1
|
Zhào H, Zhang H, Ding Y, Li H, Huang Y. Circadian rest-activity rhythm pattern in the elderly with cerebral small vessel disease: Using multiple estimated methods. J Alzheimers Dis 2025; 103:856-864. [PMID: 39784723 DOI: 10.1177/13872877241307254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: Disruption of circadian rest-activity rhythm (RAR) has been found in many neurological disorders. Objective: In this study, actigraphic data were collected and analyzed to identify the RAR pattern in the elderly with cerebral small vessel disease. Methods: 115 cerebral small vessel disease (CSVD) cases were recruited. The presence of lacune infarct, white matter hyperintensities, and cerebral microbleeds in magnetic resonance imaging (MRI) images were rated independently, as well as using a simple MRI score of 0-3 points. Each subject wore an Actigraph device in their nondominant hand for 4-7 days to collect raw data. RAR parameters were generated using both extended cosinor model (RAR α, RAR β, amplitude, acrophase, up-mesor, down-mesor, and pseudo-F statistic) and non-parametric methods (interdaily stability, intradaily variability, and relative amplitude). Results: Elder patients with a simple MRI score of 2-3 points showed a statistically lower amplitude compared with individuals with a simple MRI score of 0 points in the extended cosinor model. For the non-parametric method, elderly people with a simple MRI score of 1-3 points exhibited higher intradaily variability relative to those participants with a simple MRI score of 0 points. However, no differences were found regarding sleep quality among individuals with different simple MRI scores. White matter hyperintensities, lacune infarct, and cerebral microbleeds were independently associated with RAR β, RAR α, and intradaily variability, respectively. Conclusions: The RAR pattern was disturbed in elderly adults with CSVD. Abnormal RAR parameters were independently associated with CSVD MRI markers.
Collapse
Affiliation(s)
- Hóngyi Zhào
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Neurology, NO 984 Hospital of PLA, Beijing, China
| | - Haiyang Zhang
- Center for Disease Control and Prevention of Central Theater Command, Beijing, China
| | - Yu Ding
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hong Li
- Center for Disease Control and Prevention of Central Theater Command, Beijing, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Gao Y, Liang C, Zhang Q, Zhuang H, Sui C, Zhang N, Feng M, Xin H, Guo L, Wang Y. Brain iron deposition and cognitive decline in patients with cerebral small vessel disease : a quantitative susceptibility mapping study. Alzheimers Res Ther 2025; 17:17. [PMID: 39789638 PMCID: PMC11715900 DOI: 10.1186/s13195-024-01638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions. PURPOSE Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function. MATERIALS AND METHODS A total of 321 subjects were enrolled in this study. All subjects had cognitive examination including the Stroop color word test (SCWT) and MRI including multiecho gradient echo (mGRE) sequence. The patients with CSVD were divided into mild to moderate group (CSVD-M, total CSVD score ≤ 1) and severe group (CSVD-S, total CSVD score > 1). Morphology-enabled dipole inversion with an automated uniform cerebrospinal fluid zero reference algorithm (MEDI + 0) was used to generate brain QSM maps from mGRE data. Deep gray regional susceptibility values and cognitive function were compared among three groups (CSVD-S, CSVD-M, and HC) using multiple linear regression analysis and mediation effect analysis. RESULTS There were significant differences in the SCWT scores and mean susceptibility values of the globus pallidus (GP), putamen (Put), and caudate nucleus (CN) among the three groups (P < 0.05, FDR correction). Age had a significant positive impact on the susceptibility values of GP (p = 0.018), Put (p < 0.001), and CN (p < 0.001). A history of diabetes had a significant positive influence on the susceptibility values of Put (p = 0.011) and CN (p < 0.001). A smoking history had a significant positive association with the susceptibility values of CN (p = 0.019). Mediation effect analysis demonstrated that iron deposition in the neostriatum partially mediated the relationship between hypertension and cognitive function. Age, diabetes, and smoking may increase iron deposition in the basal ganglia, associated with cognitive decline. The mean susceptibility values of the neostriatum played a mediating role in the association between hypertension and cognitive scores. CONCLUSIONS Age, diabetes, and smoking are associated with increased iron deposition in the basal ganglia and also linked to cognitive decline. This can help with understanding CSVD and its prevention and treatment.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Qihao Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hangwei Zhuang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA, Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Mengmeng Feng
- Department of Radiology, Department of Radiology and Nuclear medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Haotian Xin
- Department of Radiology, Department of Radiology and Nuclear medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China.
