1
|
Hua C, Chen Y, Tao J, Dai Z, Yang W, Chen D, Liu J, Fu R. Dual-pathway EEG model with channel attention for virtual reality motion sickness detection. J Neurosci Methods 2025; 418:110425. [PMID: 40086600 DOI: 10.1016/j.jneumeth.2025.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Motion sickness has been a key factor affecting user experience in Virtual Reality (VR) and limiting the development of the VR industry. Accurate detection of Virtual Reality Motion Sickness (VRMS) is a prerequisite for solving the problem. NEW METHOD In this paper, a dual-pathway model with channel attention for detecting VRMS is proposed. The proposed model has two pathways that both consist of CNN blocks and channel attention modules. The first pathway takes the EEG signal as inputs. The second pathway transforms the EEG signal into brain networks of six frequency bands using Phase Locking Value (PLV) or ρ index (RHO) methods and takes the adjacent matrixes as input. The features from the two pathways are connected and fed into the fully connected layer for classification. Finally, a VR flight simulation experiment is performed and the EEG of the resting state before and after the virtual flight task are collected to validate the model. RESULTS The average accuracy, precision, recall, and F1 score of the proposed model are 99.12 %, 99.12 %, 99.11 %, and 99.12 %, respectively. COMPARISON WITH EXISTING METHODS Eight models are introduced as the reference methods and four of them are fused as the hybrid models in this study. The results show that the proposed model is better than those state-of-art models. CONCLUSIONS The proposed model outperforms the state-of-the-art models and provides objective and direct guidance for overcoming VRMS and optimizing VR experience.
Collapse
Affiliation(s)
- Chengcheng Hua
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuechi Chen
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlong Tao
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhian Dai
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenqing Yang
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dapeng Chen
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jia Liu
- School of Automation, C-IMER, CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rongrong Fu
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao 066000, China.
| |
Collapse
|
2
|
Shi J, Zhang Y, Song Z, Xu H, Yang Y, Jin L, Dong H, Li Z, Wei P, Shan Y, Zhao G. GEM-CRAP: a fusion architecture for focal seizure detection. J Transl Med 2025; 23:405. [PMID: 40188070 PMCID: PMC11972483 DOI: 10.1186/s12967-025-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Identification of seizures is essential for the treatment of epilepsy. Current machine-learning and deep-learning models often perform well on public datasets when classifying generalized seizures with prominent features. However, their performance was less effective in detecting brief, localized seizures. These seizure-like patterns can be masked by fixed brain rhythms. METHODS Our study proposes a supervised multilayer hybrid model called GEM-CRAP (gradient-enhanced modulation with CNN-RES, attention-like, and pre-policy networks), with three parallel feature extraction channels: a CNN-RES module, an amplitude-aware channel with attention-like mechanisms, and an LSTM-based pre-policy layer integrated into the recurrent neural network. The model was trained on the Xuanwu Hospital and HUP iEEG dataset, including intracranial, cortical, and stereotactic EEG data from 83 patients, covering over 8500 labeled electrode channels for hybrid classification (wakefulness and sleep). A post-SVM network was used for secondary training on channels with classification accuracy below 80%. We introduced an average channel deviation rate metric to assess seizure detection accuracy. RESULTS For public datasets, the model achieved over 97% accuracy for intracranial and cortical EEG sequences in patients, and over 95% for mixed sequences, with deviations below 5%. In the Xuanwu Hospital dataset, it maintained over 94% accuracy for wakefulness seizures and around 90% during sleep. SVM secondary training improved average channel accuracy by over 10%. Additionally, a strong positive correlation was found between channel accuracy distribution and the temporal distribution of seizure states. CONCLUSIONS GEM-CRAP enhances focal epilepsy detection through adaptive adjustments and attention mechanisms, achieving higher precision and robustness in complex signal environments. Beyond improving seizure interval detection, it excels in identifying and analyzing specific epileptic waveforms, such as high-frequency oscillations. This advancement may pave the way for more precise epilepsy diagnostics and provide a suitable artificial intelligence algorithm for closed-loop neurostimulation.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziang Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hang Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Jin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hengxin Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaoying Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Postepski F, Wojcik GM, Wrobel K, Kawiak A, Zemla K, Sedek G. Recurrent and convolutional neural networks in classification of EEG signal for guided imagery and mental workload detection. Sci Rep 2025; 15:10521. [PMID: 40140460 PMCID: PMC11947268 DOI: 10.1038/s41598-025-92378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The Guided Imagery technique is reported to be used by therapists all over the world in order to increase the comfort of patients suffering from a variety of disorders from mental to oncology ones and proved to be successful in numerous of ways. Possible support for the therapists can be estimation of the time at which subject goes into deep relaxation. This paper presents the results of the investigations of a cohort of 26 students exposed to Guided Imagery relaxation technique and mental task workloads conducted with the use of dense array electroencephalographic amplifier. The research reported herein aimed at verification whether it is possible to detect differences between those two states and to classify them using deep learning methods and recurrent neural networks such as EEGNet, Long Short-Term Memory-based classifier, 1D Convolutional Neural Network and hybrid model of 1D Convolutional Neural Network and Long Short-Term Memory. The data processing pipeline was presented from the data acquisition, through the initial data cleaning, preprocessing and postprocessing. The classification was based on two datasets: one of them using 26 so-called cognitive electrodes and the other one using signal collected from 256 channels. So far there have not been such comparisons in the application being discussed. The classification results are presented by the validation metrics such as: accuracy, recall, precision, F1-score and loss for each case. It turned out that it is not necessary to collect signals from all electrodes as classification of the cognitive ones gives the results similar to those obtained for the full signal and extending input to 256 channels does not add much value. In Disscussion there were proposed an optimal classifier as well as some suggestions concerning the prospective development of the project.
Collapse
Affiliation(s)
- Filip Postepski
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Akademicka 9, 20-031, Lublin, Poland.
| | - Grzegorz M Wojcik
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Akademicka 9, 20-031, Lublin, Poland
| | - Krzysztof Wrobel
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Akademicka 9, 20-031, Lublin, Poland
| | - Andrzej Kawiak
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University, Akademicka 9, 20-031, Lublin, Poland
| | - Katarzyna Zemla
- Institute of Psychology, SWPS University, Chodakowska 19/31, Warsaw, 03-815, Poland
| | - Grzegorz Sedek
- Institute of Psychology, SWPS University, Chodakowska 19/31, Warsaw, 03-815, Poland
| |
Collapse
|
4
|
Shao S, Zhou Y, Wu R, Yang A, Li Q. Application of deconvolutional networks for feature interpretability in epilepsy detection. Front Neurosci 2025; 18:1539580. [PMID: 39925685 PMCID: PMC11802560 DOI: 10.3389/fnins.2024.1539580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Scalp electroencephalography (EEG) is commonly used to assist in epilepsy detection. Even automated detection algorithms are already available to assist clinicians in reviewing EEG data, many algorithms used for seizure detection in epilepsy fail to account for the contributions of different channels. The Fully Convolutional Network (FCN) can provide the model's interpretability but has not been applied in seizure detection. Methods To address these challenges, a novel convolutional neural network (CNN) model, combining SE (Squeeze-and-Excitation) modules, was proposed on top of the FCN. The epilepsy detection performance for patient-independent was evaluated on the CHB-MIT dataset. Then, the SE module was removed from the model and integrated the model with Inception, ResNet, and CBAM modules separately. Results The method showed superior advancement, stability, and reliability compared to the other three methods. The method demonstrated a G-Mean of 82.7% for sensitivity (SEN) and specificity (SPE) on the CHB-MIT dataset. In addition, The contributions of each channel to the seizure detection task have also been quantified, which led us to find that the FZ, CZ, PZ, FT9, FT10, and T8 brain regions have a more pronounced impact on epileptic seizures. Discussion This article presents a novel algorithm for epilepsy detection that accurately identifies seizures in different patients and enhances the model's interpretability.
Collapse
Affiliation(s)
- Sihao Shao
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Yu Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ruiheng Wu
- Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, United Kingdom
| | - Aiping Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Mourid MR, Irfan H, Oduoye MO. Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare. Health Sci Rep 2025; 8:e70372. [PMID: 39846037 PMCID: PMC11751886 DOI: 10.1002/hsr2.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND AIM Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy. This review aims to assess the effectiveness of AI in pediatric epilepsy detection while considering the ethical implications surrounding its implementation. METHODOLOGY A comprehensive systematic review was conducted across multiple databases including PubMed, EMBASE, Google Scholar, Scopus, and Medline. Search terms encompassed "pediatric epilepsy," "artificial intelligence," "machine learning," "ethical considerations," and "data security." Publications from the past decade were scrutinized for methodological rigor, with a focus on studies evaluating AI's efficacy in pediatric epilepsy detection and management. RESULTS AI systems have demonstrated strong potential in diagnosing and monitoring pediatric epilepsy, often matching clinical accuracy. For example, AI-driven decision support achieved 93.4% accuracy in diagnosis, closely aligning with expert assessments. Specific methods, like EEG-based AI for detecting interictal discharges, showed high specificity (93.33%-96.67%) and sensitivity (76.67%-93.33%), while neuroimaging approaches using rs-fMRI and DTI reached up to 97.5% accuracy in identifying microstructural abnormalities. Deep learning models, such as CNN-LSTM, have also enhanced seizure detection from video by capturing subtle movement and expression cues. Non-EEG sensor-based methods effectively identified nocturnal seizures, offering promising support for pediatric care. However, ethical considerations around privacy, data security, and model bias remain crucial for responsible AI integration. CONCLUSION While AI holds immense potential to enhance pediatric epilepsy management, ethical considerations surrounding transparency, fairness, and data security must be rigorously addressed. Collaborative efforts among stakeholders are imperative to navigate these ethical challenges effectively, ensuring responsible AI integration and optimizing patient outcomes in pediatric epilepsy care.
