1
|
Martinez Fiesco JA, Li N, Alvarez de la Cruz A, Metcalfe RD, Beilina A, Cookson MR, Zhang P. 14-3-3 binding maintains the Parkinson's associated kinase LRRK2 in an inactive state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624879. [PMID: 39605327 PMCID: PMC11601620 DOI: 10.1101/2024.11.22.624879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central player in cellular signaling and a significant contributor to Parkinson's disease (PD) pathogenesis. 14-3-3 proteins are essential regulators of LRRK2, modulating its activity. Here, we present the cryo- electron microscopy structure of the LRRK2:14-3-3 2 autoinhibitory complex, showing that a 14-3-3 dimer stabilizes an autoinhibited LRRK2 monomer by binding to key phosphorylation sites and the COR-A and COR-B subdomains within the Roc-COR GTPase domain of LRRK2. This interaction locks LRRK2 in an inactive conformation, restricting LRR domain mobility and preventing dimerization and oligomer formation. Our mutagenesis studies reveal that PD-associated mutations at the COR:14-3-3 interface and within the GTPase domain reduce 14-3-3 binding, diminishing its inhibitory effect on LRRK2. These findings provide a structural basis for understanding how LRRK2 likely remains dormant within cells, illuminate aspects of critical PD biomarkers, and suggest therapeutic strategies to enhance LRRK2-14-3-3 interactions to treat PD and related disorders.
Collapse
|
2
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
3
|
Miltenberger-Miltenyi G, Ortega RA, Domingo A, Yadav R, Nishiyama A, Raymond D, Katsnelson V, Urval N, Swan M, Shanker V, Miravite J, Walker RH, Bressman SB, Ozelius LJ, Cabassa JC, Saunders-Pullman R. Genetic risk variants in New Yorkers of Puerto Rican and Dominican Republic heritage with Parkinson's disease. NPJ Parkinsons Dis 2023; 9:160. [PMID: 38062033 PMCID: PMC10703927 DOI: 10.1038/s41531-023-00599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 01/31/2024] Open
Abstract
There is a paucity of genetic characterization in people with Parkinson's disease (PD) of Latino and Afro-Caribbean descent. Screening LRRK2 and GBA variants in 32 New Yorkers of Puerto Rican ethnicity with PD and in 119 non-Hispanic-non-Jewish European PD cases revealed that Puerto Rican participants were more likely to harbor the LRRK2-p.G2019S variant (15.6% vs. 4.2%, respectively). Additionally, whole exome sequencing of twelve Puerto Rican and Dominican PD participants was performed as an exploratory study.
Collapse
Affiliation(s)
- Gabriel Miltenberger-Miltenyi
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| | - Roberto A Ortega
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Aloysius Domingo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genomics, Broad Institute, Cambridge, MA, USA
| | - Rachita Yadav
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genomics, Broad Institute, Cambridge, MA, USA
| | - Ayumi Nishiyama
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Deborah Raymond
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Viktoriya Katsnelson
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Nikita Urval
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Matthew Swan
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Vicki Shanker
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Joan Miravite
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Susan B Bressman
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - José C Cabassa
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
- Department of Neurology, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
4
|
West AB, Schwarzschild MA. LRRK2-Targeting Therapies March Through the Valley of Death. Mov Disord 2023; 38:361-365. [PMID: 36942368 PMCID: PMC11076002 DOI: 10.1002/mds.29343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Andrew B. West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome court, Durham, NC, 27710, USA
| | - Michael A. Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129 USA
| |
Collapse
|
5
|
Simons E, Fleming SM. Role of rodent models in advancing precision medicine for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:3-16. [PMID: 36803818 DOI: 10.1016/b978-0-323-85555-6.00002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With a current lack of disease-modifying treatments, an initiative toward implementing a precision medicine approach for treating Parkinson's disease (PD) has emerged. However, challenges remain in how to define and apply precision medicine in PD. To accomplish the goal of optimally targeted and timed treatment for each patient, preclinical research in a diverse population of rodent models will continue to be an essential part of the translational path to identify novel biomarkers for patient diagnosis and subgrouping, understand PD disease mechanisms, identify new therapeutic targets, and screen therapeutics prior to clinical testing. This review highlights the most common rodent models of PD and discusses how these models can contribute to defining and implementing precision medicine for the treatment of PD.
Collapse
Affiliation(s)
- Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
6
|
Lesniak RK, Nichols RJ, Montine TJ. Development of mutation-selective LRRK2 kinase inhibitors as precision medicine for Parkinson's disease and other diseases for which carriers are at increased risk. Front Neurol 2022; 13:1016040. [PMID: 36388213 PMCID: PMC9643380 DOI: 10.3389/fneur.2022.1016040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert K. Lesniak
- Medicinal Chemistry Knowledge Center, Sarafan Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
- *Correspondence: Robert K. Lesniak
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
- R. Jeremy Nichols
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, United States
- Thomas J. Montine
| |
Collapse
|
7
|
Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort. NPJ Parkinsons Dis 2022; 8:140. [PMID: 36273008 PMCID: PMC9588016 DOI: 10.1038/s41531-022-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson's Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials.
