1
|
Jain G, Trombetta-Lima M, Matlahov I, Ribas HT, Chen T, Parlato R, Portale G, Dolga AM, van der Wel PCA. Inhibitor-based modulation of huntingtin aggregation mechanisms mitigates fibril-induced cellular stress. Nat Commun 2025; 16:3588. [PMID: 40234398 PMCID: PMC12000517 DOI: 10.1038/s41467-025-58691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder in which mutated fragments of the huntingtin protein (Htt) undergo misfolding and aggregation. Since aggregated proteins can cause cellular stress and cytotoxicity, there is an interest in the development of small molecule aggregation inhibitors as potential modulators of HD pathogenesis. Here, we study how a polyphenol modulates the aggregation mechanism of huntingtin exon 1 (HttEx1) even at sub-stoichiometric ratios. Sub-stoichiometric amounts of curcumin impacted the primary and/or secondary nucleation events, extending the pre-aggregation lag phase. Remarkably, the disrupted aggregation process changed both the aggregate structure and its cell metabolic properties. When administered to neuronal cells, the 'break-through' protein aggregates induced significantly reduced cellular stress compared to aggregates formed in absence of inhibitors. Structural analysis by electron microscopy, small angle X-ray scattering (SAXS), and solid-state NMR spectroscopy identified changes in the fibril structures, probing the flanking domains in the fuzzy coat and the fibril core. We propose that changes in the latter relate to the presence or absence of polyglutamine (polyQ) β-hairpin structures. Our findings highlight multifaceted consequences of small molecule inhibitors that modulate the protein misfolding landscape, with potential implications for treatment strategies in HD and other amyloid disorders.
Collapse
Affiliation(s)
- Greeshma Jain
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Matlahov
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Hennrique Taborda Ribas
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Graduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Raffaella Parlato
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Dumarieh R, Lagasca D, Krishna S, Kragelj J, Xiao Y, Ansari S, Frederick KK. Structural Context Modulates the Conformational Ensemble of the Intrinsically Disordered Amino Terminus of α-Synuclein. J Am Chem Soc 2025; 147:11800-11810. [PMID: 40147456 PMCID: PMC11988134 DOI: 10.1021/jacs.4c15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Regions of intrinsic disorder play crucial roles in biological systems, yet they often elude characterization by conventional biophysical techniques. To capture conformational distributions across different time scales, we employed a freezing approach coupled with solid-state NMR analysis. Using segmentally isotopically labeled α-synuclein (α-syn), we investigated the conformational ensembles of the six alanines, three glycines, and a single site (L8) in the disordered amino terminus under three distinct conditions: in 8 M urea, as a frozen monomer in buffer, and within the disordered regions flanking the amyloid core. The experimental spectra varied significantly among these conditions and deviated from those of a statistical coil. In 8 M urea, monomeric α-syn exhibited the most restricted conformational sampling, rarely accessing chemical shifts characteristic of α-helices or β-strands. In buffer, monomeric α-syn showed a broader conformational sampling, favoring α-helical conformations and, to a lesser extent, random coil states. Notably, amino acids in the disordered regions flanking the amyloid core demonstrated the most extensive conformational sampling, with broad peaks encompassing the entire range of possible chemical shifts and a marked increase in highly extended β-strand conformations. Collectively, this work demonstrates that intrinsically disordered regions exhibit distinct conformational ensembles, which are influenced not only by the chemical environment but also by the conformations of adjacent protein sequences. The differences in the conformational ensembles of the disordered amino terminus may explain why the monomer and the amyloid form of α-syn interact with different biomolecules inside cells.