Collapse
Affiliation(s)
| | - Hamza Irfan
- Department of MedicineShaikh Khalifa Bin Zayed Al Nahyan Medical and Dental CollegeLahorePakistan
| | - Malik Olatunde Oduoye
- Department of ResearchThe Medical Research Circle (MedReC)GomaDemocratic Republic of the Congo
| |
Collapse
|
6
|
Palanisamy KK, Rengaraj A. Detection of Anxiety-Based Epileptic Seizures in EEG Signals Using Fuzzy Features and Parrot Optimization-Tuned LSTM. Brain Sci 2024; 14:848. [PMID: 39199539 PMCID: PMC11352876 DOI: 10.3390/brainsci14080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
In humans, epilepsy is diagnosed through electroencephalography (EEG) signals. Epileptic seizures (ESs) arise due to anxiety. The detection of anxiety-based seizures is challenging for radiologists, and there is a limited availability of anxiety-based EEG signals. Data augmentation methods are required to increase the number of novel samples. An epileptic seizure arises due to anxiety, which manifests as variations in EEG signal patterns consisting of changes in the size and shape of the signal. In this study, anxiety EEG signals were synthesized by applying data augmentation methods such as random data augmentation (RDA) to existing epileptic seizure signals from the Bonn EEG dataset. The data-augmented anxiety seizure signals were processed using three algorithms-(i) fuzzy C-means-particle swarm optimization-long short-term memory (FCM-PS-LSTM), (ii) particle swarm optimization-long short-term memory (PS-LSTM), and (iii) parrot optimization LSTM (PO-LSTM)-for the detection of anxiety ESs via EEG signals. The predicted accuracies of detecting ESs through EEG signals using the proposed algorithms-namely, (i) FCM-PS-LSTM, (ii) PS-LSTM, and (iii) PO-LSTM-were about 98%, 98.5%, and 96%, respectively.
Collapse
Affiliation(s)
| | - Arthi Rengaraj
- Department of ECE, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Ramapuram Campus, Ramapuram, Chennai 600089, India;
| |
Collapse
|
7
|
Bhadra R, Singh PK, Mahmud M. HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals. Brain Inform 2024; 11:21. [PMID: 39167115 PMCID: PMC11339197 DOI: 10.1186/s40708-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination of convolutional neural network followed by two gated recurrent unit layers and performs prediction based on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.
Collapse
Affiliation(s)
- Rajdeep Bhadra
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, 700 106, Kolkata, West Bengal, India
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, 700 106, Kolkata, West Bengal, India
- Metharath University, 99, Moo 10, Bang Toei, Sam Khok, 12160, Pathum Thani, Thailand
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Nottingham, NG11 8NS, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, NG11 8NS, UK.
- Computing and Informatics Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
8
|
Patro KK, Prakash AJ, Sahoo JP, Routray S, Baihan A, Samee NA, Huang G. SMARTSeiz: Deep Learning With Attention Mechanism for Accurate Seizure Recognition in IoT Healthcare Devices. IEEE J Biomed Health Inform 2024; 28:3810-3818. [PMID: 38055360 DOI: 10.1109/jbhi.2023.3336935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The Internet of Things (IoT) is capable of controlling the healthcare monitoring system for remote-based patients. Epilepsy, a chronic brain syndrome characterized by recurrent, unpredictable attacks, affects individuals of all ages. IoT-based seizure monitoring can greatly enhance seizure patients' quality of life. IoT device acquires patient data and transmits it to a computer program so that doctors can examine it. Currently, doctors invest significant manual effort in inspecting Electroencephalograph (EEG) signals to identify seizure activity. However, EEG-based seizure detection algorithms face challenges in real-world scenarios due to non-stationary EEG data and variable seizure patterns among patients and recording sessions. Therefore, a sophisticated computer-based approach is necessary to analyze complex EEG records. In this work, the authors proposed a hybrid approach by combining traditional convolution neural (CN) and recurrent neural networks (RNN) along with an attention mechanism for the automatic recognition of epileptic seizures through EEG signal analysis. This attention mechanism focuses on significant subsets of EEG data for class recognition, resulting in improved model performance. The proposed methods are evaluated using a publicly available UCI epileptic seizure recognition dataset, which consists of five classes: four normal conditions and one abnormal seizure condition. Experimental results demonstrate that the suggested approach achieves an overall accuracy of 97.05% for the five-class EEG recognition data, with an accuracy of 99.52% for binary classification distinguishing seizure cases from normal instances. Furthermore, the proposed intelligent seizure recognition model is compatible with an IoMT (Internet of Medical Things) cloud-based smart healthcare framework.
Collapse
|
9
|
Kondo Y, Bando K, Suzuki I, Miyazaki Y, Nishida D, Hara T, Kadone H, Suzuki K. Video-Based Detection of Freezing of Gait in Daily Clinical Practice in Patients With Parkinsonism. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2250-2260. [PMID: 38865235 DOI: 10.1109/tnsre.2024.3413055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Freezing of gait (FoG) is a prevalent symptom among individuals with Parkinson's disease and related disorders. FoG detection from videos has been developed recently; however, the process requires using videos filmed within a controlled environment. We attempted to establish an automatic FoG detection method from videos taken in uncontrolled environments such as in daily clinical practices. Motion features of 16 patients were extracted from timed-up-and-go test in 109 video data points, through object tracking and three-dimension pose estimation. These motion features were utilized to form the FoG detection model, which combined rule-based and machine learning-based models. The rule-based model distinguished the frames in which the patient was walking from those when the patient has stopped, using the pelvic position coordinates; the machine learning-based model distinguished between FoG and stop using a combined one-dimensional convolutional neural network and long short-term memory (1dCNN-LSTM). The model achieved a high intraclass correlation coefficient of 0.75-0.94 with a manually-annotated duration of FoG and %FoG. This method is novel as it combines object tracking, 3D pose estimation, and expert-guided feature selection in the preprocessing and modeling phases, enabling FoG detection even from videos captured in uncontrolled environments.
Collapse
|
10
|
Zhao W, Wang WF, Patnaik LM, Zhang BC, Weng SJ, Xiao SX, Wei DZ, Zhou HF. Residual and bidirectional LSTM for epileptic seizure detection. Front Comput Neurosci 2024; 18:1415967. [PMID: 38952709 PMCID: PMC11215953 DOI: 10.3389/fncom.2024.1415967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.
Collapse
Affiliation(s)
- Wei Zhao
- Chengyi College, Jimei University, Xiamen, China
| | - Wen-Feng Wang
- Shanghai Institute of Technology, Shanghai, China
- London Institute of Technology, International Academy of Visual Arts and Engineering, London, United Kingdom
| | | | | | - Su-Jun Weng
- Chengyi College, Jimei University, Xiamen, China
| | | | - De-Zhi Wei
- Chengyi College, Jimei University, Xiamen, China
| | - Hai-Feng Zhou
- Marine Engineering Institute, Jimei University, Xiamen, China
| |
Collapse
|
11
|
Wang X, Wang J, Fei N, Duanmu D, Feng B, Li X, IP WY, Hu Y. Alternative muscle synergy patterns of upper limb amputees. Cogn Neurodyn 2024; 18:1119-1133. [PMID: 38826662 PMCID: PMC11143172 DOI: 10.1007/s11571-023-09969-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2024] Open
Abstract
Myoelectric hand prostheses are effective tools for upper limb amputees to regain hand functions. Much progress has been made with pattern recognition algorithms to recognize surface electromyography (sEMG) patterns, but few attentions was placed on the amputees' motor learning process. Many potential myoelectric prostheses users could not fully master the control or had declined performance over time. It is possible that learning to produce distinct and consistent muscle activation patterns with the residual limb could help amputees better control the myoelectric prosthesis. In this study, we observed longitudinal effect of motor skill learning with 2 amputees who have developed alternative muscle activation patterns in response to the same set of target prosthetic actions. During a 10-week program, amputee participants were trained to produce distinct and constant muscle activations with visual feedback of live sEMG and without interaction with prosthesis. At the end, their sEMG patterns were different from each other and from non-amputee control groups. For certain intended hand motion, gradually reducing root mean square (RMS) variance was observed. The learning effect was also assessed with a CNN-LSTM mixture classifier designed for mobile sEMG pattern recognition. The classification accuracy had a rising trend over time, implicating potential performance improvement of myoelectric prosthesis control. A follow-up session took place 6 months after the program and showed lasting effect of the motor skill learning in terms of sEMG pattern classification accuracy. The results indicated that with proper feedback training, amputees could learn unique muscle activation patterns that allow them to trigger intended prosthesis functions, and the original motor control scheme is updated. The effect of such motor skill learning could help to improve myoelectric prosthetic control performance.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Junlin Wang
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000 China
| | - Ningbo Fei
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Dehao Duanmu
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Beibei Feng
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Xiaodong Li
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000 China
| | - Wing-Yuk IP
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Yong Hu
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000 China
| |
Collapse
|
12
|
Benzaid A, Djemili R, Arbateni K. Seizure detection using nonlinear measures over EEG frequency bands and deep learning classifiers. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 38803055 DOI: 10.1080/10255842.2024.2356634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Epilepsy is a brain disorder that causes patients to suffer from convulsions, which affects their behavior and way of life. Epilepsy can be detected with electroencephalograms (EEGs), which record brain neural activity. Traditional approaches for detecting epileptic seizures from an EEG signal are time-consuming and annoying. To supersede these traditional methods, a myriad of automated seizure detection frameworks based on machine learning techniques have recently been developed. Feature extraction and classification are the two essential phases for seizure detection. The classifier assigns the proper class label after feature extraction lowers the input pattern space while maintaining useful features. This paper proposes a new feature extraction method based on calculating nonlinear features from the most relevant EEG frequency bands. The EEG signal is first decomposed into smaller time segments from which a vector of nonlinear features is computed and supplied to machine learning (ML) and deep learning (DL) classifiers. Experiments on the Bonn dataset reveals an accuracy of 99.7% reached in classifying normal and ictal EEG signals; and an accuracy of 98.8% in the discrimination of ictal and interictal EEG signals. Furthermore, a performance of 100% is achieved on the Hauz Khas dataset. The classification results of the proposed approach were compared to those from published state of the art techniques. Our results are equivalent to or better than some recent studies appeared in the literature.
