasis include those different headache types associated with metabolic and systemic diseases. These are headache disorders occurring in temporal relation to a disorder of homeostasis including hypoxia, high altitude, airplane travel, diving, sleep apnea, dialysis, autonomic dysreflexia, hypothyroidism, fasting, cardiac cephalalgia, hypertension and other hypertensive disorders like pheochromocytoma, hypertensive crisis, and encephalopathy, as well as preeclampsia or eclampsia. The proposed mechanism behind the causation of these headache subtypes including diagnostic criteria, evaluation, treatment, and overall management will be discussed.
Collapse
Affiliation(s)
- Ana Marissa Lagman-Bartolome
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto; Department of Pediatrics, Division of Neurology, Children's Hospital, London Health Sciences Center, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioner's Road East, London, Ontario N6A5W9, Canada.
| | - James Im
- Department of Medicine, Division of Adult Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario M5B1W8, Canada
| | - Jonathan Gladstone
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto; Gladstone Headache Clinic, 1333 Sheppard Avenue E, Suite 122, North York, Ontario M2J1V1, Canada
| |
Collapse
|
10
|
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024; 156:190-200. [PMID: 36641366 PMCID: PMC10336178 DOI: 10.1016/j.semcdb.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.
Collapse
Affiliation(s)
| | - Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Ok, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, Ok, USA
| | - Chuyue Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
12
|
Powell K, Wadolowski S, Tambo W, Strohl JJ, Kim D, Turpin J, Al-Abed Y, Brines M, Huerta PT, Li C. Intrinsic diving reflex induces potent antioxidative response by activation of NRF2 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579910. [PMID: 38405863 PMCID: PMC10888858 DOI: 10.1101/2024.02.12.579910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aims This study aims to elucidate the underlying mechanisms of diving reflex, a powerful endogenous mechanism supporting underwater mammalian survival. Antioxidative responses, observed in marine mammals, may be contributing factors. Using a multi-organ approach, this study assesses whether acute and chronic diving reflex activate nuclear factor-erythroid-2-related factor 2 (NRF2) signaling pathways, which regulate cellular antioxidant responses. Methods Male Sprague-Dawley rats ( n =38) underwent either a single diving session to elicit acute diving reflex, or daily diving sessions for 4-weeks to produce chronic diving reflex. NRF2 (total, nuclear, phosphorylated), NRF2-downstream genes, and malondialdehyde were assessed via Western blot, immunofluorescence, RT-PCR, and ELISA in brain, lung, kidney, and serum. Results Diving reflex increased nuclear NRF2, phosphorylated NRF2, and antioxidative gene expression, in an organ-specific and exposure time-specific manner. Comparing organs, the brain had the highest increase of phosphorylated NRF2 expression, while kidney had the highest degree of nuclear NRF2 expression. Comparing acute and chronic sessions, phosphorylated NRF2 increased the most with chronic diving reflex, but acute diving reflex had the highest antioxidative gene expression. Notably, calcitonin gene-related peptide appears to mediate diving reflex' effects on NRF2 activation. Conclusions Acute and chronic diving reflex activate potent NRF2 signaling in the brain and peripheral organs. Interestingly, acute diving reflex induces higher expression of downstream antioxidative genes compared to chronic diving reflex. This result contradicts previous assumptions requiring chronic exposure to diving for induction of antioxidative effects and implies that the diving reflex has a strong translational potential during preconditioning and postconditioning therapies. Key Points Diving reflex activates potent NRF2 signaling via multiple mechanisms, including phosphorylation, nuclear translocation, and KEAP1 downregulation with both acute and chronic exposure.Diving reflex activates NRF2 via differential pathways in the brain and other organs; phosphorylated NRF2 increases more in the brain, while nuclear NRF2 increases more in the peripheral organs.Acute diving reflex exposure induces a more pronounced antioxidative effect than chronic diving reflex exposure, indicating that the antioxidative response activated by diving reflex is not dependent upon chronic adaptive responses and supports diving reflex as both a preconditioning and postconditioning treatment.
Collapse
|
13
|
Jalil M, Coverdell TC, Gutierrez VA, Crook ME, Shi J, Stornetta DS, Schwalbe DC, Abbott SBG, Campbell JN. Molecular Disambiguation of Heart Rate Control by the Nucleus Ambiguus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571991. [PMID: 38168262 PMCID: PMC10760142 DOI: 10.1101/2023.12.16.571991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nucleus ambiguus (nAmb) provides parasympathetic control of cardiorespiratory functions as well as motor control of the upper airways and striated esophagus. A subset of nAmb neurons innervates the heart through the vagus nerve to control cardiac function at rest and during key autonomic reflexes such as the mammalian diving reflex. These cardiovagal nAmb neurons may be molecularly and anatomically distinct, but how they differ from other nAmb neurons in the adult brain remains unclear. We therefore classified adult mouse nAmb neurons based on their genome-wide expression profiles, innervation of cardiac ganglia, and ability to control HR. Our integrated analysis of single-nucleus RNA-sequencing data predicted multiple molecular subtypes of nAmb neurons. Mapping the axon projections of one nAmb neuron subtype, Npy2r-expressing nAmb neurons, showed that they innervate cardiac ganglia. Optogenetically stimulating all nAmb vagal efferent neurons dramatically slowed HR to a similar extent as selectively stimulating Npy2r+ nAmb neurons, but not other subtypes of nAmb neurons. Finally, we trained mice to perform voluntary underwater diving, which we use to show Npy2r+ nAmb neurons are activated by the diving response, consistent with a cardiovagal function for this nAmb subtype. These results together reveal the molecular organization of nAmb neurons and its control of heart rate.