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Zhao Q, Maimaitiaili S, Bi Y, Li M, Li X, Li Q, Shen X, Wu M, Fu L, Zhu Z, Zhang X, Chen J, Hu A, Zhang Z, Zhang W, Zhang B. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping. J Diabetes 2025; 17:e70052. [PMID: 39843980 PMCID: PMC11753919 DOI: 10.1111/1753-0407.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Iron is one of the most important elements in brain that may has a direct impact on the stability of central nervous system. The current study devoted to explore the alterations of iron distribution across the whole brain in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI). METHODS The quantitative susceptibility mapping (QSM) technique was used to quantify the intracranial iron content of 74 T2DM patients with MCI and 86 T2DM patients with normal cognition (NC). The group comparison was performed by a voxel-based analysis. Then we evaluated the relationships between cognitive indicators and magnetic susceptibility value (MSV) measured by QSM of the significant brain areas, which were set as the regions of interest (ROIs). In addition, we analyzed the moderation effects of grey matter volume (GMV) of the related brain areas and several metabolic and cerebrovascular factors on the associations between MSV of ROIs and cognitive characteristics. RESULTS T2DM patients with MCI exhibited a lower MSV in the right middle temporal gyrus (MTG) compared to NC group. And in the MCI group, there were significantly negative correlations between MSV of the right MTG and several memory indexes. Furthermore, the moderation effects of GMV of the whole brain and the bilateral MTG on the relationship between MSV of the right MTG and scores of list recognition were significant. CONCLUSIONS T2DM patients with MCI had a temporary decreased iron content in the right MTG, which may partially compensate for cognitive impairment. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (NCT02738671).
Collapse
Affiliation(s)
- Qiuyue Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Qian Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xinyi Shen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Min Wu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Anning Hu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| |
Collapse
|
4
|
Li C, Cui K, Zhu X, Wang S, Yang Q, Fang G. 8-weeks aerobic exercise ameliorates cognitive deficit and mitigates ferroptosis triggered by iron overload in the prefrontal cortex of APP Swe/ PSEN 1dE9 mice through Xc -/GPx4 pathway. Front Neurosci 2024; 18:1453582. [PMID: 39315073 PMCID: PMC11417105 DOI: 10.3389/fnins.2024.1453582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a degenerative disorder of the central nervous system characterized by notable pathological features such as neurofibrillary tangles and amyloid beta deposition. Additionally, the significant iron accumulation in the brain is another important pathological hallmark of AD. Exercise can play a positive role in ameliorating AD, but the mechanism is unclear. The purpose of the study is to explore the effect of regular aerobic exercise iron homeostasis and lipid antioxidant pathway regarding ferroptosis in the prefrontal cortex (PFC) of APP Swe/PSEN 1dE9 (APP/PS1) mice. Methods Eighty 6-month-old C57BL/6 J and APP/PS1 mice were divided equally into 8-weeks aerobic exercise groups and sedentary groups. Subsequently, Y-maze, Morris water maze test, iron ion detection by probe, Western Blot, ELISA, RT-qPCR, HE, Nissle, Prussian Blue, IHC, IF, and FJ-C staining experiments were conducted to quantitatively assess the behavioral performance, iron levels, iron-metabolism-related proteins, lipid antioxidant-related proteins and morphology in each group of mice. Results In APP/PS1 mice, the increase in heme input proteins and heme oxygenase lead to the elevated levels of free iron in the PFC. The decrease in ferritin content by ferritin autophagy fails to meet the storage needs for excess free iron within the nerve cells. Ultimately, the increase of free ferrous iron triggers the Fenton reaction, may lead to ferroptosis and resulting in cognitive impairment in APP/PS1 mice. However, 8-weeks aerobic exercise induce upregulation of the Xc-/GPx4 pathway, which can reverse the lipid peroxidation process, thereby inhibiting ferroptosis in APP/PS1 mice. Conclusion 8 weeks aerobic exercise can improve learning and memory abilities in AD, upregulate GPx4/Xc- pathway in PFC to reduce ferroptosis induced by AD.