Collapse
Affiliation(s)
- Amel Benzaid
- LRES Lab, Universite 20 Aout 1955 Skikda Faculte de Technologie, Skikda, Algeria
| | - Rafik Djemili
- LRES Lab, Universite 20 Aout 1955 Skikda Faculte de Technologie, Skikda, Algeria
| | - Khaled Arbateni
- LRES Lab, Universite 20 Aout 1955 Skikda Faculte de Technologie, Skikda, Algeria
| |
Collapse
|
13
|
Wang B, Xu Y, Peng S, Wang H, Li F. Detection Method of Epileptic Seizures Using a Neural Network Model Based on Multimodal Dual-Stream Networks. SENSORS (BASEL, SWITZERLAND) 2024; 24:3360. [PMID: 38894151 PMCID: PMC11174829 DOI: 10.3390/s24113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder, and its diagnosis mainly relies on the analysis of electroencephalogram (EEG) signals. However, the raw EEG signals contain limited recognizable features, and in order to increase the recognizable features in the input of the network, the differential features of the signals, the amplitude spectrum and the phase spectrum in the frequency domain are extracted to form a two-dimensional feature vector. In order to solve the problem of recognizing multimodal features, a neural network model based on a multimodal dual-stream network is proposed, which uses a mixture of one-dimensional convolution, two-dimensional convolution and LSTM neural networks to extract the spatial features of the EEG two-dimensional vectors and the temporal features of the signals, respectively, and combines the advantages of the two networks, using the hybrid neural network to extract both the temporal and spatial features of the signals at the same time. In addition, a channel attention module was used to focus the model on features related to seizures. Finally, multiple sets of experiments were conducted on the Bonn and New Delhi data sets, and the highest accuracy rates of 99.69% and 97.5% were obtained on the test set, respectively, verifying the superiority of the proposed model in the task of epileptic seizure detection.
Collapse
Affiliation(s)
- Baiyang Wang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Yidong Xu
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Siyu Peng
- School of Information Engineering, Changji University, Changji Hui Autonomous Prefecture, Changji 831100, China
| | - Hongjun Wang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (B.W.)
| | - Fang Li
- School of Information Engineering, Changji University, Changji Hui Autonomous Prefecture, Changji 831100, China
| |
Collapse
|
14
|
Yuan Z, Zhou Q, Wang B, Zhang Q, Yang Y, Zhao Y, Guo Y, Zhou J, Wang C. PSAEEGNet: pyramid squeeze attention mechanism-based CNN for single-trial EEG classification in RSVP task. Front Hum Neurosci 2024; 18:1385360. [PMID: 38756843 PMCID: PMC11097777 DOI: 10.3389/fnhum.2024.1385360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Methods Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Results Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 (p < 0.05). Discussion These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.
Collapse
Affiliation(s)
- Zijian Yuan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guangxi, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qian Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Baozeng Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qi Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong Guo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guangxi, China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Ravi S, Radhakrishnan A. A hybrid 1D CNN-BiLSTM model for epileptic seizure detection using multichannel EEG feature fusion. Biomed Phys Eng Express 2024; 10:035040. [PMID: 38579694 DOI: 10.1088/2057-1976/ad3afd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Epilepsy, a chronic non-communicable disease is characterized by repeated unprovoked seizures, which are transient episodes of abnormal electrical activity in the brain. While Electroencephalography (EEG) is considered as the gold standard for diagnosis in current clinical practice, manual inspection of EEG is time consuming and biased. This paper presents a novel hybrid 1D CNN-Bi LSTM feature fusion model for automatically detecting seizures. The proposed model leverages spatial features extracted by one dimensional convolutional neural network and temporal features extracted by bi directional long short-term memory network. Ictal and inter ictal data is first acquired from the long multichannel EEG record. The acquired data is segmented and labelled using small fixed windows. Signal features are then extracted from the segments concurrently by the parallel combination of CNN and Bi-LSTM. The spatial and temporal features thus captured are then fused to enhance classification accuracy of model. The approach is validated using benchmark CHB-MIT dataset and 5-fold cross validation which resulted in an average accuracy of 95.90%, with precision 94.78%, F1 score 95.95%. Notably model achieved average sensitivity of 97.18% with false positivity rate at 0.05/hr. The significantly lower false positivity and false negativity rates indicate that the proposed model is a promising tool for detecting seizures in epilepsy patients. The employed parallel path network benefits from memory function of Bi-LSTM and strong feature extraction capabilities of CNN. Moreover, eliminating the need for any domain transformation or additional preprocessing steps, model effectively reduces complexity and enhances efficiency, making it suitable for use by clinicians during the epilepsy diagnostic process.
Collapse
Affiliation(s)
- Swathy Ravi
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - Ashalatha Radhakrishnan
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| |
Collapse
|
16
|
Wang Y, Wei S, Zuo R, Kam M, Opfermann JD, Sunmola I, Hsieh MH, Krieger A, Kang JU. Automatic and real-time tissue sensing for autonomous intestinal anastomosis using hybrid MLP-DC-CNN classifier-based optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2543-2560. [PMID: 38633079 PMCID: PMC11019703 DOI: 10.1364/boe.521652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Anastomosis is a common and critical part of reconstructive procedures within gastrointestinal, urologic, and gynecologic surgery. The use of autonomous surgical robots such as the smart tissue autonomous robot (STAR) system demonstrates an improved efficiency and consistency of the laparoscopic small bowel anastomosis over the current da Vinci surgical system. However, the STAR workflow requires auxiliary manual monitoring during the suturing procedure to avoid missed or wrong stitches. To eliminate this monitoring task from the operators, we integrated an optical coherence tomography (OCT) fiber sensor with the suture tool and developed an automatic tissue classification algorithm for detecting missed or wrong stitches in real time. The classification results were updated and sent to the control loop of STAR robot in real time. The suture tool was guided to approach the object by a dual-camera system. If the tissue inside the tool jaw was inconsistent with the desired suture pattern, a warning message would be generated. The proposed hybrid multilayer perceptron dual-channel convolutional neural network (MLP-DC-CNN) classification platform can automatically classify eight different abdominal tissue types that require different suture strategies for anastomosis. In MLP, numerous handcrafted features (∼1955) were utilized including optical properties and morphological features of one-dimensional (1D) OCT A-line signals. In DC-CNN, intensity-based features and depth-resolved tissues' attenuation coefficients were fully exploited. A decision fusion technique was applied to leverage the information collected from both classifiers to further increase the accuracy. The algorithm was evaluated on 69,773 testing A-line data. The results showed that our model can classify the 1D OCT signals of small bowels in real time with an accuracy of 90.06%, a precision of 88.34%, and a sensitivity of 87.29%, respectively. The refresh rate of the displayed A-line signals was set as 300 Hz, the maximum sensing depth of the fiber was 3.6 mm, and the running time of the image processing algorithm was ∼1.56 s for 1,024 A-lines. The proposed fully automated tissue sensing model outperformed the single classifier of CNN, MLP, or SVM with optimized architectures, showing the complementarity of different feature sets and network architectures in classifying intestinal OCT A-line signals. It can potentially reduce the manual involvement of robotic laparoscopic surgery, which is a crucial step towards a fully autonomous STAR system.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Shuwen Wei
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Ruizhi Zuo
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael Kam
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Justin D. Opfermann
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Idris Sunmola
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael H. Hsieh
- Division of Urology, Children’s National Hospital, 111 Michigan Ave NW, Washington, D.C. 20010, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Jin U. Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Wang Y. Construction and improvement of English vocabulary learning model integrating spiking neural network and convolutional long short-term memory algorithm. PLoS One 2024; 19:e0299425. [PMID: 38517859 PMCID: PMC10959372 DOI: 10.1371/journal.pone.0299425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/11/2024] [Indexed: 03/24/2024] Open
Abstract
To help non-native English speakers quickly master English vocabulary, and improve reading, writing, listening and speaking skills, and communication skills, this study designs, constructs, and improves an English vocabulary learning model that integrates Spiking Neural Network (SNN) and Convolutional Long Short-Term Memory (Conv LSTM) algorithms. The fusion of SNN and Conv LSTM algorithm can fully utilize the advantages of SNN in processing temporal information and Conv LSTM in sequence data modeling, and implement a fusion model that performs well in English vocabulary learning. By adding information transfer and interaction modules, the feature learning and the timing information processing are optimized to improve the vocabulary learning ability of the model in different text contents. The training set used in this study is an open data set from the WordNet and Oxford English Corpus data corpora. The model is presented as a computer program and applied to an English learning application program, an online vocabulary learning platform, or a language education software. The experiment will use the open data set to generate a test set with text volume ranging from 100 to 4000. The performance indicators of the proposed fusion model are compared with those of five traditional models and applied to the latest vocabulary exercises. From the perspective of learners, 10 kinds of model accuracy, loss, polysemy processing accuracy, training time, syntactic structure capturing accuracy, vocabulary coverage, F1-score, context understanding accuracy, word sense disambiguation accuracy, and word order relation processing accuracy are considered. The experimental results reveal that the performance of the fusion model is better under different text sizes. In the range of 100-400 text volume, the accuracy is 0.75-0.77, the loss is less than 0.45, the F1-score is greater than 0.75, the training time is within 300s, and the other performance indicators are more than 65%; In the range of 500-1000 text volume, the accuracy is 0.81-0.83, the loss is not more than 0.40, the F1-score is not less than 0.78, the training time is within 400s, and the other performance indicators are above 70%; In the range of 1500-3000 text volume, the accuracy is 0.82-0.84, the loss is less than 0.28, the F1-score is not less than 0.78, the training time is within 600s, and the remaining performance indicators are higher than 70%. The fusion model can adapt to various types of questions in practical application. After the evaluation of professional teachers, the average scores of the choice, filling-in-the-blank, spelling, matching, exercises, and synonyms are 85.72, 89.45, 80.31, 92.15, 87.62, and 78.94, which are much higher than other traditional models. This shows that as text volume increases, the performance of the fusion model is gradually improved, indicating higher accuracy and lower loss. At the same time, in practical application, the fusion model proposed in this study has a good effect on English learning tasks and offers greater benefits for people unfamiliar with English vocabulary structure, grammar, and question types. This study aims to provide efficient and accurate natural language processing tools to help non-native English speakers understand and apply language more easily, and improve English vocabulary learning and comprehension.