Collapse
Affiliation(s)
- Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | | | - Maisie E. Crook
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Jiachen Shi
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | - Dana C. Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA
| | | | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
14
|
Callado Pérez A, Demers M, Fassihi A, Moore JD, Kleinfeld D, Deschênes M. A brainstem circuit for the expression of defensive facial reactions in rat. Curr Biol 2023; 33:4030-4035.e3. [PMID: 37703878 PMCID: PMC11034846 DOI: 10.1016/j.cub.2023.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The brainstem houses neuronal circuits that control homeostasis of vital functions. These include the depth and rate of breathing1,2 and, critically, apnea, a transient cessation of breathing that prevents noxious vapors from entering further into the respiratory tract. Current thinking is that this reflex is mediated by two sensory pathways. One known pathway involves vagal and glossopharyngeal afferents that project to the nucleus of the solitary tract.3,4,5 Yet, apnea induced by electrical stimulation of the nasal epithelium or delivery of ammonia vapors to the nose persists after brainstem transection at the pontomedullary junction, indicating that the circuitry that mediates this reflex is intrinsic to the medulla.6 A second potential pathway, consistent with this observation, involves trigeminal afferents from the nasal cavity that project to the muralis subnucleus of the spinal trigeminal complex.7,8 Notably, the apneic reflex is not dependent on olfaction as it can be initiated even after disruption of olfactory pathways.9 We investigated how subnucleus muralis cells mediate apnea in rat. By means of electrophysiological recordings and lesions in anesthetized rats, we identified a pathway from chemosensors in the nostrils through the muralis subnucleus and onto both the preBötzinger and facial motor nuclei. We then monitored breathing and orofacial reactions upon ammonia delivery near the nostril of alert, head-restrained rats. The apneic reaction was associated with a grimace, characterized by vibrissa protraction, wrinkling of the nose, and squinting of the eyes. Our results show that a brainstem circuit can control facial expressions for nocifensive and potentially pain-inducing stimuli.
Collapse
Affiliation(s)
- Amalia Callado Pérez
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxime Demers
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada
| | - Arash Fassihi
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada.
| |
Collapse
|
15
|
Tramel W, Schram B, Canetti E, Orr R. An Examination of Subjective and Objective Measures of Stress in Tactical Populations: A Scoping Review. Healthcare (Basel) 2023; 11:2515. [PMID: 37761712 PMCID: PMC10530665 DOI: 10.3390/healthcare11182515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Persons working in tactical occupations are often exposed to high-stress situations. If this stress is to be measured, an understanding of the stress outcomes used in these occupations is needed. The aim of this review was to capture and critically appraise research investigating subjective and objective outcome measures of physiological stress in tactical occupations. Several literature databases (PubMed, EMBASE, EBsco) were searched using key search words and terms. Studies meeting inclusion criteria were critically evaluated and scored by two authors using the Joanne Briggs Institute (JBI) critical appraisal tool. Of 17,171 articles, 42 studies were retained. The Cohen's Kappa agreement between authors was 0.829 with a mean JBI Score of included studies of 8.1/9 ± 0.37 points. Multiple subjective and objective measures were assessed during a variety of high-stress tasks and environments across different occupations, including police officers, emergency service personnel, firefighters, and soldiers in the military. Common objective outcomes measures were heart rate, cortisol, and body temperature, and subjective measures were ratings of perceived exertion, and the Self Trait Anxiety Inventory. Often used in combination (i.e., subjective and objective), these outcome measures can be used to monitor stressors faced by tactical personnel undergoing on-the-job training.
Collapse
Affiliation(s)
- Whitney Tramel
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia; (B.S.); (E.C.); (R.O.)
| | - Ben Schram
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia; (B.S.); (E.C.); (R.O.)
- Tactical Research Unit, Bond University, Robina, QLD 4226, Australia
| | - Elisa Canetti
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia; (B.S.); (E.C.); (R.O.)
- Tactical Research Unit, Bond University, Robina, QLD 4226, Australia
| | - Robin Orr
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia; (B.S.); (E.C.); (R.O.)