Collapse
Affiliation(s)
- Chaoyang Li
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Kaiyin Cui
- Sport Science School, Beijing Sport University, Beijing, China
| | - Xinyuan Zhu
- Department of Medical Supervision, China National Institute of Sports Medicine, Beijing, China
| | - Shufan Wang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Qing Yang
- National Fitness and Scientific Exercise Research Center, China Institute of Sport Science, Beijing, China
| | - Guoliang Fang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
Ahern J, Boyle ME, Thompson WK, Fan CC, Loughnan R. Dietary and Lifestyle Factors of Brain Iron Accumulation and Parkinson's Disease Risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304253. [PMID: 38559115 PMCID: PMC10980125 DOI: 10.1101/2024.03.13.24304253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Purpose Iron is an essential nutrient which can only be absorbed through an individual's diet. Excess iron accumulates in organs throughout the body including the brain. Iron dysregulation in the brain is commonly associated with neurodegenerative diseases like Alzheimer's disease and Parkinson's Disease (PD). Our previous research has shown that a pattern of iron accumulation in motor regions of the brain related to a genetic iron-storage disorder called hemochromatosis is associated with an increased risk of PD. To understand how diet and lifestyle factors relate to this brain endophenotype and risk of PD we analyzed the relationship between these measures, estimates of nutrient intake, and diet and lifestyle preference using data from UK Biobank. Methods Using distinct imaging and non-imaging samples (20,477 to 28,388 and 132,023 to 150,603 participants, respectively), we performed linear and logistic regression analyses using estimated dietary nutrient intake and food preferences to predict a) brain iron accumulation score (derived from T2-Weighted Magnetic Resonance Imaging) and b) PD risk. In addition, we performed a factor analysis of diet and lifestyle preferences to investigate if latent lifestyle factors explained significant associations. Finally, we performed an instrumental variable regression of our results related to iron accumulation and PD risk to identify if there were common dietary and lifestyle factors that were jointly associated with differences in brain iron accumulation and PD risk. Results We found multiple highly significant associations with measures of brain iron accumulation and preferences for alcohol (factor 7: t=4.02, pFDR=0.0003), exercise (factor 11: t=-4.31, pFDR=0.0001), and high-sugar foods (factor 2: t=-3.73, pFDR=0.0007). Preference for alcohol (factor 7: t=-5.83, pFDR<1×10-8), exercise (factor 11: t=-7.66, pFDR<1×10-13), and high sugar foods (factor 2: t=6.03, pFDR<1×10-8) were also associated with PD risk. Instrumental variable regression of individual preferences revealed a significant relationship in which dietary preferences associated with higher brain iron levels also appeared to be linked to a lower risk for PD (p=0.004). A similar relationship was observed for estimates of nutrient intake (p=0.0006). Voxel-wise analysis of i) high-sugar and ii) alcohol factors confirmed T2-weighted signal differences consistent with iron accumulation patterns in motor regions of the brain including the cerebellum and basal ganglia. Conclusion Dietary and lifestyle factors and preferences, especially those related to carbohydrates, alcohol, and exercise, are related to detectable differences in brain iron accumulation and alterations in risk of PD, suggesting a potential avenue for lifestyle interventions that could influence risk.
Collapse
Affiliation(s)
- Jonathan Ahern
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Mary Et Boyle
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Mohammadi S, Ghaderi S, Sayehmiri F, Fathi M. Quantitative susceptibility mapping for iron monitoring of multiple subcortical nuclei in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1331831. [PMID: 38510699 PMCID: PMC10950952 DOI: 10.3389/fendo.2024.1331831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Iron accumulation in the brain has been linked to diabetes, but its role in subcortical structures involved in motor and cognitive functions remains unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive quantification of iron deposition in the brain. This systematic review and meta-analysis examined magnetic susceptibility measured by QSM in the subcortical nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls. Methods PubMed, Scopus, and Web of Science databases