Collapse
Affiliation(s)
- Yunxia Wang
- Nanyang Medical College, Nanyang, Henan, China
| |
Collapse
|
18
|
Dong X, Wen Y, Ji D, Yuan S, Liu Z, Shang W, Zhou W. Epileptic Seizure Detection with an End-to-End Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model. Int J Neural Syst 2024; 34:2450012. [PMID: 38230571 DOI: 10.1142/s0129065724500126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.
Collapse
Affiliation(s)
- Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Yiming Wen
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Zhen Liu
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Shang
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
19
|
Holguin-Garcia SA, Guevara-Navarro E, Daza-Chica AE, Patiño-Claro MA, Arteaga-Arteaga HB, Ruz GA, Tabares-Soto R, Bravo-Ortiz MA. A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure. BMC Med Inform Decis Mak 2024; 24:60. [PMID: 38429718 PMCID: PMC10908140 DOI: 10.1186/s12911-024-02460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
INTRODUCTION Epilepsy is a disease characterized by an excessive discharge in neurons generally provoked without any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy. METHOD To optimize these processes and make them more efficient, we have resorted to innovative artificial intelligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning or deep learning, with cutting-edge models, in this case, using Capsule-Net architectures and Transformer Encoder, has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis. RESULT In this paper, a comparison was made between different models for binary and multiclass classification of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule-Net model and a multiclass accuracy with the Transformer Encoder model of 87.30%. CONCLUSION Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful as it helps to discard those that are not efficient. State-of-the-art models overshadow conventional models, but data processing also plays an essential role in evaluating the higher accuracy of the models.
Collapse
Affiliation(s)
| | - Ernesto Guevara-Navarro
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Alvaro Eduardo Daza-Chica
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Maria Alejandra Patiño-Claro
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Harold Brayan Arteaga-Arteaga
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, 7941169, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile
- Data Observatory Foundation, Santiago, 7510277, Chile
| | - Reinel Tabares-Soto
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
- Departamento de Sistemas e Informática, Universidad de Caldas, Manizales, 170004, Caldas, Colombia
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, 7941169, Chile
| | - Mario Alejandro Bravo-Ortiz
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
- Centro de Bioinformática y Biología Computacional (BIOS), Manizales, 170001, Colombia.
| |
Collapse
|
20
|
Zhou Q, Zhang S, Du Q, Ke L. RIHANet: A Residual-based Inception with Hybrid-Attention Network for Seizure Detection using EEG signals. Comput Biol Med 2024; 171:108086. [PMID: 38382383 DOI: 10.1016/j.compbiomed.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Increasing attention is being given to machine learning methods designed to aid clinicians in treatment selection. Therefore, this has aroused a heightened focus on the auto-detect system of epilepsy utilizing electroencephalogram(EEG) data. However, in order for the recognition model to accurately capture a wide range of features related to channel, frequency, and temporal information, it is necessary to have EEG data that is correctly represented. To tackle this challenge, we propose a Residual-based Inception with Hybrid-Attention Network(RIHANet) to achieve automatic seizure detection. Initially, by employing Empirical Mode Decomposition and Short-time Fourier Transform(EMD-STFT) for data processing, it can improve the quality of time-frequency representation of EEG. Additionally, by applying a novel Residual-based Inception to the network architecture, the detection model can learn local and global multiscale spatial-temporal features. Furthermore, the Hybrid Attention model designed is used to obtain relationships between EEG signals from multiple perspectives, including channels, sub-spaces, and global. Using four public datasets, the suggested approach outperforms the results in the most recent scholarly publications.
Collapse
Affiliation(s)
- Qiaoli Zhou
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China; School of Computer, Shenyang Aerospace University, Shenyang, 110136, Liaoning, China
| | - Shun Zhang
- School of Computer, Shenyang Aerospace University, Shenyang, 110136, Liaoning, China
| | - Qiang Du
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Li Ke
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China.
| |
Collapse
|
21
|
Emami N, Ferdousi R. HormoNet: a deep learning approach for hormone-drug interaction prediction. BMC Bioinformatics 2024; 25:87. [PMID: 38418979 PMCID: PMC10903040 DOI: 10.1186/s12859-024-05708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Several experimental evidences have shown that the human endogenous hormones can interact with drugs in many ways and affect drug efficacy. The hormone drug interactions (HDI) are essential for drug treatment and precision medicine; therefore, it is essential to understand the hormone-drug associations. Here, we present HormoNet to predict the HDI pairs and their risk level by integrating features derived from hormone and drug target proteins. To the best of our knowledge, this is one of the first attempts to employ deep learning approach for prediction of HDI prediction. Amino acid composition and pseudo amino acid composition were applied to represent target information using 30 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied synthetic minority over-sampling technique technique. Additionally, we constructed novel datasets for HDI prediction and the risk level of their interaction. HormoNet achieved high performance on our constructed hormone-drug benchmark datasets. The results provide insights into the understanding of the relationship between hormone and a drug, and indicate the potential benefit of reducing risk levels of interactions in designing more effective therapies for patients in drug treatments. Our benchmark datasets and the source codes for HormoNet are available in: https://github.com/EmamiNeda/HormoNet .