- Tactical Research Unit, Bond University, Robina, QLD 4226, Australia
| |
Collapse
|
16
|
Schmidt T, Reiss N, Olbrich E, Chalabi K, Hagedorn T, Tetzlaff K. Scuba diving after a heart transplant: excessive daring or calculable risk? Am J Physiol Heart Circ Physiol 2023; 325:H569-H577. [PMID: 37477692 DOI: 10.1152/ajpheart.00332.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Over the past 50 years, outcomes after heart transplantation (HTX) have continuously and significantly improved. In the meantime, many heart transplant recipients live almost normal lives with only a few limitations. In some cases, even activities that actually seemed unreasonable for these patients turn out to be feasible. This article describes the encouraging example of a patient returning to recreational scuba diving after HTX. So far, there were no scientific experiences documented in this area. We worked out the special hemodynamic features and the corresponding risks of this sport for heart transplant recipients in an interdisciplinary manner and evaluated them using the patient as an example. The results show that today, with the appropriate physical condition and compliance with safety measures, a wide range of activities, including scuba diving, are possible again after HTX. They illustrate again the significant development and the enormous potential of this therapy option, which is unfortunately only available to a limited extent.NEW & NOTEWORTHY Example for shared decision-making process for tricky questions: First scientific publication about heart transplantation (HTX)-recipient restarting scuba diving. As exercise physiology after HTX combined with specific diving medicine aspects is challenging, we formed a multidisciplinary team to identify, evaluate, and mitigate the risks involved. The results show that today, with the appropriate physical condition and compliance with safety measures, a wide range of activities are possible again after HTX.
Collapse
Affiliation(s)
- Thomas Schmidt
- Institute for Cardiology and Sports Medicine, German Sports University Cologne, Cologne, Germany
- Institute for Cardiovascular Research, Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| | - Nils Reiss
- Institute for Cardiovascular Research, Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| | - Erk Olbrich
- Department of Cardiac Surgery, INCCI Haerz-Zenter, Luxembourg, Luxembourg
| | - Khaled Chalabi
- Department of Cardiac Surgery, INCCI Haerz-Zenter, Luxembourg, Luxembourg
| | - Thorsten Hagedorn
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Kay Tetzlaff
- Department of Sports Medicine, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Prodel E, Cavalvanti T, Divino B, Rocha HNM, Nobrega ACL. Sympathetic control of the coronary circulation during trigeminal nerve stimulation in humans. Eur J Appl Physiol 2023; 123:2063-2071. [PMID: 37179503 DOI: 10.1007/s00421-023-05208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE We sought to investigate the sympathetic mechanism controlling coronary circulation during trigeminal nerve stimulation in healthy women. METHODS The protocol consisted of 3 min of trigeminal nerve stimulation (TGS) with cold stimuli to the face, in two conditions: (1) control and β-blockade (oral propranolol), and (2) control and α-blockade (oral prazosin). RESULTS Thirty-one healthy young subjects (women: n = 13; men: n = 18) participated in the study. By design, TGS decreased heart rate (HR), and increased blood pressure (BP) and cardiac output (CO). Before the β-blockade coronary blood velocity (CBV-Δ1.4 ± 1.3 cm s-1) increased along with the decrease of coronary vascular conductance index (CVCi-Δ-0.04 ± 0.04 cm s-1 mmHg-1) during TGS and the β-blockade abolished the CBV increase and a further decrease of CVCi was observed with TGS (Δ-0.06 ± 0.07 cm s-1 mmHg-1). During the α-blockade condition before the blockade, the CBV increased (Δ0.93 ± 1.48 cm s-1) along with the decrease of CVCi (Δ-0.05 ± 1.12 cm s-1 mmHg-1) during TGS, after the α-blockade CBV (Δ0.98 ± cm s-1) and CVCi (Δ-0.03 ± 0.06 cm s-1 mmHg-1) response to TGS did not change. CONCLUSION Coronary circulation increases during sympathetic stimulation even with a decrease in heart rate.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Alameda Barros Terra S/N, Niteroi, Rio de Janeiro, Brazil.
- National Institute for Science & Technology-INCT (In)Activity & Exercise, Rio de Janeiro, Brazil.
| | - Thiago Cavalvanti
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Alameda Barros Terra S/N, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science & Technology-INCT (In)Activity & Exercise, Rio de Janeiro, Brazil
| | - Beatriz Divino
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Alameda Barros Terra S/N, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science & Technology-INCT (In)Activity & Exercise, Rio de Janeiro, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Alameda Barros Terra S/N, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science & Technology-INCT (In)Activity & Exercise, Rio de Janeiro, Brazil
| | - Antonio C L Nobrega
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Alameda Barros Terra S/N, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science & Technology-INCT (In)Activity & Exercise, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Rabe H, Mercer J. Knowledge gaps in optimal umbilical cord management at birth. Semin Perinatol 2023:151791. [PMID: 37357042 DOI: 10.1016/j.semperi.2023.151791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In 2014 the World Health Organisation recommended providing placental blood to all newborn infants by waiting for at least one minute before clamping the umbilical cord. Mounting evidence supports providing a placental transfusion at the time of birth for all infants. The optimal time before clamping and cutting the umbilical cord is still not yet known, and debate exists around other cord management issues. The newborn's transition phase from intra- to extra-uterine life and the effects of blood volume on the many necessary adaptations are understudied. How best to support these adaptations guides our suggested research questions. Parents' perceptions of enrolling their unborn infant into a study play important parts in the conduct of such trials. This article aims to address these topics and suggest research questions for further studies.