Collapse
Affiliation(s)
- Rania Dumarieh
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Dominique Lagasca
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Sakshi Krishna
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Jaka Kragelj
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Yiling Xiao
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Shoyab Ansari
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
| | - Kendra K. Frederick
- Department
of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United
States
- Center for
Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
3
|
El Hajjar L, Boll E, Cantrelle FX, Bridot C, Landrieu I, Smet-Nocca C. Effect of PHF-1 hyperphosphorylation on the seeding activity of C-terminal Tau fragments. Sci Rep 2025; 15:9975. [PMID: 40121258 PMCID: PMC11929799 DOI: 10.1038/s41598-025-91867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Tau proteins as neurofibrillary tangles are one of the molecular hallmarks of Alzheimer's disease (AD) and play a central role in tauopathies, a group of age-related neurodegenerative disorders. The filament cores from diverse tauopathies share a common region of tau consisting of the R3-R4 microtubule-binding repeats and part of the C-terminal domain, but present a structural polymorphism. Unlike the fibril structure, the PTM signature of tau found in neuronal inclusions, more particularly hyperphosphorylation, is variable between individuals with the same tauopathy, giving rise to diverse strains with different seeding properties that could modulate the aggressiveness of tau pathology. Here, we investigate the conformation, function and seeding activity of two tau fragments and their GSK3β-phosphorylated variants. The R2Ct and R3Ct fragments encompass the aggregation-prone region of tau starting at the R2 and R3 repeats, respectively, and the full C-terminal domain including the PHF-1 epitope (S396, S400, S404), which undergoes a triple phosphorylation upon GSK3β activity. We found that the R3Ct fragment shows both a greater loss of function and pathological activity in seeding of aggregation than the R2Ct fragment which imposes a cross-seeding barrier. PHF-1 hyperphosphorylation induces a local conformational change with a propensity to adopt a β-sheet conformation in the region spanning residues 392-402, and exacerbates the seeding ability of fragments to induce aggregation by overcoming a cross-seeding barrier between tau variants.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Emmanuelle Boll
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France.
- Inserm U1167/Institut Pasteur de Lille, 1 rue Professeur Calmette, BP245, Lille, 59019, France.
| |
Collapse
|
4
|
Akhtar A, Singh P, Admane N, Grover A. Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein. Biophys Chem 2025; 318:107379. [PMID: 39693815 DOI: 10.1016/j.bpc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD. Computational and experimental approaches demonstrated Sal-B effectively prevents the amyloid fibrillation of A53T Syn by interacting with the N-terminal region and NAC domain. Sal-B particularly associates with the KTKEGV motif and NACore segment of A53T Syn by hydrophobic and hydrogen bonding interactions. Replica exchange molecular dynamics (REMD) simulations indicated that Sal-B reduces intramolecular hydrogen bonding and structural transitions into β-sheet rich conformations, thereby lowering the aggregation propensity of A53T Syn. Systematic analysis conducted using biophysical techniques and high-end microscopy has demonstrated significant inhibition in the amyloid transformation of A53T Syn corroborated by a 92 % decrease in ThT maxima at 100 μM Sal-B concentration and microscopic techniques validated the absence of mature fibrillar amyloids. DLS data revealed heterogeneous particle sizes, supporting the formation of smaller unstructured aggregates. These findings underscore Sal-B as a promising therapeutic candidate for PD and related synucleinopathies, warranting further investigation in cellular and animal models to advance potential treatments and early intervention strategies.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Otzen DE, Peña-Díaz S, Widmann J, Daugberg AOH, Zhang Z, Jiang Y, Mittal C, Dueholm MKD, Louros N, Wang H, Javed I. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol Aspects Med 2025; 103:101351. [PMID: 40024004 DOI: 10.1016/j.mam.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