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Fernandez Rojas R, Joseph C, Bargshady G, Ou KL. Empirical comparison of deep learning models for fNIRS pain decoding. Front Neuroinform 2024; 18:1320189. [PMID: 38420133 PMCID: PMC10899478 DOI: 10.3389/fninf.2024.1320189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Pain assessment is extremely important in patients unable to communicate and it is often done by clinical judgement. However, assessing pain using observable indicators can be challenging for clinicians due to the subjective perceptions, individual differences in pain expression, and potential confounding factors. Therefore, the need for an objective pain assessment method that can assist medical practitioners. Functional near-infrared spectroscopy (fNIRS) has shown promising results to assess the neural function in response of nociception and pain. Previous studies have explored the use of machine learning with hand-crafted features in the assessment of pain. Methods In this study, we aim to expand previous studies by exploring the use of deep learning models Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and (CNN-LSTM) to automatically extract features from fNIRS data and by comparing these with classical machine learning models using hand-crafted features. Results The results showed that the deep learning models exhibited favourable results in the identification of different types of pain in our experiment using only fNIRS input data. The combination of CNN and LSTM in a hybrid model (CNN-LSTM) exhibited the highest performance (accuracy = 91.2%) in our problem setting. Statistical analysis using one-way ANOVA with Tukey's (post-hoc) test performed on accuracies showed that the deep learning models significantly improved accuracy performance as compared to the baseline models. Discussion Overall, deep learning models showed their potential to learn features automatically without relying on manually-extracted features and the CNN-LSTM model could be used as a possible method of assessment of pain in non-verbal patients. Future research is needed to evaluate the generalisation of this method of pain assessment on independent populations and in real-life scenarios.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Calvin Joseph
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ghazal Bargshady
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- 3D Global Biotech Inc., New Taipei City, Taiwan
| |
Collapse
|
23
|
Chugh N, Aggarwal S, Balyan A. The Hybrid Deep Learning Model for Identification of Attention-Deficit/Hyperactivity Disorder Using EEG. Clin EEG Neurosci 2024; 55:22-33. [PMID: 37682533 DOI: 10.1177/15500594231193511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Common misbehavior among children that prevents them from paying attention to tasks and interacting with their surroundings appropriately is attention-deficit/hyperactivity disorder (ADHD). Studies of children's behavior presently face a significant problem in the early and timely diagnosis of this disease. To diagnose this disease, doctors often use the patient's description and questionnaires, psychological tests, and the patient's behavior in which reliability is questionable. Convolutional neural network (CNN) is one deep learning technique that has been used for the diagnosis of ADHD. CNN, however, does not account for how signals change over time, which leads to low classification performances and ambiguous findings. In this study, the authors designed a hybrid deep learning model that combines long-short-term memory (LSTM) and CNN to simultaneously extract and learn the spatial features and long-term dependencies of the electroencephalography (EEG) data. The effectiveness of the proposed hybrid deep learning model was assessed using 2 publicly available EEG datasets. The suggested model achieves a classification accuracy of 98.86% on the ADHD dataset and 98.28% on the FOCUS dataset, respectively. The experimental findings show that the proposed hybrid CNN-LSTM model outperforms the state-of-the-art methods to diagnose ADHD using EEG. Hence, the proposed hybrid CNN-LSTM model could therefore be utilized to help with the clinical diagnosis of ADHD patients.
Collapse
Affiliation(s)
- Nupur Chugh
- Netaji Subhas Institute of Technology, New Delhi, India
| | - Swati Aggarwal
- Netaji Subhas University of Technology, New Delhi, India
| | - Arnav Balyan
- Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
24
|
Wang B, Yang X, Li S, Wang W, Ouyang Y, Zhou J, Wang C. Automatic epileptic seizure detection based on EEG using a moth-flame optimization of one-dimensional convolutional neural networks. Front Neurosci 2023; 17:1291608. [PMID: 38161793 PMCID: PMC10755885 DOI: 10.3389/fnins.2023.1291608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Frequent epileptic seizures can cause irreversible damage to the brains of patients. A potential therapeutic approach is to detect epileptic seizures early and provide artificial intervention to the patient. Currently, extracting electroencephalogram (EEG) features to detect epileptic seizures often requires tedious methods or the repeated adjustment of neural network hyperparameters, which can be time- consuming and demanding for researchers. Methods This study proposes an automatic detection model for an EEG based on moth-flame optimization (MFO) optimized one-dimensional convolutional neural networks (1D-CNN). First, according to the characteristics and need for early epileptic seizure detection, a data augmentation method for dividing an EEG into small samples is proposed. Second, the hyperparameters are tuned based on MFO and trained for an EEG. Finally, the softmax classifier is used to output EEG classification from a small-sample and single channel. Results The proposed model is evaluated with the Bonn EEG dataset, which verifies the feasibility of EEG classification problems that involve up to five classes, including healthy, preictal, and ictal EEG from various brain regions and individuals. Discussion Compared with existing advanced optimization algorithms, such as particle swarm optimization, genetic algorithm, and grey wolf optimizer, the superiority of the proposed model is further verified. The proposed model can be implemented into an automatic epileptic seizure detection system to detect seizures in clinical applications.
Collapse
Affiliation(s)
- Baozeng Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xingyi Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Intelligent Manufacturing System Technology, Beijing Institute of Electronic System Engineering, Beijing, China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbo Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yichen Ouyang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Wong SB, Tsao Y, Tsai WH, Wang TS, Wu HC, Wang SS. Application of bidirectional long short-term memory network for prediction of cognitive age. Sci Rep 2023; 13:20197. [PMID: 37980387 PMCID: PMC10657465 DOI: 10.1038/s41598-023-47606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/20/2023] Open
Abstract
Electroencephalography (EEG) measures changes in neuronal activity and can reveal significant changes from infancy to adulthood concomitant with brain maturation, making it a potential physiological marker of brain maturation and cognition. To investigate a promising deep learning tool for EEG classification, we applied the bidirectional long short-term memory (BLSTM) algorithm to analyze EEG data from the pediatric EEG laboratory of Taipei Tzu Chi Hospital. The trained BLSTM model was 86% accurate when identifying EEGs from young children (8 months-6 years) and adolescents (12-20 years). However, there was only a modest classification accuracy (69.3%) when categorizing EEG samples into three age groups (8 months-6 years, 6-12 years, and 12-20 years). For EEG samples from patients with intellectual disability, the prediction accuracy of the trained BLSTM model was 46.4%, which was significantly lower than its accuracy for EEGs from neurotypical patients, indicating that the individual's intelligence plays a major role in the age prediction. This study confirmed that scalp EEG can reflect brain maturation and the BLSTM algorithm is a feasible deep learning tool for the identification of cognitive age. The trained model can potentially be applied to clinical services as a supportive measurement of neurodevelopmental status.
Collapse
Affiliation(s)
- Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Yu Tsao
- Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsin Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzong-Shi Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hsin-Chi Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Syu-Siang Wang
- Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Jo E, Lee Y, Lee Y, Baek J, Kim JG. Rapid identification of counterfeited beef using deep learning-aided spectroscopy: Detecting colourant and curing agent adulteration. Food Chem Toxicol 2023; 181:114088. [PMID: 37804916 DOI: 10.1016/j.fct.2023.114088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The adulteration of meat products using colourants and curing agents has heightened concerns over food safety, thereby necessitating the development of advanced detection methods. This study introduces a deep-learning-based spectroscopic method for swiftly identifying counterfeit beef altered to appear fresh. The experiment involved 60 beef samples, half of which were artificially adulterated using a colouring solution. Despite meticulous analysis of the beef's colour attributes, no significant differences were observed between the fresh and adulterated samples. However, our method, utilising a 344-1040 nm spectral range, achieved a classification accuracy of 98.84%. To enhance practicality, we employed gradient-weighted class activation mapping and identified the 580-600 nm range as particularly influential for classification. Remarkably, even when we narrowed the input to the model to this spectral range, a high level of classification accuracy was maintained. To further validate the model's robustness and generalisability, we allocated 70 beef samples to an external validation set. Comparative performance analysis revealed that our model outperformed traditional machine learning algorithms, such as SVM and logistic regression, by 9.3% and 28.4%, respectively. Overall, this study offers invaluable insights for detecting counterfeited beef, thereby contributing to the preservation of meat product quality and integrity within the food industry.
Collapse
Affiliation(s)
- Eunjung Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea; Department of Artificial Intelligence, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Youngjoo Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jaewoo Baek
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
27
|
Mohammed AH, Cabrerizo M, Pinzon A, Yaylali I, Jayakar P, Adjouadi M. Graph neural networks in EEG spike detection. Artif Intell Med 2023; 145:102663. [PMID: 37925203 DOI: 10.1016/j.artmed.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/06/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study develops new machine learning architectures that are more adept at detecting interictal epileptiform discharges (IEDs) in scalp EEG. A comparison of results using the average precision (AP) metric is made with the proposed models on two datasets obtained from Baptist Hospital of Miami and Temple University Hospital. METHODS Applying graph neural networks (GNNs) on functional connectivity (FC) maps of different frequency sub-bands to yield a novel architecture we call FC-GNN. Attention mechanism is applied on a complete graph to let the neural network select its important edges, hence bypassing the extraction of features, a model we refer to as CA-GNN. RESULTS On the Baptist Hospital dataset, the results were as follows: Vanilla Self-Attention →0.9029±0.0431, Hierarchical Attention →0.8546±0.0587, Vanilla Visual Geometry Group (VGG) →0.92±0.0618, Satelight →0.9219±0.046, FC-GNN →0.9731±0.0187, and CA-GNN →0.9788±0.0125. In the same order, the results on the Temple University Hospital dataset are 0.9692, 0.9113, 0.97, 0.9575, 0.963, and 0.9879. CONCLUSION Based on the good results they yield, GNNs prove to have a strong potential in detecting epileptogenic activity. SIGNIFICANCE This study opens the door for the discovery of the powerful role played by GNNs in capturing IEDs, which is an essential step for identifying the epileptogenic networks of the affected brain and hence improving the prospects for more accurate 3D source localization.