Collapse
Affiliation(s)
- Heike Rabe
- Academic Department of Paediatrics, Brighton and Sussex Medical School, University of Sussex, UK.
| | - Judith Mercer
- Neonatal Research Institute at Sharp Mary Birch Hospital for Women and Newborns, San Diego CA, USA; College of Nursing, University of Rhode Island, Kingston RI, USA
| |
Collapse
|
19
|
Bakkeren C, Ladegaard M, Hansen KA, Wahlberg M, Madsen PT, Rojano-Doñate L. Visual deprivation induces a stronger dive response in a harbor porpoise. iScience 2023; 26:106204. [PMID: 36876128 PMCID: PMC9982314 DOI: 10.1016/j.isci.2023.106204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The dive response allows marine mammals to perform prolonged breath-hold dives to access rich marine prey resources. Via dynamic adjustments of peripheral vasoconstriction and bradycardia, oxygen consumption can be tailored to breath-hold duration, depth, exercise, and even expectations during dives. By investigating the heart rate of a trained harbor porpoise during a two-alternative forced choice task, where the animal is either acoustically masked or blindfolded, we test the hypothesis that sensory deprivation will lead to a stronger dive response to conserve oxygen when facing a more uncertain and smaller sensory umwelt. We show that the porpoise halves its diving heart rate (from 55 to 25 bpm) when blindfolded but presents no change in heart rate during masking of its echolocation. Therefore, visual stimuli may matter more to echolocating toothed whales than previously assumed, and sensory deprivation can be a major driver of the dive response, possibly as an anti-predator measure.
Collapse
Affiliation(s)
- Ciska Bakkeren
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Kirstin Anderson Hansen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Fjord&Bælt, Margrethes Plads 1, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, Building 1131, C. F. Møllers Allé 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Ackermann SP, Raab M, Backschat S, Smith DJC, Javelle F, Laborde S. The diving response and cardiac vagal activity: A systematic review and meta-analysis. Psychophysiology 2023; 60:e14183. [PMID: 36219506 DOI: 10.1111/psyp.14183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023]
Abstract
This article aimed to synthesize the various triggers of the diving response and to perform a meta-analysis assessing their effects on cardiac vagal activity. The protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A systematic and meta-analytic review of cardiac vagal activity was conducted, indexed with the root mean square of successive differences (RMSSD) in the context of the diving response. The search on MEDLINE (via PubMed), Web of Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies with human participants were considered, measuring RMSSD pre- and during and/or post-exposure to at least one trigger of the diving response. Seventeen papers (n = 311) met inclusion criteria. Triggers examined include face immersion or cooling, SCUBA diving, and total body immersion into water. Compared to resting conditions, a significant moderate to large positive effect was found for RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but not post-exposure (g = 0.11, 95% CI -0.14 to 0.36, p = .34). Among the considered moderators, total body immersion had a significantly larger effect than forehead cooling (QM = 23.46, df = 1, p < .001). No further differences were detected. Limitations were the small number of studies included, heterogenous triggers, few participants and low quality of evidence. Further research is needed to investigate the role of cardiac sympathetic activity and of the moderators.
Collapse
Affiliation(s)
- Stefan Peter Ackermann
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Serena Backschat
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - David John Charles Smith
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,UFR STAPS, EA 4260, Cesams, Normandie Université, Caen, France
| |
Collapse
|
21
|
Cardiac Asystole at Birth Re-Visited: Effects of Acute Hypovolemic Shock. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020383. [PMID: 36832512 PMCID: PMC9955546 DOI: 10.3390/children10020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Births involving shoulder dystocia or tight nuchal cords can deteriorate rapidly. The fetus may have had a reassuring tracing just before birth yet may be born without any heartbeat (asystole). Since the publication of our first article on cardiac asystole with two cases, five similar cases have been published. We suggest that these infants shift blood to the placenta due to the tight squeeze of the birth canal during the second stage which compresses the cord. The squeeze transfers blood to the placenta via the firm-walled arteries but prevents blood returning to the infant via the soft-walled umbilical vein. These infants may then be born severely hypovolemic resulting in asystole secondary to the loss of blood. Immediate cord clamping (ICC) prevents the newborn's access to this blood after birth. Even if the infant is resuscitated, loss of this large amount of blood volume may initiate an inflammatory response that can enhance neuropathologic processes including seizures, hypoxic-ischemic encephalopathy (HIE), and death. We present the role of the autonomic nervous system in the development of asystole and suggest an alternative algorithm to address the need to provide these infants intact cord resuscitation. Leaving the cord intact (allowing for return of the umbilical cord circulation) for several minutes after birth may allow most of the sequestered blood to return to the infant. Umbilical cord milking may return enough of the blood volume to restart the heart but there are likely reparative functions that are carried out by the placenta during the continued neonatal-placental circulation allowed by an intact cord.
Collapse
|
22
|
Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock. J Clin Med 2023; 12:jcm12031108. [PMID: 36769755 PMCID: PMC9917827 DOI: 10.3390/jcm12031108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
The pressure exerted on the heart and blood vessels because of blood flow is considered an essential parameter for cardiovascular function. It determines sufficient blood perfusion, and transportation of nutrition, oxygen, and other essential factors to every organ. Pressure in the primary arteries near the heart and the brain is known as central blood pressure (CBP), while that in the peripheral arteries is known as peripheral blood pressure (PBP). Usually, CBP and PBP are correlated; however, various types of shocks and cardiovascular disorders interfere with their regulation and differently affect the blood flow in vital and accessory organs. Therefore, understanding blood pressure in normal and disease conditions is essential for managing shock-related cardiovascular implications and improving treatment outcomes. In this review, we have described the control systems (neural, hormonal, osmotic, and cellular) of blood pressure and their regulation in hemorrhagic/hypovolemic shock using centhaquine (Lyfaquin®) as a resuscitative agent.