were systematically searched [following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray matter (DGM) regions of patients with T2DM and controls. Pooled standardized mean differences (SMDs) for susceptibility were calculated using fixed-effects meta-analysis models, and heterogeneity was assessed using I2. Sensitivity analyses were conducted, and publication bias was evaluated using Begg's and Egger's tests. Results Six studies including 192 patients with T2DM and 245 controls were included. This study found a significant increase in iron deposition in the subcortical nuclei of patients with T2DM compared to the control group. The study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00) but weak associations between increased iron levels in the caudate nucleus (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI 0.00 0.44, p = 0.05). No statistical significance was found for iron deposition alterations in the globus pallidus (SMD = 0.19; 95% CI -0.01 to 0.38; p = 0.06) and substantia nigra (SMD = 0.12, 95% CI -0.10, 0.34, p = 0.29). Sensitivity analysis showed that the findings remained unaffected by individual studies, and consistent increases were observed in multiple subcortical areas. Discussion QSM revealed an increase in iron in the DGM/subcortical nuclei in T2DM patients versus controls, particularly in the motor and cognitive nuclei, including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus, QSM may serve as a potential biomarker for iron accumulation in T2DM patients. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
An JR, Wang QF, Sun GY, Su JN, Liu JT, Zhang C, Wang L, Teng D, Yang YF, Shi Y. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. Diabetes Metab Syndr Obes 2023; 16:3235-3247. [PMID: 37872972 PMCID: PMC10590583 DOI: 10.2147/dmso.s432858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
It is well documented that diabetes mellitus (DM) is strongly associated with cognitive decline and structural damage to the brain. Cognitive deficits appear early in DM and continue to worsen as the disease progresses, possibly due to different underlying mechanisms. Normal iron metabolism is necessary to maintain normal physiological functions of the brain, but iron deposition is one of the causes of some neurodegenerative diseases. Increasing evidence shows that iron overload not only increases the risk of DM, but also contributes to the development of cognitive impairment. The current review highlights the role of iron overload in diabetic cognitive impairment (DCI), including the specific location and regulation mechanism of iron deposition in the diabetic brain, the factors that trigger iron deposition, and the consequences of iron deposition. Finally, we also discuss possible therapies to improve DCI and brain iron deposition.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, People’s Republic of China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Li Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dan Teng
- He University, Shenyang, 110163, People’s Republic of China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| |
Collapse
|
8
|
Cerasuolo M, Di Meo I, Auriemma MC, Trojsi F, Maiorino MI, Cirillo M, Esposito F, Polito R, Colangelo AM, Paolisso G, Papa M, Rizzo MR. Iron and Ferroptosis More than a Suspect: Beyond the Most Common Mechanisms of Neurodegeneration for New Therapeutic Approaches to Cognitive Decline and Dementia. Int J Mol Sci 2023; 24:9637. [PMID: 37298586 PMCID: PMC10253771 DOI: 10.3390/ijms24119637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| |
Collapse
|
9
|
Bu M, Deng X, Zhang Y, Chen SW, Jiang M, Chen BT. Brain iron content and cognitive function in patients with β-thalassemia. Ther Adv Hematol 2023; 14:20406207231167050. [PMID: 37151807 PMCID: PMC10155013 DOI: 10.1177/20406207231167050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Patients with β-thalassemia (β-TM) may have brain iron overload from long-term blood transfusions, ineffective erythropoiesis, and increased intestinal iron absorption, leading to cognitive impairment. Brain magnetic resonance imaging (MRI) methods such as the transverse relaxation rate, susceptibility-weighted imaging, and quantitative susceptibility mapping can provide quantitative, in vivo measurements of brain iron. This review assessed these MRI methods for brain iron quantification and the measurements for cognitive function in patients with β-TM. We aimed to identify the neural correlates of cognitive impairment, which should help to evaluate therapies for improving cognition and quality of life in patients with β-TM.