Collapse
Affiliation(s)
- Ahmed Hossam Mohammed
- Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St, Miami, 33174, FL, USA.
| | - Mercedes Cabrerizo
- Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St, Miami, 33174, FL, USA
| | - Alberto Pinzon
- Epilepsy Center, Baptist Hospital of Miami, 9090 SW 87th Ct Suite201, Miami, 33176, FL, USA
| | - Ilker Yaylali
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, 97239, OR, USA
| | - Prasanna Jayakar
- Brain Institute, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, USA
| | - Malek Adjouadi
- Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St, Miami, 33174, FL, USA
| |
Collapse
|
28
|
Ahn JM, Kim J, Kim K. Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting. Toxins (Basel) 2023; 15:608. [PMID: 37888638 PMCID: PMC10611362 DOI: 10.3390/toxins15100608] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Harmful algal blooms (HABs) are a serious threat to ecosystems and human health. The accurate prediction of HABs is crucial for their proactive preparation and management. While mechanism-based numerical modeling, such as the Environmental Fluid Dynamics Code (EFDC), has been widely used in the past, the recent development of machine learning technology with data-based processing capabilities has opened up new possibilities for HABs prediction. In this study, we developed and evaluated two types of machine learning-based models for HABs prediction: Gradient Boosting models (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM models. We used Bayesian optimization techniques for hyperparameter tuning, and applied bagging and stacking ensemble techniques to obtain the final prediction results. The final prediction result was derived by applying the optimal hyperparameter and bagging and stacking ensemble techniques, and the applicability of prediction to HABs was evaluated. When predicting HABs with an ensemble technique, it is judged that the overall prediction performance can be improved by complementing the advantages of each model and averaging errors such as overfitting of individual models. Our study highlights the potential of machine learning-based models for HABs prediction and emphasizes the need to incorporate the latest technology into this important field.
Collapse
Affiliation(s)
- Jung Min Ahn
- Water Quality Assessment Research Division, Water Environment Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea; (J.K.)
| | | | | |
Collapse
|
29
|
Abdallah T, Jrad N, Abdallah F, Humeau-Heurtier A, Van Bogaert P. A self-attention model for cross-subject seizure detection. Comput Biol Med 2023; 165:107427. [PMID: 37683531 DOI: 10.1016/j.compbiomed.2023.107427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Epilepsy is a neurological disorder characterized by recurring seizures, detected by electroencephalography (EEG). EEG signals can be detected by manual time-consuming analysis and recently by automatic detection. The latter poses a significant challenge due to the high dimensional and non-stationary nature of EEG signals. Recently, deep learning (DL) techniques have emerged as valuable tools for seizure detection. In this study, a novel data-driven model based on DL, incorporating a self-attention mechanism (SAT), is proposed. One notable advantage of the proposed method is its simplicity in application, as the raw signal data is directly fed into the suggested network without requiring expertise in signal processing. The model leverages a one-dimensional convolutional neural network (CNN) to extract relevant features from EEG signals. These features are then passed through a long short-term memory (LSTM) module to benefit from its memory capabilities, along with a SAT mechanism. The key contribution of this paper lies in the addition of the SAT layer to the LSTM encoder, enabling enhanced exploration of the latent mapping during the encoding step. Cross-subject experiments revealed good performance of this approach with F1-score of 97.8% and 92.7% for binary and five-class epileptic seizure recognition tasks, respectively, on the public UCI dataset, and 97.9% on the CHB-MIT database, surpassing state-of-the-art DL performance. Besides, the proposed method exhibits robustness to inter-subject variability.
Collapse
Affiliation(s)
- Tala Abdallah
- Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France.
| | - Nisrine Jrad
- Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France; University of Catholique de l'Ouest, Angers-Nantes, 49000, France
| | | | - Anne Humeau-Heurtier
- Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France
| | - Patrick Van Bogaert
- Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France; The Department of Pediatric Neurology, CHU, Angers, 49000, France
| |
Collapse
|
30
|
Jia H, Feng F, Caiafa CF, Duan F, Zhang Y, Sun Z, Sole-Casals J. Multi-Class Classification of Upper Limb Movements With Filter Bank Task-Related Component Analysis. IEEE J Biomed Health Inform 2023; 27:3867-3877. [PMID: 37227915 DOI: 10.1109/jbhi.2023.3278747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The classification of limb movements can provide with control commands in non-invasive brain-computer interface. Previous studies on the classification of limb movements have focused on the classification of left/right limbs; however, the classification of different types of upper limb movements has often been ignored despite that it provides more active-evoked control commands in the brain-computer interface. Nevertheless, few machine learning method can be used as the state-of-the-art method in the multi-class classification of limb movements. This work focuses on the multi-class classification of upper limb movements and proposes the multi-class filter bank task-related component analysis (mFBTRCA) method, which consists of three steps: spatial filtering, similarity measuring and filter bank selection. The spatial filter, namely the task-related component analysis, is first used to remove noise from EEG signals. The canonical correlation measures the similarity of the spatial-filtered signals and is used for feature extraction. The correlation features are extracted from multiple low-frequency filter banks. The minimum-redundancy maximum-relevance selects the essential features from all the correlation features, and finally, the support vector machine is used to classify the selected features. The proposed method compared against previously used models is evaluated using two datasets. mFBTRCA achieved a classification accuracy of 0.4193 ± 0.0780 (7 classes) and 0.4032 ± 0.0714 (5 classes), respectively, which improves on the best accuracies achieved using the compared methods (0.3590 ± 0.0645 and 0.3159 ± 0.0736, respectively). The proposed method is expected to provide more control commands in the applications of non-invasive brain-computer interfaces.
Collapse
|
31
|
Wang J, Cheng S, Tian J, Gao Y. A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
33
|
Karpov OE, Pitsik EN, Kurkin SA, Maksimenko VA, Gusev AV, Shusharina NN, Hramov AE. Analysis of Publication Activity and Research Trends in the Field of AI Medical Applications: Network Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5335. [PMID: 37047950 PMCID: PMC10094658 DOI: 10.3390/ijerph20075335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed. Our findings are based on the results of PubMed search queries and analysis of the number of papers obtained by the different search queries. Our goal is to explore how are the AI-based methods used in healthcare research, which approaches and techniques are the most popular, and to discuss the potential reasoning behind the obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software, we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with the thorough analysis of publication activity in various categories of medical AI research, including research on different AI-based methods applied to different types of medical data. We analyzed the results of query processing in the PubMed database over the past 5 years obtained via a specifically designed strategy for generating search queries based on the thorough selection of keywords from different categories of interest. We provide a comprehensive analysis of existing applications of AI-based methods to medical data of different modalities, including the context of various medical fields and specific diseases that carry the greatest danger to the human population.
Collapse
Affiliation(s)
- Oleg E. Karpov
- National Medical and Surgical Center Named after N. I. Pirogov, Ministry of Healthcare of the Russian Federation, 105203 Moscow, Russia
| | - Elena N. Pitsik
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (E.N.P.); (S.A.K.); (V.A.M.); (N.N.S.)
| | - Semen A. Kurkin
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (E.N.P.); (S.A.K.); (V.A.M.); (N.N.S.)
| | - Vladimir A. Maksimenko
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (E.N.P.); (S.A.K.); (V.A.M.); (N.N.S.)
| | - Alexander V. Gusev
- K-Skai LLC, 185031 Petrozavodsk, Russia
- Federal Research Institute for Health Organization and Informatics, 127254 Moscow, Russia
| | - Natali N. Shusharina
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (E.N.P.); (S.A.K.); (V.A.M.); (N.N.S.)
| | - Alexander E. Hramov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia; (E.N.P.); (S.A.K.); (V.A.M.); (N.N.S.)
| |
Collapse
|
34
|
Patel SA, Yildirim A. Non-stationary neural signal to image conversion framework for image-based deep learning algorithms. Front Neuroinform 2023; 17:1081160. [PMID: 37035716 PMCID: PMC10079945 DOI: 10.3389/fninf.2023.1081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
This paper presents a time-efficient preprocessing framework that converts any given 1D physiological signal recordings into a 2D image representation for training image-based deep learning models. The non-stationary signal is rasterized into the 2D image using Bresenham's line algorithm with time complexity O(n). The robustness of the proposed approach is evaluated based on two publicly available datasets. This study classified three different neural spikes (multi-class) and EEG epileptic seizure and non-seizure (binary class) based on shapes using a modified 2D Convolution Neural Network (2D CNN). The multi-class dataset consists of artificially simulated neural recordings with different Signal-to-Noise Ratios (SNR). The 2D CNN architecture showed significant performance for all individual SNRs scores with (SNR/ACC): 0.5/99.69, 0.75/99.69, 1.0/99.49, 1.25/98.85, 1.5/97.43, 1.75/95.20 and 2.0/91.98. Additionally, the binary class dataset also achieved 97.52% accuracy by outperforming several others proposed algorithms. Likewise, this approach could be employed on other biomedical signals such as Electrocardiograph (EKG) and Electromyography (EMG).
Collapse
Affiliation(s)
- Sahaj Anilbhai Patel
- Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
35
|
Amooei E, Sharifi A, Manthouri M. Early Diagnosis of Neurodegenerative Diseases Using CNN-LSTM and Wavelet Transform. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:104-124. [PMID: 36910912 PMCID: PMC9995615 DOI: 10.1007/s41666-023-00130-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/09/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Early diagnosis of neurodegenerative diseases has always been a major challenge that physicians and medical practitioners face. Therefore, using any method or device that helps with prognostics is of great importance. In recent years, deep neural networks have become popular in medical fields, and the reason is that these networks can help diagnose diseases quickly and precisely. In this research, two novel models based on a CNN-LSTM network are introduced. The main goal is to classify three neurodegenerative diseases, including ALS, Parkinson's disease, and Huntington's disease, from one another and from healthy control patients using the gait signals, which are transformed into spectrogram images. In the first model, the spectrogram images derived from the gait signals are fed into a CNN-LSTM network directly. This model achieved 99.42% accuracy. In the second model, the same input data was used to be classified using a CNN-LSTM network, which uses wavelet transform as a feature extractor before the LSTM unit. During the experiments with the second model, the detail sub-bands were eliminated one by one, and the classification results were compared. Comparing these two models has shown that using the wavelet transform and, in particular, the approximation sub-bands can result in a lighter and faster prognosis with nearly 103 times fewer training parameters overall. The classification result using only approximation sub-bands was 95.37%, using three sub-bands was 94.04%, and including all sub-bands was 94.53%, which is remarkable.