The amyloid state of proteins occurs in many different contexts in Nature and in modern society, ranging from the pathological kind (neurodegenerative diseases and amyloidosis) via man-made forms (food processing and - to a much smaller extent - protein biologics) to functional versions (bacterial biofilm, peptide hormones and signal transmission). These classes all come together in the human body which endogenously produces amyloidogenic protein able to form pathological human amyloid (PaHA), hosts a microbiome which continuously makes functional bacterial amyloid (FuBA) and ingests food which can contain amyloid. This can have grave consequences, given that PaHA can spread throughout the body in a "hand-me-down" fashion from cell to cell through small amyloid fragments, which can kick-start growth of new amyloid wherever they encounter monomeric amyloid precursors. Amyloid proteins can also self- and cross-seed across dissimilar peptide sequences. While it is very unlikely that ingested amyloid plays a role in this crosstalk, FuBA-PaHA interactions are increasingly implicated in vivo amyloid propagation. We are now in a position to understand the structural and bioinformatic basis for this cross-talk, thanks to the very recently obtained atomic-level structures of the two major FuBAs CsgA (E. coli) and FapC (Pseudomonas). While there are many reports of homology-driven heterotypic interactions between different PaHA, the human proteome does not harbor significant homology to CsgA and FapC. Yet we and others have uncovered significant cross-stimulation (and in some cases inhibition) of FuBA and PaHA both in vitro and in vivo, which we here rationalize based on structure and sequence. These interactions have important consequences for the transmission and development of neurodegenerative diseases, not least because FuBA and PaHA can come into contact via the gut-brain interface, recurrent infections with microbes and potentially even through invasive biofilm in the brain. Whether FuBA and PaHA first interact in the gut or the brain, they can both stimulate and block each other's aggregation as well as trigger inflammatory responses. The microbiome may also affect amyloidogenesis in other ways, e.g. through their own chaperones which recognize and block growth of both PaHA and FuBA as we show both experimentally and computationally. Heterotypic interactions between and within PaHA and FuBA both in vitro and in vivo are a vital part of the amyloid phenomenon and constitute a vibrant and exciting frontier for future research.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders Ogechi Hostrup Daugberg
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Zhefei Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yanting Jiang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chandrika Mittal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China; Jiangsu Fuyuda Food Products Co., Ltd, Qinyou Road 88, Gaoyou City, Jiangsu Province, 225600, China.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
6
|
Chakraborty S, Biswas M. Insight into the thermo-responsive phase behavior of the P1 domain of α-synuclein using atomistic simulations. Phys Chem Chem Phys 2025. [PMID: 39980393 DOI: 10.1039/d4cp04292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Biomolecular condensate formation driven by intrinsically disordered proteins (IDPs) is regulated by interactions between various domains of the proteins. Such condensates are implicated in various neurodegenerative diseases. The presynaptic intrinsically disordered protein, α-Syn is involved in the pathogenesis of Parkinson's disease. The central non-amyloid β-component (NAC) domain in the protein is considered to be a major driver of pathogenic aggregation, although recent studies have suggested that the P1 domain from the flanking N-terminal region can act as a 'master controller' for α-Syn function and aggregation. To gain molecular insight into the phase behavior of the P1 domain itself, we investigate how assemblies of P1 (residues 36-42) chains phase separate with varying temperatures using all-atom molecular dynamics simulations. The simulations reveal that P1 is able to phase separate above a lower critical solution temperature. Formation of a condensed phase is driven by exclusion of water molecules by the hydrophobic chains. P1 chain density in the condensate is determined by weak multi-chain interactions between the residues. Moreover, tyrosine (Y39) is involved in the formation of strongest contacts between residue pairs in the dense phase. These results provide a detailed picture of condensate formation by a key segment of the α-Syn molecule.
Collapse
Affiliation(s)
| | - Mithun Biswas
- National Institute of Technology Rourkela, Rourkela 769008, India.