Collapse
|
8
|
Niotis K, West AB, Saunders-Pullman R. Who to Enroll in Parkinson Disease Prevention Trials? The Case for Genetically At-Risk Cohorts. Neurology 2022; 99:10-18. [PMID: 35970585 DOI: 10.1212/wnl.0000000000200812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Therapies that prevent the occurrence of Parkinson disease (PD) (primary prevention) or mitigate the progression of symptoms in those with early disease (secondary prevention) are a critical unmet need in disease management. Despite great promise, PD prevention trials have not yet demonstrated success. Initiation of treatment too late in the disease course and the heterogeneity of disease are obstacles that may have contributed to the failure. Genetically stratified groups offer many advantages to primary and secondary prevention trials. In addition to their ease of identification, they decrease disease heterogeneity on several levels. Particularly, they comprise a phenotypically and pathologically enriched group with defined clinical features, pathogenic mechanisms and associated proteins that may serve as specific trial endpoints, therapeutic targets and biomarkers for disease state, and pharmacodynamic and pharmacokinetic status. However, challenges arise from genetic variant heterogeneity, from reduced penetrance whereby many carriers will not develop PD, and in recruiting a population that will meet the desired outcome in the proposed study duration. In this review, we discussed the opportunities afforded by the enrollment of genetically stratified cohorts (i.e., leucine-rich repeat kinase 2 and glucocerebrosidase 1) into prevention trials with a primary focus on primary prevention trials. We also outlined challenges surrounding the enrollment of these cohorts and offered suggestions to leverage their many advantages.
Collapse
Affiliation(s)
- Kellyann Niotis
- From the Department of Neurology (K.N., R.S.-P.), Mount Sinai Beth Israel Medical Center; Department of Neurology (K.N., R.S.-P.), Icahn School of Medicine at Mount Sinai, New York; and Duke Center for Neurodegeneration Research (A.B.W.), Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC
| | - Andrew B West
- From the Department of Neurology (K.N., R.S.-P.), Mount Sinai Beth Israel Medical Center; Department of Neurology (K.N., R.S.-P.), Icahn School of Medicine at Mount Sinai, New York; and Duke Center for Neurodegeneration Research (A.B.W.), Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC
| | - Rachel Saunders-Pullman
- From the Department of Neurology (K.N., R.S.-P.), Mount Sinai Beth Israel Medical Center; Department of Neurology (K.N., R.S.-P.), Icahn School of Medicine at Mount Sinai, New York; and Duke Center for Neurodegeneration Research (A.B.W.), Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC.
| |
Collapse
|
9
|
Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022; 45:184-199. [PMID: 35034773 PMCID: PMC8854344 DOI: 10.1016/j.tins.2021.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.
Collapse
Affiliation(s)
- Vinod Udayar
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
10
|
Xu E, Boddu R, Abdelmotilib HA, Sokratian A, Kelly K, Liu Z, Bryant N, Chandra S, Carlisle SM, Lefkowitz EJ, Harms AS, Benveniste EN, Yacoubian TA, Volpicelli-Daley LA, Standaert DG, West AB. Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Mol Neurodegener 2022; 17:7. [PMID: 35012605 PMCID: PMC8751347 DOI: 10.1186/s13024-021-00509-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how α-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages, dendritic cells, or microglia, and exposed to well-characterized human or mouse α-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies, and myeloid cell responses to α-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with α-synuclein fibrils and microglia in Boyden chambers. RESULTS α-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells, α-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast, LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to α-synuclein fibrils. Corroborating these results, LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery, distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to α-synuclein fibrils. In primary cultured macrophages, LRRK2 kinase inhibition dampens α-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS Pathologic α-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.
Collapse
Affiliation(s)
- Enquan Xu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Ravindra Boddu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | | | - Arpine Sokratian
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Zhiyong Liu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Sidhanth Chandra
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Samantha M Carlisle
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Yan J, Zhao W, Yu W, Cheng H, Zhu B. LRRK2 correlates with macrophage infiltration in pan-cancer. Genomics 2021; 114:316-327. [PMID: 34929286 DOI: 10.1016/j.ygeno.2021.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat kinase2 (LRRK2) influences the host immune responses and correlates with the pathogenesis of inflammation, cancer as well as Parkinson' Disease. Herein, we explored the oncogenic role of LRRK2 at pan-cancer level and validated the analysis by single cell RNA-sequencing and in-vitro experiments. As a result, LRRK2 significantly correlated with the survival events. Specifically, LRRK2 increased the risk of Low-Grade Glioma whereas improved the survival probability of patients with Skin Cutaneous Melanoma. Gene set enrichment analysis demonstrated the involvement of LRRK2 in the host immune responses. Within the tumor microenvironment, LRRK2 was positively associated with the recruitment of macrophages. Furthermore, scRNA-seq and co-culture experiments demonstrated that LRRK2 deficiency impaired macrophage functions, and influenced the neoplastic progression in a cancer type-specific manner. Therefore, the present study provided a therapeutic strategy for LGG based on the interference with LRRK2 expression and activity to prevent macrophage recruitment and promote tumor eradication.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China.