Collapse
|
23
|
Carotid body stimulation as a potential intervention in sudden death in epilepsy. Epilepsy Behav 2022; 136:108918. [PMID: 36202052 PMCID: PMC10187768 DOI: 10.1016/j.yebeh.2022.108918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate carotid body (CB) mechanisms related to sudden death during seizure. Ictal activation of oxygen-conserving reflexes (OCRs) can trigger fatal cardiorespiratory collapse in seizing rats, which presents like human sudden unexpected death in epilepsy (SUDEP). The CB is strongly implicated in OCR pathways; we hypothesize that modulating CB activity will provide insight into these mechanisms of death. METHODS Long-Evans rats were anesthetized with urethane. Recordings included: electrocorticography, electrocardiography, respiration via nasal thermocouple, and blood pressure (BP). The mammalian diving reflex (MDR) was activated by cold water delivered through a nasal cannula. Reflex and stimulation trials were repeated up to 16 times (4 pre-intervention, 12 post-intervention) or until death. In some animals, one or both carotid bodies were denervated. In some animals, the CB was electrically stimulated, both with and without MDR. Seizures were induced with kainic acid (KA). RESULTS Animals without seizure and with no CB modulation survived all reflexes. Non-seizing animals with CB denervation survived 7.1 ± 5.4 reflexes before death, and only 1 of 7 survived past the 12-trial threshold. Electrical CB stimulation without seizure and without reflex caused significant tachypnea and hypotension. Electrical CB stimulation with seizure and without reflex required higher amplitudes to replicate the physiological responses seen outside seizure. Seizing animals without CB intervention survived 3.2 ± 3.6 trials (per-reflex survival rate 42.0% ± 44.4%), and 0 of 7 survived past the 12-trial threshold. Seizing animals with electrical CB stimulation survived 10.5 ± 4.7 ictal trials (per-reflex survival rate 86.3% ± 35.0%), and 6 of 8 survived past the 12-trial threshold. SIGNIFICANCE These results suggest that, during seizure, the ability of the CB to stimulate a restart of respiration is impaired. The CB and its afferents may be relevant to fatal ictal apnea and SUDEP in humans, and CB stimulation may be a relevant intervention technique in these deaths.
Collapse
|
24
|
Keeler JM, Hess HW, Tourula E, Baker TB, Kerr PM, Greenshields JT, Chapman RF, Johnson BD, Schlader ZJ. Increased spleen volume provoked by temperate head-out-of-water immersion. Am J Physiol Regul Integr Comp Physiol 2022; 323:R776-R786. [PMID: 36121146 PMCID: PMC9639762 DOI: 10.1152/ajpregu.00111.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
This study tested the hypotheses that 1) spleen volume increases during head-out-of-water immersion (HOWI) and returns to pre-HOWI values postdiuresis, and 2) the magnitude of apnea-induced spleen contraction increases when preapnea spleen volume is elevated. Spleen volume was measured before and after a set of five apneas in 12 healthy adults (28 ± 5 yr, 3 females) before, during (at 30 and 150 min), and 20 min after temperate temperature (36 ± 1°C) HOWI. At each time point, spleen length, width, and thickness were measured via ultrasound, and spleen volume was calculated using the Pilström equation. Compared with pre-HOWI (276 ± 88 mL), spleen volume was elevated at 30 (353 ± 94 mL, P < 0.01) and 150 (322 ± 87 mL, P < 0.01) min of HOWI but returned to pre-HOWI volume at post-HOWI (281 ± 90 mL, P = 0.58). Spleen volume decreased from pre- to postapnea bouts at each time point (P < 0.01). The magnitude of reduction in spleen volume from pre- to postapneas was elevated at 30 min of HOWI (-69 ± 24 mL) compared with pre-HOWI (-52 ± 20 mL, P = 0.04) but did not differ from pre-HOWI at 150 min of HOWI (-54 ± 16 mL, P = 0.99) and post-HOWI (-50 ± 18 mL, P = 0.87). Thus, spleen volume is increased throughout 180 min of HOWI, and whereas apnea-induced spleen contraction is augmented after 30 min of HOWI, the magnitude of spleen contraction is unaffected by HOWI thereafter.
Collapse
Affiliation(s)
- Jason M Keeler
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Hayden W Hess
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Erica Tourula
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Tyler B Baker
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Payton M Kerr
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Joel T Greenshields
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Robert F Chapman
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Blair D Johnson
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Zachary J Schlader
- H. H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
25
|
Veerakumar A, Yung AR, Liu Y, Krasnow MA. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 2022; 606:739-746. [PMID: 35650438 PMCID: PMC9297035 DOI: 10.1038/s41586-022-04760-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/13/2022] [Indexed: 01/29/2023]
Abstract
The sympathetic and parasympathetic nervous systems powerfully regulate internal organs1, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics, and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically, and functionally distinct subtypes. One we call ACV (ambiguus cardiovascular) neurons (~35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ACP (ambiguus cardiopulmonary) neurons (~15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons, but surprisingly also innervate most or all lung parasympathetic ganglion neurons; clonal labeling shows individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.