Collapse
Affiliation(s)
- Meiru Bu
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xi Deng
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu Zhang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Sean W. Chen
- Department of Medical Oncology &
Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte,
CA, USA
| | - Muliang Jiang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of
Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
10
|
Hu R, Gao B, Tian S, Liu Y, Jiang Y, Li W, Li Y, Song Q, Wang W, Miao Y. Regional high iron deposition on quantitative susceptibility mapping correlates with cognitive decline in type 2 diabetes mellitus. Front Neurosci 2023; 17:1061156. [PMID: 36793541 PMCID: PMC9922715 DOI: 10.3389/fnins.2023.1061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Objective To quantitatively evaluate the iron deposition and volume changes in deep gray nuclei according to threshold-method of quantitative susceptibility mapping (QSM) acquired by strategically acquired gradient echo (STAGE) sequence, and to analyze the correlation between the magnetic susceptibility values (MSV) and cognitive scores in type 2 diabetes mellitus (T2DM) patients. Methods Twenty-nine patients with T2DM and 24 healthy controls (HC) matched by age and gender were recruited in this prospective study. QSM images were used to evaluate whole-structural volumes (Vwh), regional magnetic susceptibility values (MSVRII), and volumes (VRII) in high-iron regions in nine gray nuclei. All QSM data were compared between groups. Receiver operating characteristic (ROC) analysis was used to assess the discriminating ability between groups. The predictive model from single and combined QSM parameters was also established using logistic regression analysis. The correlation between MSVRII and cognitive scores was further analyzed. Multiple comparisons of all statistical values were corrected by false discovery rate (FDR). A statistically significant P-value was set at 0.05. Results Compared with HC group, the MSVRII of all gray matter nuclei in T2DM were increased by 5.1-14.8%, with significant differences found in bilateral head of caudate nucleus (HCN), right putamen (PUT), right globus pallidus (GP), and left dentate nucleus (DN) (P < 0.05). The Vwh of most gray nucleus in T2DM group were decreased by 1.5-16.9% except bilateral subthalamic nucleus (STN). Significant differences were found in bilateral HCN, bilateral red nucleus (RN), and bilateral substantia nigra (SN) (P < 0.05). VRII was increased in bilateral GP, bilateral PUT (P < 0.05). VRII/Vwh was also increased in bilateral GP, bilateral PUT, bilateral SN, left HCN and right STN (P < 0.05). Compared with the single QSM parameter, the combined parameter showed the largest area under curve (AUC) of 0.86, with a sensitivity of 87.5% and specificity of 75.9%. The MSVRII in the right GP was strongly associated with List A Long-delay free recall (List A LDFR) scores (r = -0.590, P = 0.009). Conclusion In T2DM patients, excessive and heterogeneous iron deposition as well as volume loss occurs in deep gray nuclei. The MSV in high iron regions can better evaluate the distribution of iron, which is related to the decline of cognitive function.
Collapse
|
11
|
Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W, Li Y, Wang Q. Caveolin-1 Alleviates Diabetes-Associated Cognitive Dysfunction Through Modulating Neuronal Ferroptosis-Mediated Mitochondrial Homeostasis. Antioxid Redox Signal 2022; 37:867-886. [PMID: 35350885 DOI: 10.1089/ars.2021.0233] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims: Iron metabolism is involved in many biological processes in the brain. Alterations in iron homeostasis have been associated with several neurodegenerative disorders. Instead of stroke and ischemic heart disease, dementia has become the second leading cause of mortality among the type 2 diabetes mellitus (T2DM) population. Therefore, we attempted to investigate the role of ferroptosis in diabetes-associated cognitive dysfunction (DACD). Results: We evaluated ferroptosis hallmarks in the hippocampus of T2DM (high-fat diet/streptozotocin, HFD/STZ) mice, primary hippocampal neurons, as well as in the blood of patients. The results of Gene Set Enrichment Analysis showed significantly differentially expressed genes related to ferroptosis-related pathways between normal control (db/m) and leptin receptor-deficient (db/db) mice. Here, ferroptosis, mitochondrial dysfunction and cognitive impairment were revealed, and caveolin-1 (cav-1) was significantly downregulated in the hippocampus of T2DM (HFD/STZ) mice. In addition, ferrostatin-1 and cav-1 restoration neutralized ferroptosis-related symbolic changes, mitochondrial dysfunction, and improved cognitive dysfunction. Notably, the plasma levels of Fe2+ and 4-hydroxynonenal (4-HNE) in T2DM patients showed a tendency to increase compared with those in nondiabetic subjects, and the Fe2+ level was negatively correlated with the cognitive ability in T2DM subjects. Innovation: For the first time, this study suggested that ferroptosis promoted the progression of DACD induced by T2DM both in vivo and in vitro, and supported the clinical evidence for the correlation between ferroptosis and T2DM-related DACD, which provided new insights into the potential antioxidant effects of ferroptosis inhibitors and cav-1 on DACD. Conclusions: The overexpression of cav-1 may attenuate DACD by modulating neuronal ferroptosis-mediated mitochondrial homeostasis. We put cav-1 on the spotlight as a promising candidate to prevent DACD. Antioxid. Redox Signal. 37, 867-886.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuxuan He