| |
Collapse
|
7
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Alem D, García-Laviña CX, Garagorry F, Centurión D, Farias J, Pazos-Espinosa H, Cuitiño-Mendiberry MN, Villadóniga C, Castro-Sowinski S, Fló M, Carrión F, Iglesias B, Madauss K, Canclini L. Amyloids in bladder cancer hijack cancer-related proteins and are positive correlated to tumor stage. Sci Rep 2025; 15:4393. [PMID: 39910105 PMCID: PMC11799152 DOI: 10.1038/s41598-025-88307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Despite the current diagnostic and therapeutic approaches to bladder cancer being widely accepted, there have been few significant advancements in this field over the past decades. This underscores the necessity for a paradigm shift in the approach to bladder cancer. The role of amyloids in cancer remains unclear despite their identification in several other pathologies. In this study, we present evidence of amyloids in bladder cancer, both in vitro and in vivo. In a murine model of bladder cancer, a positive correlation was observed between amyloids and tumor stage, indicating an association between amyloids and bladder cancer progression. Subsequently, the amyloid proteome of the RT4 non-invasive and HT1197 invasive bladder cancer cell lines was identified and included oncogenes, tumor suppressors, and highly expressed cancer-related proteins. It is proposed that amyloids function as structures that sequester key proteins. Therefore, amyloids should be considered in the study and diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Diego Alem
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - César X García-Laviña
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco Garagorry
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Dardo Centurión
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquina Farias
- Espacio de Biología Vegetal del Noreste, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Hany Pazos-Espinosa
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Carolina Villadóniga
- Laboratorio de Biocatalizadores y sus Aplicaciones, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Biocatalizadores y sus Aplicaciones, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Martín Fló
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad Académica Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Brenda Iglesias
- Research Technologies, Research Operations and Externalization, GSK-R&D, Boston, USA
| | - Kevin Madauss
- Research Technologies, Research Operations and Externalization, GSK-R&D, Boston, USA
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
9
|
Gianni S, Brunori M. The folding and misfolding of multidomain proteins. Mol Aspects Med 2025; 101:101337. [PMID: 39793266 DOI: 10.1016/j.mam.2025.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation. We discuss the energetic interplay between domains, highlighting particularly the cases where domain interactions lead to transient misfolded intermediates. These interactions can result in diverse effects, including cooperative folding and domain-specific perturbations, which are particularly relevant to the pathogenesis of neurodegenerative diseases like polyglutamine disorders. The review underscores the critical need to understand multidomain folding, to better comprehend and potentially mitigate the molecular underpinnings of protein misfolding diseases.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| | - Maurizio Brunori
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
10
|
Milanesi M, Brotzakis ZF, Vendruscolo M. Transient interactions between the fuzzy coat and the cross-β core of brain-derived Aβ42 filaments. SCIENCE ADVANCES 2025; 11:eadr7008. [PMID: 39813358 PMCID: PMC11734738 DOI: 10.1126/sciadv.adr7008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Several human disorders, including Alzheimer's disease (AD), are characterized by the aberrant formation of amyloid fibrils. In many cases, the amyloid core is flanked by disordered regions, known as fuzzy coat. The structural properties of fuzzy coats, and their interactions with their environments, however, have not been fully described to date. Here, we generate conformational ensembles of two brain-derived amyloid filaments of Aβ42, corresponding respectively to the familial and sporadic forms of AD. Our approach, called metadynamic electron microscopy metainference (MEMMI), provides a characterization of the transient interactions between the fuzzy coat and the cross-β core of the filaments. These calculations indicate that the familial AD filaments are less soluble than the sporadic AD filaments, and that the fuzzy coat contributes to solubilizing both types of filament. These results illustrate how the metainference approach can help analyze cryo-EM maps for the characterization of the properties of amyloid fibrils.