Collapse
Affiliation(s)
- Avin Veerakumar
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea R Yung
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yin Liu
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry, Wall Center for Pulmonary Vascular Disease, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Mercer J, Erickson-Owens D, Rabe H, Jefferson K, Andersson O. Making the Argument for Intact Cord Resuscitation: A Case Report and Discussion. CHILDREN 2022; 9:children9040517. [PMID: 35455560 PMCID: PMC9031173 DOI: 10.3390/children9040517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
We use a case of intact cord resuscitation to argue for the beneficial effects of an enhanced blood volume from placental transfusion for newborns needing resuscitation. We propose that intact cord resuscitation supports the process of physiologic neonatal transition, especially for many of those newborns appearing moribund. Transfer of the residual blood in the placenta provides the neonate with valuable access to otherwise lost blood volume while changing from placental respiration to breathing air. Our hypothesis is that the enhanced blood flow from placental transfusion initiates mechanical and chemical forces that directly, and indirectly through the vagus nerve, cause vasodilatation in the lung. Pulmonary vascular resistance is thereby reduced and facilitates the important increased entry of blood into the alveolar capillaries before breathing commences. In the presented case, enhanced perfusion to the brain by way of an intact cord likely led to regained consciousness, initiation of breathing, and return of tone and reflexes minutes after birth. Paramount to our hypothesis is the importance of keeping the umbilical cord circulation intact during the first several minutes of life to accommodate physiologic neonatal transition for all newborns and especially for those most compromised infants.
Collapse
Affiliation(s)
- Judith Mercer
- Neonatal Research Institute, Sharp Mary Birch Hospital for Women and Newborns, San Diego, CA 92123, USA
- College of Nursing, University of Rhode Island, Kingston, RI 02881, USA;
- Correspondence:
| | | | - Heike Rabe
- Brighton and Sussex Medical School, University of Sussex, Brighton BN2 5BE, UK;
| | - Karen Jefferson
- American College of Nurse-Midwives, Silver Spring, MD 20910, USA;
| | - Ola Andersson
- Department of Clinical Sciences Lund, Paediatrics, Lund University, 221 85 Lund, Sweden;
| |
Collapse
|
27
|
Nordine M, Schwarz A, Bruckstein R, Gunga HC, Opatz O. The Human Dive Reflex During Consecutive Apnoeas in Dry and Immersive Environments: Magnitude and Synchronicity. Front Physiol 2022; 12:725361. [PMID: 35058791 PMCID: PMC8764278 DOI: 10.3389/fphys.2021.725361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human dive reflex (HDR), an O2 conserving reflex, is characterised by an interplay of central parasympathetic and peripheral sympathetic reactions, which are presumed to operate independently of each other. The HDR is fully activated during apnoea with facial immersion in water and complete immersion in water is thought to increase the magnitude of HDR during consecutive apnoeas. A comparison of HDR activity between consecutive apnoeas in full-body immersion with consecutive apnoeas in dry conditions has not been fully explored. Also, the interplay between parasympathetic and sympathetic reactions involved in the HDR has not been thoroughly analysed. Methods: 11 human volunteers performed 3 consecutive 60 s apnoeas with facial immersion in dry conditions (FIDC) and 3 consecutive apnoeas with facial immersion in full immersion (FIFI). Heart rate (HR), R-R interval (RRI), finger pulse amplitude (FPA), splenic width (SW) and SpO2 were all measured before, during and after apnoeas. A one-way ANOVA using Dunn's post hoc test was performed to assess HDR activity, and a Pearson's correlation test was performed to assess HDR synchronisation between physiological parameters during both conditions. Results: Although HDR activity was not significantly different between both conditions, HR and RRI showed progressively greater changes during FIFI compared with FIDC, while SW and FPA changes were relatively equivalent. During FIDC, significant correlations were found between SW & SpO2 and FPA & SpO2. During FIFI, significant correlations were found between RRI & FPA, SW & FPA, HR & SpO2 and FPA & SpO2. Discussion: While there was no significant difference found between HDR activity during FIDC and FIFI, consecutive apnoeas during FIFI triggered a greater magnitude of cardiac activity. Furthermore, significant correlations between RRI and SW with FPA indicate a crosstalk between parasympathetic tone with splenic contraction and increased peripheral sympathetic outflow during FIFI compared to FIDC. In conclusion, HDR activity during consecutive apnoeas does not differ between FIDC and FIFI. There appears to be however a greater level of synchronicity during apnoeas in FIFI compared to FIDC and that this is most likely due to the physiological effects of immersion, which could induce neural recruitment and increased cross talk of HDR pathways.