Collapse
Affiliation(s)
- Elmira Amooei
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Arash Sharifi
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Manthouri
- Department of Electrical and Electronic Engineering, Shahed University, Tehran, Iran
| |
Collapse
|
36
|
Wadhera T, Bedi J, Sharma S. Autism spectrum disorder prediction using bidirectional stacked gated recurrent unit with time-distributor wrapper: an EEG study. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
37
|
Kang JW, Kim KT, Park JW, Lee SJ. Classification of deep vein thrombosis stages using convolutional neural network of electromyogram with vibrotactile stimulation toward developing an early diagnostic tool: A preliminary study on a pig model. PLoS One 2023; 18:e0281219. [PMID: 36730258 PMCID: PMC9894458 DOI: 10.1371/journal.pone.0281219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Deep vein thrombosis (DVT) can lead to life-threatening disorders; however, it can only be recognized after its symptom appear. This study proposed a novel method that can detect the early stage of DVT using electromyography (EMG) signals with vibration stimuli using the convolutional neural networks (CNN) algorithm. The feasibility of the method was tested with eight legs before and after the surgical induction of DVT at nine-time points. Furthermore, perfusion pressure (PP), intracompartmental pressure (IP), and shear elastic modulus (SEM) of the tibialis anterior were also collected. In the proposed method, principal component analysis (PCA) and CNN were used to analyze the EMG data and classify it before and after the DVT stages. The cross-validation was performed in two strategies. One is for each leg and the other is the leave-one-leg-out (LOLO), test without any predicted information, for considering the practical diagnostic tool. The results showed that PCA-CNN can classify before and after DVT stages with an average accuracy of 100% (each leg) and 68.4±20.5% (LOLO). Moreover, all-time points (before induction of DVT and eight-time points after DVT) were classified with an average accuracy of 72.0±11.9% which is substantially higher accuracy than the chance levels (11% for 9-class classification). Based on the experimental results in the pig model, the proposed CNN-based method can classify the before- and after-DVT stages with high accuracy. The experimental results can provide a basis for further developing an early diagnostic tool for DVT using only EMG signals with vibration stimuli.
Collapse
Affiliation(s)
- Jong Woo Kang
- Department of Orthopaedic Surgery, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Keun-Tae Kim
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Orthopaedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Song Joo Lee
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
38
|
Fischetti G, Schmid N, Bruderer S, Caldarelli G, Scarso A, Henrici A, Wilhelm D. Automatic classification of signal regions in 1H Nuclear Magnetic Resonance spectra. Front Artif Intell 2023; 5:1116416. [PMID: 36714208 PMCID: PMC9874632 DOI: 10.3389/frai.2022.1116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The identification and characterization of signal regions in Nuclear Magnetic Resonance (NMR) spectra is a challenging but crucial phase in the analysis and determination of complex chemical compounds. Here, we present a novel supervised deep learning approach to perform automatic detection and classification of multiplets in 1H NMR spectra. Our deep neural network was trained on a large number of synthetic spectra, with complete control over the features represented in the samples. We show that our model can detect signal regions effectively and minimize classification errors between different types of resonance patterns. We demonstrate that the network generalizes remarkably well on real experimental 1H NMR spectra.
Collapse
Affiliation(s)
- Giulia Fischetti
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari Università di Venezia, Venice, Italy
| | - Nicolas Schmid
- Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), Zurich, Switzerland
- Institute for Computational Science, Universität Zürich (UZH), Zurich, Switzerland
| | | | - Guido Caldarelli
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari Università di Venezia, Venice, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari Università di Venezia, Venice, Italy
| | - Andreas Henrici
- Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), Zurich, Switzerland
| | - Dirk Wilhelm
- Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), Zurich, Switzerland
| |
Collapse
|
39
|
Barbulescu R, Mestre G, Oliveira AL, Silveira LM. Learning the dynamics of realistic models of C. elegans nervous system with recurrent neural networks. Sci Rep 2023; 13:467. [PMID: 36627317 PMCID: PMC9832137 DOI: 10.1038/s41598-022-25421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Given the inherent complexity of the human nervous system, insight into the dynamics of brain activity can be gained from studying smaller and simpler organisms. While some of the potential target organisms are simple enough that their behavioural and structural biology might be well-known and understood, others might still lead to computationally intractable models that require extensive resources to simulate. Since such organisms are frequently only acting as proxies to further our understanding of underlying phenomena or functionality, often one is not interested in the detailed evolution of every single neuron in the system. Instead, it is sufficient to observe the subset of neurons that capture the effect that the profound nonlinearities of the neuronal system have in response to different stimuli. In this paper, we consider the well-known nematode Caenorhabditis elegans and seek to investigate the possibility of generating lower complexity models that capture the system's dynamics with low error using only measured or simulated input-output information. Such models are often termed black-box models. We show how the nervous system of C. elegans can be modelled and simulated with data-driven models using different neural network architectures. Specifically, we target the use of state-of-the-art recurrent neural network architectures such as Long Short-Term Memory and Gated Recurrent Units and compare these architectures in terms of their properties and their accuracy (Root Mean Square Error), as well as the complexity of the resulting models. We show that Gated Recurrent Unit models with a hidden layer size of 4 are able to accurately reproduce the system response to very different stimuli. We furthermore explore the relative importance of their inputs as well as scalability to more scenarios.
Collapse
Affiliation(s)
| | - Gonçalo Mestre
- INESC-ID Lisboa, Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- IST Técnico Lisboa, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Arlindo L Oliveira
- INESC-ID Lisboa, Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- IST Técnico Lisboa, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| | - Luís Miguel Silveira
- INESC-ID Lisboa, Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- IST Técnico Lisboa, Universidade de Lisboa, Av. Rovisco Pais 1, Lisbon, 1049-001, Portugal
| |
Collapse
|
40
|
Noreldeen HAA, Huang KY, Wu GW, Zhang Q, Peng HP, Deng HH, Chen W. Feature Selection Assists BLSTM for the Ultrasensitive Detection of Bioflavonoids in Different Biological Matrices Based on the 3D Fluorescence Spectra of Gold Nanoclusters. Anal Chem 2022; 94:17533-17540. [PMID: 36473730 DOI: 10.1021/acs.analchem.2c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,National Institute of Oceanography and Fisheries, NIOF, Cairo 4262110, Egypt
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
41
|
The single-channel dry electrode SSVEP-based biometric approach: data augmentation techniques against overfitting for RNN-based deep models. Phys Eng Sci Med 2022; 45:1219-1240. [PMID: 36318386 DOI: 10.1007/s13246-022-01189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Biometric studies based on electroencephalography (EEG) have received increasing attention because each individual has a dynamic and unique pattern. However, classic EEG-based biometrics have significant deficiencies, including noise-prone signals, gel-based electrodes, and the need for multi-training/multi-channel acquisition and high mental effort. In contrast, steady-state visually evoked potential (SSVEP)-based biometrics have the important advantages of high signal-to-noise ratio and untrained usage. Dynamic brain potential responses are a natural subconscious activity and can be elicited by flickering lights having distinct frequencies, such as cell phone flashes, without extra physical or mental effort. Few studies involving multi-channel/multi-trial SSVEP-based biometric research are available in the current literature. Moreover, there is a lack of research comparing them to the single-channel single-trial dry electrode-implemented SSVEP-based biometric approach using Recurrent Neural Networks (RNN). Furthermore, to the best of our knowledge, no prior work has proposed an SSVEP-based biometric comparison of the RNNs using data augmentation strategies against overfitting. It was observed that the biometric recognition results were promising, achieving up to 100% accuracy and > 97% sensitivity and specificity scores for 11 subjects. F-scores were also yielded as > 97% values. This single-channel SSVEP-based biometric approach using RNN deep models may offer low-cost, user-friendly, and reliable individual identification authentication, leading to significant application domains.
Collapse
|
42
|
Relational local electroencephalography representations for sleep scoring. Neural Netw 2022; 154:310-322. [DOI: 10.1016/j.neunet.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
|
43
|
Najafi T, Jaafar R, Remli R, Wan Zaidi WA. A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy. SENSORS (BASEL, SWITZERLAND) 2022; 22:7269. [PMID: 36236368 PMCID: PMC9571034 DOI: 10.3390/s22197269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Epilepsy is a chronic neurological disorder caused by abnormal neuronal activity that is diagnosed visually by analyzing electroencephalography (EEG) signals. BACKGROUND Surgical operations are the only option for epilepsy treatment when patients are refractory to treatment, which highlights the role of classifying focal and generalized epilepsy syndrome. Therefore, developing a model to be used for diagnosing focal and generalized epilepsy automatically is important. METHODS A classification model based on longitudinal bipolar montage (LB), discrete wavelet transform (DWT), feature extraction techniques, and statistical analysis in feature selection for RNN combined with long short-term memory (LSTM) is proposed in this work for identifying epilepsy. Initially, normal and epileptic LB channels were decomposed into three levels, and 15 various features were extracted. The selected features were extracted from each segment of the signals and fed into LSTM for the classification approach. RESULTS The proposed algorithm achieved a 96.1% accuracy, a 96.8% sensitivity, and a 97.4% specificity in distinguishing normal subjects from subjects with epilepsy. This optimal model was used to analyze the channels of subjects with focal and generalized epilepsy for diagnosing purposes, relying on statistical parameters. CONCLUSIONS The proposed approach is promising, as it can be used to detect epilepsy with satisfactory classification performance and diagnose focal and generalized epilepsy.