Collapse
Affiliation(s)
- Maria Milanesi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate (MI), Italy
| | - Z. Faidon Brotzakis
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
11
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Minshull T, Byrd EJ, Olejnik M, Calabrese AN. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Mechanistic Insights into RNA Oligonucleotide-Mediated Inhibition of TDP-43 Aggregation. J Am Chem Soc 2024; 146:33626-33639. [PMID: 39610319 PMCID: PMC11638948 DOI: 10.1021/jacs.4c11229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Deposits of aggregated TAR DNA-binding protein 43 (TDP-43) in the brain are associated with several neurodegenerative diseases. It is well established that binding of RNA/DNA to TDP-43 can prevent TDP-43 aggregation, but an understanding of the structure(s) and conformational dynamics of TDP-43, and TDP-43-RNA complexes, is lacking, including knowledge of how the solution environment modulates these properties. Here, we address this challenge using hydrogen-deuterium exchange-mass spectrometry. In the presence of RNA olignoucleotides, we observe protection from exchange in the RNA recognition motif (RRM) domains of TDP-43 and the linker region between the RRM domains, consistent with nucleic acid binding modulating interdomain interactions. Intriguingly, at elevated salt concentrations, the extent of protection from exchange is reduced in the RRM domains when bound to an RNA sequence derived from the 3' UTR of the TDP-43 mRNA (CLIP34NT) compared to when bound to a (UG)6 repeat sequence. Under these conditions, CLIP34NT is no longer able to prevent TDP-43 aggregation. This suggests that a salt-induced structural rearrangement occurs when bound to this RNA, which may play a role in facilitating aggregation. Additionally, upon RNA binding, we identify differences in exchange within the short α-helical region located in the C-terminal domain (CTD) of TDP-43. These allosterically altered regions may influence the ability of TDP-43 to aggregate and fine-tune its RNA binding repertoire. Combined, these data provide additional insights into the intricate interplay between TDP-43 aggregation and RNA binding, an understanding of which is crucial for unraveling the molecular mechanisms underlying TDP-43-associated neurodegeneration.
Collapse
Affiliation(s)
- Thomas
C. Minshull
- Astbury Centre for Structural
Molecular Biology, School of Molecular and Cellular Biology, Faculty
of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Emily J. Byrd
- Astbury Centre for Structural
Molecular Biology, School of Molecular and Cellular Biology, Faculty
of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Monika Olejnik
- Astbury Centre for Structural
Molecular Biology, School of Molecular and Cellular Biology, Faculty
of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Antonio N. Calabrese
- Astbury Centre for Structural
Molecular Biology, School of Molecular and Cellular Biology, Faculty
of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
13
|
Xu Z, Schahl A, Jolivet MD, Legrand A, Grélard A, Berbon M, Morvan E, Lagardere L, Piquemal JP, Loquet A, Germain V, Chavent M, Mongrand S, Habenstein B. Dynamic pre-structuration of lipid nanodomain-segregating remorin proteins. Commun Biol 2024; 7:1620. [PMID: 39639105 PMCID: PMC11621693 DOI: 10.1038/s42003-024-07330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition. Membrane targeting of remorins occurs independently from the secretory pathway. Instead, they are directed into different nanodomains depending on their phylogenetic group. All family members contain a C-terminal membrane anchor and a homo-oligomerization domain, flanked by an intrinsically disordered region of variable length at the N-terminal end. We here combined molecular imaging, NMR spectroscopy, protein structure calculations and advanced molecular dynamics simulation to unveil a stable pre-structuration of coiled-coil dimers as nanodomain-targeting units, containing a tunable fuzzy coat and a bar code-like positive surface charge before membrane association. Our data suggest that remorins fold in the cytosol with the N-terminal disordered region as a structural ensemble around a dimeric anti-parallel coiled-coil core containing a symmetric interface motif reminiscent of a hydrophobic Leucine zipper. The domain geometry, the charge distribution in the coiled-coil remorins and the differences in structures and dynamics between C-terminal lipid anchors of the remorin groups provide a selective platform for phospholipid binding when encountering the membrane surface.