| | - Wenhui Zhao
- Department of Basic Medicine, Jiangsu College of Nursing, China
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Hongju Cheng
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Baoliang Zhu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| |
Collapse
|
12
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
13
|
Azeggagh S, Berwick DC. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. Br J Pharmacol 2021; 179:1478-1495. [PMID: 34050929 DOI: 10.1111/bph.15575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Current therapeutic approaches for Parkinson's disease (PD) are based around treatments that alleviate symptoms but do not slow or prevent disease progression. As such, alternative strategies are needed. A promising approach is the use of molecules that reduce the function of leucine-rich repeat kinase (LRRK2). Gain-of-function mutations in LRRK2 account for a notable proportion of familial Parkinson's disease cases, and significantly, elevated LRRK2 kinase activity is reported in idiopathic Parkinson's disease. Here, we describe progress in finding therapeutically effective LRRK2 inhibitors, summarising studies that range from in vitro experiments to clinical trials. LRRK2 is a complex protein with two enzymatic activities and a myriad of functions. This creates opportunities for a rich variety of strategies and also increases the risk of unintended consequences. We comment on the strength and limitations of the different approaches and conclude that with two molecules under clinical trial and a diversity of alternative options in the pipeline, there is cause for optimism.
Collapse
Affiliation(s)
- Sonia Azeggagh
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Daniel C Berwick
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| |
Collapse
|
14
|
Kelly K, Chang A, Hastings L, Abdelmotilib H, West AB. Genetic background influences LRRK2-mediated Rab phosphorylation in the rat brain. Brain Res 2021; 1759:147372. [PMID: 33600829 DOI: 10.1016/j.brainres.2021.147372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Pathogenic missense mutations in the leucine-rich repeat kinase 2 gene, encoding LRRK2, results in the upregulation of Rab10 and Rab12 phosphorylation in different cells and tissues. Here, we evaluate levels of the LRRK2 kinase substrates pT73-Rab10 and pS106-Rab12 proteins in rat brain tissues from different genetic backgrounds. Whereas lines of Sprague Dawley rats have equivalent levels of pT73-Rab10 and pS106-Rab12 similar to Lrrk2 knockout rats, Long-Evans rats have levels of pT73-Rab10 and pS106-Rab12 comparable to G2019S-LRRK2 BAC transgenic rats. Strong LRRK2 kinase inhibitors are ineffective at reducing pT73-Rab10 and pS106-Rab12 levels in the Sprague Dawley rats, but potently reduce pT73-Rab10 and pS106-Rab12 levels in Long-Evans rats. Oral administration of the PFE-360 LRRK2 kinase inhibitor fails to provide neuroprotection from dopaminergic neurodegeneration caused by rAAV2/1-mediated overexpression of A53T-αsynuclein in Sprague Dawley rats. These results highlight substantial differences in LRRK2-mediated Rab10 and Rab12 phosphorylation in commonly utilized rat genetic backgrounds and suggest LRRK2 may not play a central role in Rab phosphorylation or mutant αsynuclein toxicity in Sprague Dawley rats.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Allison Chang
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lyndsay Hastings
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Exosome markers of LRRK2 kinase inhibition. NPJ PARKINSONS DISEASE 2020; 6:32. [PMID: 33298972 PMCID: PMC7666125 DOI: 10.1038/s41531-020-00138-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Hyper-activated LRRK2 is linked to Parkinson’s disease susceptibility and progression. Quantitative measures of LRRK2 inhibition, especially in the brain, maybe critical in the development of successful LRRK2-targeting therapeutics. In this study, two different brain-penetrant and selective LRRK2 small-molecule kinase inhibitors (PFE-360 and MLi2) were orally administered to groups of cynomolgus macaques. Proposed pharmacodynamic markers in exosomes from urine and cerebrospinal fluid (CSF) were compared to established markers in peripheral blood mononuclear cells (PBMCs). LRRK2 kinase inhibition led to reductions in exosome-LRRK2 protein and the LRRK2-substrate pT73-Rab10 in urine, as well as reduced exosome-LRRK2 and autophosphorylated pS1292-LRRK2 protein in CSF. We propose orthogonal markers for LRRK2 inhibition in urine and CSF can be used in combination with blood markers to non-invasively monitor the potency of LRRK2-targeting therapeutics.
Collapse
|