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyu Du
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Cheng
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Gao
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Ni MH, Li ZY, Sun Q, Yu Y, Yang Y, Hu B, Ma T, Xie H, Li SN, Tao LQ, Yuan DX, Zhu JL, Yan LF, Cui GB. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes. Cereb Cortex 2022; 33:5336-5346. [PMID: 36310091 DOI: 10.1093/cercor/bhac422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/10/2023] Open
Abstract
Abstract
Disturbance of neurovascular coupling (NVC) is suggested to be one potential mechanism in type 2 diabetes mellitus (T2DM) associated mild cognitive impairment (MCI). However, NVC evidence derived from functional magnetic resonance imaging ignores the relationship of neuronal activity with vascular injury. Twenty-seven T2DM patients without MCI and thirty healthy controls were prospectively enrolled. Brain regions with changed susceptibility detected by quantitative susceptibility mapping (QSM) were used as seeds for functional connectivity (FC) analysis. NVC coefficients were estimated using combined degree centrality (DC) with susceptibility or cerebral blood flow (CBF). Partial correlations between neuroimaging indicators and cognitive decline were investigated. In T2DM group, higher susceptibility values in right hippocampal gyrus (R.PHG) were found and were negatively correlated with Naming Ability of Montreal Cognitive Assessment. FC increased remarkably between R.PHG and right middle temporal gyrus (R.MTG), right calcarine gyrus (R.CAL). Both NVC coefficients (DC-QSM and DC-CBF) reduced in R.PHG and increased in R.MTG and R.CAL. Both NVC coefficients in R.PHG and R.MTG increased with the improvement of cognitive ability, especially for executive function. These demonstrated that QSM and DC-QSM coefficients can be promising biomarkers for early evaluation of cognitive decline in T2DM patients and help to better understand the mechanism of NVC.
Collapse
Affiliation(s)
- Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine , 1 Middle Section of Shiji Road, Xian yang, Shaanxi 712046 , China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Bo Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Teng Ma
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Xi’an Medical University , 1 Xinwang Road, Xi'an, Shaanxi 710016 , China
| | - Lan-Qiu Tao
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Ding-Xin Yuan
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Jun-Ling Zhu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| |
Collapse
|
13
|
Lin L, Zhang J, Liu Y, Hao X, Shen J, Yu Y, Xu H, Cong F, Li H, Wu J. Aberrant brain functional networks in type 2 diabetes mellitus: A graph theoretical and support-vector machine approach. Front Hum Neurosci 2022; 16:974094. [PMID: 36310847 PMCID: PMC9597867 DOI: 10.3389/fnhum.2022.974094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is a high risk of cognitive decline and dementia, but the underlying mechanisms are not yet clearly understood. This study aimed to explore the functional connectivity (FC) and topological properties among whole brain networks and correlations with impaired cognition and distinguish T2DM from healthy controls (HC) to identify potential biomarkers for cognition abnormalities. Methods A total of 80 T2DM and 55 well-matched HC were recruited in this study. Subjects’ clinical data, neuropsychological tests and resting-state functional magnetic resonance imaging data were acquired. Whole-brain network FC were mapped, the topological characteristics were analyzed using a graph-theoretic approach, the FC and topological characteristics of the network were compared between T2DM and HC using a general linear model, and correlations between networks and clinical and cognitive characteristics were identified. The support vector machine (SVM) model was used to identify differences between T2DM and HC. Results In patients with T2DM, FC was higher in two core regions [precuneus/posterior cingulated cortex (PCC)_1 and later prefrontal cortex_1] in the default mode network and lower in bilateral superior parietal lobes (within dorsal attention network), and decreased between the right medial frontal cortex and left auditory cortex. The FC of the right frontal medial-left auditory cortex was positively correlated with the Montreal Cognitive Assessment scales and negatively correlated with the blood glucose levels. Long-range connectivity between bilateral auditory cortex was missing in the T2DM. The nodal degree centrality and efficiency of PCC were higher in T2DM than in HC (P < 0.005). The nodal degree centrality in the PCC in the SVM model was 97.56% accurate in distinguishing T2DM patients from HC, demonstrating the reliability of the prediction model. Conclusion Functional abnormalities in the auditory cortex in T2DM may be related to cognitive impairment, such as memory and attention, and nodal degree centrality in the PCC might serve as a potential neuroimaging biomarker to predict and identify T2DM.