Collapse
Affiliation(s)
- Zeren Xu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Louis Lagardere
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
| |
Collapse
|
14
|
Puławski W, Koliński A, Koliński M. Multiscale modeling of protofilament structures: A case study on insulin amyloid aggregates. Int J Biol Macromol 2024; 285:138382. [PMID: 39638203 DOI: 10.1016/j.ijbiomac.2024.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Under certain conditions, proteins may undergo misfolding and form long insoluble aggregates called amyloid fibrils. The presence of these aggregates is often associated with various diseases. The molecular mechanisms governing the aggregation process are yet to be fully understood. The self-assembly of amyloid protofilaments occurs over extended time frames, making the simulation of such events problematic. In this work, we describe a pipeline for multiscale modeling protofilament structures. In the first stage, the self-assembly of short fibrillar oligomers occurs during coarse-grained docking simulations of multiple copies of aggregating peptides. Subsequently, symmetry criteria are used to select the highest-ranked oligomer structures. Selected models are then reconstructed to an all-atom representation and used for the assembly of longer protofilaments. Models are optimized using molecular dynamics. Final structures are selected using various scoring protocols. We evaluated this modeling procedure through the test prediction of insulin amyloid protofilaments whose experimental structures have been published recently. The resulting insulin protofilament models closely resemble the experimental structures. This work provides a proof of concept for the proposed modeling procedure aiming to predict amyloid protofilament structures that exhibit in-register and parallel arrangement of β-sheets based solely on the amino acid sequence of aggregating peptides.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Andrzej Koliński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Koroleva ON, Kuzmina NV, Tolstova AP, Dubrovin EV, Drutsa VL. Effect of C- and N-Terminal Polyhistidine Tags on Aggregation of Influenza A Virus Nuclear Export Protein. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2238-2251. [PMID: 39865036 DOI: 10.1134/s0006297924120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His6-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc. His6-tag attached to the C-terminus has the greatest effect on aggregation kinetics and morphology of nanoparticles, which indicates important role of the C-terminal domain in the process of protein self-assembly. Molecular dynamics simulation did not reveal substantial influence of the His6-containing fragments on the protein structure, but demonstrated some variations in the mobility of these fragments that may explain the observed differences in the aggregation kinetics of the different NEP variants. Hypothetical mechanisms for formation and interconversion of various aggregates are considered.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalya V Kuzmina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna P Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Evgeniy V Dubrovin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- National University of Science and Technology MISIS, Moscow, 119049, Russia
| | - Valerii L Drutsa
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Chinchilla P, Wang B, Lubin JH, Yang X, Roth J, Khare SD, Baum J. Synergistic Multi-Pronged Interactions Mediate the Effective Inhibition of Alpha-Synuclein Aggregation by the Chaperone HtrA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624572. [PMID: 39651184 PMCID: PMC11623516 DOI: 10.1101/2024.11.25.624572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The misfolding, aggregation, and the seeded spread of alpha synuclein (α-Syn) aggregates are linked to the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). Understanding the mechanisms by which chaperone proteins prevent the production and seeding of α-Syn aggregates is crucial for developing effective therapeutic leads for tackling neurodegenerative diseases. We show that a catalytically inactive variant of the chaperone HtrA1 (HtrA1*) effectively inhibits both α-Syn monomer aggregation and templated fibril seeding, and demonstrate that this inhibition is mediated by synergistic interactions between its PDZ and Protease domains and α-Syn. Using biomolecular NMR, AFM and Rosetta-based computational analyses, we propose that the PDZ domain interacts with the C-terminal end of the monomer and the intrinsically disordered C-terminal domain of the α-Syn fibril. Furthermore, in agreement with sequence specificity calculations, the Protease domain cleaves in the aggregation-prone NAC domain at site T92/A93 in the monomer. Thus, through multi-pronged interactions and multi-site recognition of α-Syn, HtrA1* can effectively intervene at different stages along the α-Syn aggregation pathway, making it a robust inhibitor of α-Syn aggregation and templated seeding. Our studies illustrate, at high resolution, the crucial role of HtrA1 interactions with both the intrinsically disordered α-Syn monomers and with the dynamic flanking regions around the fibril core for inhibition of aggregation. This inhibition mechanism of the HtrA1 chaperone may provide a natural mechanistic blueprint for highly effective therapeutic agents against protein aggregation. Significance Statement PD and other synucleinopathies are marked by misfolding and aggregation of α-Syn, forming higher-order species that propagate aggregation in a prion-like manner. Understanding how chaperone proteins inhibit α-Syn aggregation and spread is essential for therapeutic development against neurodegeneration. Through an integrative approach of solution-based NMR, AFM, aggregation kinetics, and computational analysis, we reveal how a catalytically inactive variant of the chaperone HtrA1 effectively disrupts aggregation pathways. We find that the inactive Protease and PDZ domains of HtrA1 synergistically bind to key intrinsically disordered sites on both α-Syn monomers and fibrils, thereby effectively inhibiting both aggregation and templated seeding. Our work provides a natural and unique blueprint for designing inhibitors to prevent the formation and seeding of aggregates in neurodegenerative diseases.