Collapse
Affiliation(s)
- Michael Nordine
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Anton Schwarz
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Renana Bruckstein
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Oliver Opatz
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Acute and chronic cardiorespiratory consequences of focal intrahippocampal administration of seizure-inducing agents. Implications for SUDEP. Auton Neurosci 2021; 235:102864. [PMID: 34428716 DOI: 10.1016/j.autneu.2021.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The risk factors for SUDEP are undoubtedly heterogenous but the main factor is the frequency of generalized tonic-clonic seizures with apnoea and/or cardiac abnormalities likely precipitating the lethal event. By its very nature modelling SUDEP experimentally is challenging, yet insights into the nature of the lethal event and precipitating factors are vital in order to understand and prevent fatalities. Acute animal models, which induce status epilepticus (SE), can be used to help understand pathophysiological processes during and following seizures, which sometimes lead to death. The most commonly used method to induce seizures and status epilepticus is systemic administration of an ictogenic agent. Microinjection of such agents into restricted regions within the brain induces a more localised epileptic focus and circumvents the risk of direct actions on cardiorespiratory control centres. Both approaches have revealed substantial cardiovascular and respiratory consequences, including death as a result of apnoea, which may be of central origin, obstructive due to laryngospasm or, at least in genetically modified mice, a result of spreading depolarisation to medullary respiratory control centres. SUDEP is by definition a result of epilepsy, which in turn is diagnosed on the basis of two or more unprovoked seizures. The incidence of tonic-clonic seizures is the main risk factor, raising the possibility that repeated seizures cause cumulative pathological and/or pathophysiological changes that contribute to the risk of SUDEP. Chronic experimental models, which induce repeated seizures that in some cases lead to death, do show progressive development of pathophysiological changes in the myocardium, e.g. prolongation of QT the interval of the ECG or, over longer periods, ventricular hypertrophy. However, the currently available evidence indicates that seizure-related deaths are primarily due to apnoeas, but cardiac factors, particularly cumulative cardiac pathophysiologies due to repeated seizures, are potential contributing factors.
Collapse
|
29
|
Annen J, Panda R, Martial C, Piarulli A, Nery G, Sanz LRD, Valdivia-Valdivia JM, Ledoux D, Gosseries O, Laureys S. Mapping the functional brain state of a world champion freediver in static dry apnea. Brain Struct Funct 2021; 226:2675-2688. [PMID: 34420066 DOI: 10.1007/s00429-021-02361-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Voluntary apnea showcases extreme human adaptability in trained individuals like professional free divers. We evaluated the psychological and physiological adaptation and the functional cerebral changes using electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) to 6.5 min of dry static apnea performed by a world champion free diver. Compared to resting state at baseline, breath holding was characterized by increased EEG power and functional connectivity in the alpha band, along with decreased delta band connectivity. fMRI connectivity was increased within the default mode network (DMN) and visual areas but decreased in pre- and postcentral cortices. While these changes occurred in regions overlapping with cerebral signatures of several meditation practices, they also display some unique features that suggest an altered somatosensory integration. As suggested by self-reports, these findings could reflect the ability of elite free divers to create a state of sensory dissociation when performing prolonged apnea.
Collapse
Affiliation(s)
- Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium.
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Andrea Piarulli
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | | | - Leandro R D Sanz
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Juan M Valdivia-Valdivia
- Department of Neurosurgery. St, Joseph's Hospital, Tampa, FL, USA
- International Association for Development of Apnea (AIDA International), Medical and Science Committee, Zurich, Switzerland
| | - Didier Ledoux
- Anesthesia and Intensive Care, GIGA Consciousness, ULiège, Liège, Belgium
- Intensive Care Department, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
30
|
Ponganis PJ. A Physio-Logging Journey: Heart Rates of the Emperor Penguin and Blue Whale. Front Physiol 2021; 12:721381. [PMID: 34413792 PMCID: PMC8369151 DOI: 10.3389/fphys.2021.721381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physio-logging has the potential to explore the processes that underlie the dive behavior and ecology of marine mammals and seabirds, as well as evaluate their adaptability to environmental change and other stressors. Regulation of heart rate lies at the core of the physiological processes that determine dive capacity and performance. The bio-logging of heart rate in unrestrained animals diving at sea was infeasible, even unimaginable in the mid-1970s. To provide a historical perspective, I review my 40-year experience in the development of heart rate physio-loggers and the evolution of a digital electrocardiogram (ECG) recorder that is still in use today. I highlight documentation of the ECG and the interpretation of heart rate profiles in the largest of avian and mammalian divers, the emperor penguin and blue whale.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Laske TG, Garshelis DL, Iles TL, Iaizzo PA. An engineering perspective on the development and evolution of implantable cardiac monitors in free-living animals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200217. [PMID: 34121460 PMCID: PMC8200647 DOI: 10.1098/rstb.2020.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The latest technologies associated with implantable physiological monitoring devices can record multiple channels of data (including: heart rates and rhythms, activity, temperature, impedance and posture), and coupled with powerful software applications, have provided novel insights into the physiology of animals in the wild. This perspective details past challenges and lessons learned from the uses and developments of implanted biologgers designed for human clinical application in our research on free-ranging American black bears (Ursus americanus). In addition, we reference other research by colleagues and collaborators who have leveraged these devices in their work, including: brown bears (Ursus arctos), grey wolves (Canis lupus), moose (Alces alces), maned wolves (Chrysocyon brachyurus) and southern elephant seals (Mirounga leonina). We also discuss the potentials for applications of such devices across a range of other species. To date, the devices described have been used in fifteen different wild species, with publications pending in many instances. We have focused our physiological research on the analyses of heart rates and rhythms and thus special attention will be paid to this topic. We then discuss some major expected step changes such as improvements in sensing algorithms, data storage, and the incorporation of next-generation short-range wireless telemetry. The latter provides new avenues for data transfer, and when combined with cloud-based computing, it not only provides means for big data storage but also the ability to readily leverage high-performance computing platforms using artificial intelligence and machine learning algorithms. These advances will dramatically increase both data quantity and quality and will facilitate the development of automated recognition of extreme physiological events or key behaviours of interest in a broad array of environments, thus further aiding wildlife monitoring and management. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part I)’.