Collapse
Affiliation(s)
- Lin Lin
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jindi Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yutong Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Xinyu Hao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yang Yu
- Department of Endocrinology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Huashuai Xu
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Huanjie Li
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Huanjie Li,
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Jianlin Wu,
| |
Collapse
|
14
|
Li W, Gao B, Du W, Jiang Y, Yang J, Hu R, Liu Y, Liu N, Zhang Y, Song Q, Miao Y. Iron deposition heterogeneity in extrapyramidal system assessed by quantitative susceptibility mapping in Parkinson’s disease patients with type 2 diabetes mellitus. Front Aging Neurosci 2022; 14:975390. [PMID: 36177478 PMCID: PMC9513156 DOI: 10.3389/fnagi.2022.975390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Excessive brain iron depositions were found in both patients with Parkinson’s disease (PD) and those with type 2 diabetes mellitus (T2DM). The present study aimed to explore iron deposition and heterogeneity in the extrapyramidal system in PD patients with T2DM using quantitative susceptibility mapping (QSM) and further to reveal the effect of T2DM on the changes in brain iron in patients with PD. Materials and methods A total of 38 PD patients with T2DM (PDDM), 30 PD patients without T2DM (PDND), and 20 asymptomatic control subjects (CSs) were recruited for this study. All subjects underwent multiple MRI sequences involving enhanced gradient echo T2 star weighted angiography (ESWAN). The magnetic sensitivity values (MSV) and volume of the whole nuclei (MSVW, VW) and high iron region (MSVRII, VRII) were measured on the bilateral caudate nucleus (CN), the putamen (PUT), the globus pallidus (GP), the substantia nigra (SN), the red nucleus (RN) and the dentate nucleus (DN). Clinical and laboratory data were recorded, especially for the Hoehn and Yahr (H-Y) stage, the Montreal Cognitive Assessment (MoCA), the Mini-Mental State Examination (MMSE), the Hamilton Depression Rating Scale (HAMD), and the Hamilton Anxiety Rating Scale (HAMA). All QSM data were compared between PDDM and PDND groups and correlated with clinical and laboratory data. Results Compared to the PDND group, the VRII/VW of the left CN was significantly increased in the PDDM group. Significantly higher MSVW and MSVRII were also found in the PDDM group, including bilateral SN of MSVW, right PUT, and bilateral CN, GP, and SN of MSVRII. The H-Y stage of the PDDM group was significantly higher than that of the PDND group. The MSVRII of bilateral RN of the PDDM group was positively correlated with the HAMA scores. HDL, DBP, and SBP levels were associated with MSVRII of right CN in the PDDM group. Conclusion T2DM could aggravate the disease severity and anxiety in patients with PD. The iron distribution of deep gray matter nuclei in PD patients with T2DM was significantly heterogeneous, which was related to blood pressure and blood lipids.
Collapse
|
15
|
Hofer E, Pirpamer L, Langkammer C, Tinauer C, Seshadri S, Schmidt H, Schmidt R. Heritability of R2* iron in the basal ganglia and cortex. Aging (Albany NY) 2022; 14:6415-6426. [PMID: 35951362 PMCID: PMC9467397 DOI: 10.18632/aging.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND While iron is essential for normal brain functioning, elevated concentrations are commonly found in neurodegenerative diseases and are associated with impaired cognition and neurological deficits. Currently, only little is known about genetic and environmental factors that influence brain iron concentrations. METHODS Heritability and bivariate heritability of regional brain iron concentrations, assessed by R2* relaxometry at 3 Tesla MRI, were estimated with variance components models in 130 middle-aged to elderly participants of the Austrian Stroke Prevention Family Study. RESULTS Heritability of R2* iron ranged from 0.46 to 0.82 in basal ganglia and from 0.65 to 0.76 in cortical lobes. Age and BMI explained up to 12% and 9% of the variance of R2* iron, while APOE ε4 carrier status, hypertension, diabetes, hypercholesterolemia, sex and smoking explained 5% or less. The genetic correlation of R2* iron among basal ganglionic nuclei and among cortical lobes ranged from 0.78 to 0.87 and from 0.65 to 0.97, respectively. R2* rates in basal ganglia and cortex were not genetically correlated. CONCLUSIONS Regional brain iron concentrations are mainly driven by genetic factors while environmental factors contribute to a certain extent. Brain iron levels in the basal ganglia and cortex are controlled by distinct sets of genes.
Collapse
Affiliation(s)
- Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Styria, Austria
| | - Lukas Pirpamer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
| | | | - Christian Tinauer
- Department of Neurology, Medical University of Graz, Styria, Austria
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Styria, Austria
| | - Reinhold Schmidt
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Styria, Austria
| |
Collapse
|
16
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|