Collapse
|
17
|
Arad E, Levi T, Yosefi G, Kass I, Cohen‐Erez I, Azoulay Z, Bitton R, Jelinek R, Rapaport H. A Matter of Charge: Electrostatically Tuned Coassembly of Amphiphilic Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404324. [PMID: 39155426 PMCID: PMC11579972 DOI: 10.1002/smll.202404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Coassembly of peptide biomaterials offers a compelling avenue to broaden the spectrum of hierarchically ordered supramolecular nanoscale structures that may be relevant for biomedical and biotechnological applications. In this work coassemblies of amphiphilic and oppositely charged, anionic and cationic, β-sheet peptides are studied, which may give rise to a diverse range of coassembled forms. Mixtures of the peptides show significantly lower critical coassembly concentration (CCC) values compared to those of the individual pure peptides. Intriguingly, the highest formation of coassembled fibrils is found to require excess of the cationic peptide whereas equimolar mixtures of the peptides exhibited the maximum folding into β-sheet structures. Mixtures of the peptides coassembled sequentially from solutions at concentrations surpassing each peptide's intrinsic critical assembly concentration (CAC), are also found to require a higher portion of the cationic peptide to stabilize hydrogels. This study illuminates a systematic investigation of oppositely charged β-sheet peptides over a range of concentrations, in solutions and in hydrogels. The results may be relevant to the fundamental understanding of such intricate charge-driven assembly systems and to the formulation of peptide-based nanostructures with diverse functionalities.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of ChemistryBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Present address:
Department of Chemical EngineeringColumbia University in the City of New YorkNew YorkNY10027USA
| | - Topaz Levi
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Gal Yosefi
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Itamar Kass
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Ifat Cohen‐Erez
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Ronit Bitton
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of ChemistryBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| |
Collapse
|
18
|
Dumarieh R, Lagasca D, Krishna S, Kragelj J, Xiao Y, Frederick KK. Structural context modulates the conformational ensemble of the intrinsically disordered amino terminus of α-synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621304. [PMID: 39553926 PMCID: PMC11565972 DOI: 10.1101/2024.10.31.621304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Regions of intrinsic disorder play crucial roles in biological systems, yet they often elude characterization by conventional biophysical techniques. To capture conformational distributions across different timescales, we employed a freezing approach coupled with solid-state NMR analysis. Using segmentally isotopically labeled α-synuclein (α-syn), we investigated the conformational preferences of the six alanines, three glycines, and a single site (L8) in the disordered amino terminus under three distinct conditions: in 8 M urea, as a frozen monomer in buffer, and within the disordered regions flanking the amyloid core. The experimental spectra varied significantly among these conditions and deviated from those of a statistical coil. In 8 M urea, monomeric α-syn exhibited the most restricted conformational sampling, rarely accessing chemical shifts characteristic of α-helices or β-strands. In buffer, monomeric α-syn showed broader conformational sampling, favoring α-helical conformations and, to a lesser extent, random coil states. Notably, amino acids in the disordered regions flanking the amyloid core demonstrated the most extensive conformational sampling, with broad peaks encompassing the entire range of possible chemical shifts and a marked preference for highly extended β-strand conformations. Collectively, this work demonstrates that intrinsically disordered regions exhibit distinct conformational preferences, which are influenced not only by the chemical environment but also by the conformations of adjacent protein sequences. The differences in the conformational ensembles of the disordered amino terminus may explain why the monomer and the amyloid form of α-syn interact with different biomolecules inside cells.