Collapse
Affiliation(s)
- Timothy G Laske
- Department of Surgery, University of Minnesota, B172 Mayo, MMC 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - David L Garshelis
- Minnesota Department of Natural Resources (retired), 1201 E Hwy 2, Grand Rapids, MN 55744, USA
| | - Tinen L Iles
- Department of Surgery, University of Minnesota, B172 Mayo, MMC 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Paul A Iaizzo
- Department of Surgery, University of Minnesota, B172 Mayo, MMC 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Stewart M, Bain AR. Assessment of respiratory effort with EMG extracted from ECG recordings during prolonged breath holds: Insights into obstructive apnea and extreme physiology. Physiol Rep 2021; 9:e14873. [PMID: 34042313 PMCID: PMC8157791 DOI: 10.14814/phy2.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
Breath holding divers display extraordinary voluntary control over involuntary reactions during apneic episodes. After an initial easy phase to the breath hold, this voluntary control is applied against the increasing involuntary effort to inspire. We quantified an electromyographic (EMG) signal associated with respiratory movements derived from broad bandpass ECG recordings taken from experienced breath holding divers during prolonged dry breath holds. We sought to define their relationship to involuntary respiratory movements and compare these signals with what is known to occur in obstructive sleep apnea (OSA) and epileptic seizures. ECG and inductance plethysmography records from 14 competitive apneists (1 female) were analyzed. ECG records were analyzed for intervals and the EMG signal was extracted from a re‐filtered version of the original broad bandpass signal and ultimately enveloped with a Hilbert transform. EMG burst magnitude, quantified as an area measure, increased over the course of the struggle phase, correlated with inductance plethysmography measures, and corresponded to significant variance in heart rate variability. We conclude that an EMG signal extracted from the ECG can complement plethysmography during breath holds and may help quantify involuntary effort, as reported previously for obstructive sleep apnea. Further, given the resemblance between cardiac and respiratory features of the breath hold struggle phase to obstructive apnea that can occur during sleep or in association with epileptic seizure activity, the struggle phase may be a useful simulation of obstructive apnea for controlled experimentation that can help clarify aspects of acute and chronic apnea‐associated physiology.
Collapse
Affiliation(s)
- Mark Stewart
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
33
|
White TG, Powell K, Shah KA, Woo HH, Narayan RK, Li C. Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review. Front Neurosci 2021; 15:649910. [PMID: 33927590 PMCID: PMC8076561 DOI: 10.3389/fnins.2021.649910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
The trigeminal nerve, the fifth cranial nerve, is known to innervate much of the cerebral arterial vasculature and significantly contributes to the control of cerebrovascular tone in both healthy and diseased states. Previous studies have demonstrated that stimulation of the trigeminal nerve (TNS) increases cerebral blood flow (CBF) via antidromic, trigemino-parasympathetic, and other central pathways. Despite some previous reports on the role of the trigeminal nerve and its control of CBF, there are only a few studies that investigate the effects of TNS on disorders of cerebral perfusion (i.e., ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury). In this mini review, we present the current knowledge regarding the mechanisms of trigeminal nerve control of CBF, the anatomic underpinnings for targeted treatment, and potential clinical applications of TNS, with a focus on the treatment of impaired cerebral perfusion.
Collapse
Affiliation(s)
- Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Kevin A Shah
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Henry H Woo
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
34
|
A Step further-The Role of Trigeminocardiac Reflex in Therapeutic Implications: Hypothesis, Evidence, and Experimental Models. J Neurosurg Anesthesiol 2021; 34:364-371. [PMID: 33538537 DOI: 10.1097/ana.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Abstract
The trigeminocardiac reflex (TCR) is a well-recognized brainstem reflex that represents a unique interaction between the brain and the heart through the Vth and Xth cranial nerves and brainstem nuclei. The TCR has mainly been reported as an intraoperative phenomenon causing cardiovascular changes during skull-base surgeries. However, it is now appreciated that the TCR is implicated during non-neurosurgical procedures and in nonsurgical conditions, and its complex reflex pathways have been explored as potential therapeutic options in various neurological and cardiovascular diseases. This narrative review presents an in-depth overview of hypothetical and experimental models of the TCR phenomenon in relation to the Vth and Xth cranial nerves. In addition, primitive interactions between these 2 cranial nerves and their significance are highlighted. Finally, therapeutic models of the complex interactions of the TCR and areas for further research will be considered.
Collapse
|