Collapse
Affiliation(s)
- Tahereh Najafi
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rosmina Jaafar
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rabani Remli
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
44
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
45
|
Wang C, Wang X, Jing X, Yokoi H, Huang W, Zhu M, Chen S, Li G. Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model. J Neural Eng 2022; 19. [PMID: 35797967 DOI: 10.1088/1741-2552/ac7f5d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The neurocognitive attention functions involve the cooperation of multiple brain regions, and the defects in the cooperation will lead to attention-deficit/hyperactivity disorder (ADHD), which is one of the most common neuropsychiatric disorders for children. The current ADHD diagnosis is mainly based on a subjective evaluation that is easily biased by the experience of the clinicians and lacks the support of objective indicators. The purpose of this study is to propose a method that can effectively identify children with ADHD. APPROACH In this study, we proposed a CNN-LSTM model to solve the three-class problems of classifying ADHD, attention deficit disorder (ADD) and healthy children, based on a public EEG dataset that includes event-related potential (ERP) EEG signals of 144 children. The convolution visualization and saliency map methods were used to observe the features automatically extracted by the proposed model, which could intuitively explain how the model distinguished different groups. MAIN RESULTS The results showed that our CNN-LSTM model could achieve an accuracy as high as 98.23% in a 5-fold cross-validation method, which was significantly better than the current state-of-the-art CNN models. The features extracted by the proposed model were mainly located in the frontal and central areas, with significant differences in the time period mappings among the three different groups. The P300 and contingent negative variation (CNV) in the frontal lobe had the largest decrease in the healthy control (HC) group, and the ADD group had the smallest decrease. In the central area, only the HC group had a significant negative oscillation of CNV waves. SIGNIFICANCE The results of this study suggest that the CNN-LSTM model can effectively identify children with ADHD and its subtypes. The visualized features automatically extracted by this model could better explain the differences in the ERP response among different groups, which is more convincing than previous studies, and it could be used as more reliable neural biomarkers to help with more accurate diagnosis in the clinics.
Collapse
Affiliation(s)
- Cheng Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen University Town, Xueyuan Avenue 1068, Shenzhen, Shenzhen, Guangdong, 518055, CHINA
| | - Xin Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen University Town, Xueyuan Avenue 1068, Shenzhen, Shenzhen, 518055, CHINA
| | - Xiaobei Jing
- Chinese Academy of Sciences, Shenzhen University Town, Xueyuan Avenue 1068, Shenzhen, 518055, CHINA
| | - Hiroshi Yokoi
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, 182-8585, JAPAN
| | - Weimin Huang
- Department of Neonatology, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, Shenzhen, Guangdong, 518038, CHINA
| | - Mingxing Zhu
- Harbin Institute of Technology, Shenzhen University Town, Harbin Institute of Technology campus, Shenzhen, 518055, CHINA
| | - Shixiong Chen
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen University Town, Xueyuan Avenue 1068, Shenzhen, Guangdong, 518055, CHINA
| | - Guanglin Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Xueyuan avenue 1068, Shenzhen University Town, Shenzhen 518055, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
46
|
CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition. SENSORS 2022; 22:s22134679. [PMID: 35808173 PMCID: PMC9268757 DOI: 10.3390/s22134679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject’s shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU.
Collapse
|
47
|
Li H, Wu L. EEG Classification of Normal and Alcoholic by Deep Learning. Brain Sci 2022; 12:778. [PMID: 35741663 PMCID: PMC9220822 DOI: 10.3390/brainsci12060778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alcohol dependence is a common mental disease worldwide. Excessive alcohol consumption may lead to alcoholism and many complications. In severe cases, it will lead to inhibition and paralysis of the centers of the respiratory and circulatory systems and even death. In addition, there is a lack of effective standard test procedures to detect alcoholism. EEG signals are data obtained by measuring brain changes in the cerebral cortex and can be used for the diagnosis of alcoholism. Existing diagnostic methods mainly employ machine learning techniques, which rely on human intervention to learn. In contrast, deep learning, as an end-to-end learning method, can automatically extract EEG signal features, which is more convenient. Nonetheless, there are few studies on the classification of alcohol's EEG signals using deep learning models. Therefore, in this paper, a new deep learning method is proposed to automatically extract and classify EEG's features. The method first adopts a multilayer discrete wavelet transform to denoise the input data. Then, the denoised data are used as input, and a convolutional neural network and bidirectional long short-term memory network are used for feature extraction. Finally, alcohol EEG signal classification is performed. The experimental results show that the method proposed in this study can be utilized to effectively diagnose patients with alcoholism, achieving a diagnostic accuracy of 99.32%, which is better than most current algorithms.
Collapse
Affiliation(s)
- Houchi Li
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China;
| | - Lei Wu
- Hunan Engineering Research Center for Intelligent Decision Making and Big Data on Industrial Development, Hunan University of Science and Technology, Xiangtan 411100, China
| |
Collapse
|
48
|
Liu G, Tian L, Zhou W. Patient-Independent Seizure Detection Based on Channel-Perturbation Convolutional Neural Network and Bidirectional Long Short-Term Memory. Int J Neural Syst 2022; 32:2150051. [PMID: 34781854 DOI: 10.1142/s0129065721500519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Automatic seizure detection is of great significance for epilepsy diagnosis and alleviating the massive burden caused by manual inspection of long-term EEG. At present, most seizure detection methods are highly patient-dependent and have poor generalization performance. In this study, a novel patient-independent approach is proposed to effectively detect seizure onsets. First, the multi-channel EEG recordings are preprocessed by wavelet decomposition. Then, the Convolutional Neural Network (CNN) with proper depth works as an EEG feature extractor. Next, the obtained features are fed into a Bidirectional Long Short-Term Memory (BiLSTM) network to further capture the temporal variation characteristics. Finally, aiming to reduce the false detection rate (FDR) and improve the sensitivity, the postprocessing, including smoothing and collar, is performed on the outputs of the model. During the training stage, a novel channel perturbation technique is introduced to enhance the model generalization ability. The proposed approach is comprehensively evaluated on the CHB-MIT public scalp EEG database as well as a more challenging SH-SDU scalp EEG database we collected. Segment-based average accuracies of 97.51% and 93.70%, event-based average sensitivities of 86.51% and 89.89%, and average AUC-ROC of 90.82% and 90.75% are yielded on the CHB-MIT database and SH-SDU database, respectively.
Collapse
Affiliation(s)
- Guoyang Liu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Lan Tian
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
49
|
Fan C, Hu J, Huang S, Peng Y, Kwong S. EEG-TNet: An End-To-End Brain Computer Interface Framework for Mental Workload Estimation. Front Neurosci 2022; 16:869522. [PMID: 35573313 PMCID: PMC9100931 DOI: 10.3389/fnins.2022.869522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
The mental workload (MWL) of different occupational groups' workers is the main and direct factor of unsafe behavior, which may cause serious accidents. One of the new and useful technologies to estimate MWL is the Brain computer interface (BCI) based on EEG signals, which is regarded as the gold standard of cognitive status. However, estimation systems involving handcrafted EEG features are time-consuming and unsuitable to apply in real-time. The purpose of this study was to propose an end-to-end BCI framework for MWL estimation. First, a new automated data preprocessing method was proposed to remove the artifact without human interference. Then a new neural network structure named EEG-TNet was designed to extract both the temporal and frequency information from the original EEG. Furthermore, two types of experiments and ablation studies were performed to prove the effectiveness of this model. In the subject-dependent experiment, the estimation accuracy of dual-task estimation (No task vs. TASK) and triple-task estimation (Lo vs. Mi vs. Hi) reached 99.82 and 99.21%, respectively. In contrast, the accuracy of different tasks reached 82.78 and 66.83% in subject-independent experiments. Additionally, the ablation studies proved that preprocessing method and network structure had significant contributions to estimation MWL. The proposed method is convenient without any human intervention and outperforms other related studies, which becomes an effective way to reduce human factor risks.
Collapse
Affiliation(s)
- Chaojie Fan
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jin Hu
- Hunan Communications Research Institute Co., Ltd., Hunan Communication & Water Conservancy Group Ltd., Changsha, China
| | - Shufang Huang
- School of Business and Trade, Hunan Industry Polytechnic, Changsha, China
| | - Yong Peng
- Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha, China
| | - Sam Kwong
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
50
|
Deep learning for predicting respiratory rate from biosignals. Comput Biol Med 2022; 144:105338. [DOI: 10.1016/j.compbiomed.2022.105338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
|