Collapse
Affiliation(s)
- Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
19
|
Fonda BD, Kato M, Li Y, Murray DT. Cryo-EM and solid state NMR together provide a more comprehensive structural investigation of protein fibrils. Protein Sci 2024; 33:e5168. [PMID: 39276003 PMCID: PMC11400629 DOI: 10.1002/pro.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
The tropomyosin 1 isoform I/C C-terminal domain (Tm1-LC) fibril structure is studied jointly with cryogenic electron microscopy (cryo-EM) and solid state nuclear magnetic resonance (NMR). This study demonstrates the complementary nature of these two structural biology techniques. Chemical shift assignments from solid state NMR are used to determine the secondary structure at the level of individual amino acids, which is faithfully seen in cryo-EM reconstructions. Additionally, solid state NMR demonstrates that the region not observed in the reconstructed cryo-EM density is primarily in a highly mobile random coil conformation rather than adopting multiple rigid conformations. Overall, this study illustrates the benefit of investigations combining cryo-EM and solid state NMR to investigate protein fibril structure.
Collapse
Affiliation(s)
- Blake D. Fonda
- Department of ChemistryUniversity of CaliforniaDavisCaliforniaUSA
| | - Masato Kato
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Yang Li
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dylan T. Murray
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
20
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
21
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
22
|
Bacioglu M, Schweighauser M, Gray D, Lövestam S, Katsinelos T, Quaegebeur A, van Swieten J, Jaunmuktane Z, Davies SW, Scheres SHW, Goedert M, Ghetti B, Spillantini MG. Cleaved TMEM106B forms amyloid aggregates in central and peripheral nervous systems. Acta Neuropathol Commun 2024; 12:99. [PMID: 38886865 PMCID: PMC11181561 DOI: 10.1186/s40478-024-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Filaments made of residues 120-254 of transmembrane protein 106B (TMEM106B) form in an age-dependent manner and can be extracted from the brains of neurologically normal individuals and those of subjects with a variety of neurodegenerative diseases. TMEM106B filament formation requires cleavage at residue 120 of the 274 amino acid protein; at present, it is not known if residues 255-274 form the fuzzy coat of TMEM106B filaments. Here we show that a second cleavage appears likely, based on staining with an antibody raised against residues 263-274 of TMEM106B. We also show that besides the brain TMEM106B inclusions form in dorsal root ganglia and spinal cord, where they were mostly found in non-neuronal cells. We confirm that in the brain, inclusions were most abundant in astrocytes. No inclusions were detected in heart, liver, spleen or hilar lymph nodes. Based on their staining with luminescent conjugated oligothiophenes, we confirm that TMEM106B inclusions are amyloids. By in situ immunoelectron microscopy, TMEM106B assemblies were often found in structures resembling endosomes and lysosomes.
Collapse
Affiliation(s)
- Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Derrick Gray
- IUSM Center for Electron Microscopy (ICEM), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Annelies Quaegebeur
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust and the Cambridge Brain Bank, Cambridge, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Stephen W Davies
- Department of Cell and Developmental Biology, University College, London, UK
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
23
|
Rodríguez CS, Laurents DV. Architectonic principles of polyproline II helix bundle protein domains. Arch Biochem Biophys 2024; 756:109981. [PMID: 38593862 DOI: 10.1016/j.abb.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Glycine rich polyproline II helix assemblies are an emerging class of natural domains found in several proteins with different functions and diverse origins. The distinct properties of these domains relative to those composed of α-helices and β-sheets could make glycine-rich polyproline II helix assemblies a useful building block for protein design. Whereas the high population of polyproline II conformers in disordered state ensembles could facilitate glycine-rich polyproline II helix folding, the architectonic bases of these structures are not well known. Here, we compare and analyze their structures to uncover common features. These protein domains are found to be highly tolerant of distinct flanking sequences. This speaks to the robustness of this fold and strongly suggests that glycine rich polyproline II assemblies could be grafted with other protein domains to engineer new structures and functions. These domains are also well packed with few or no cavities. Moreover, a significant trend towards antiparallel helix configuration is observed in all these domains and could provide stabilizing interactions among macrodipoles. Finally, extensive networks of Cα-H···OC hydrogen bonds are detected in these domains. Despite their diverse evolutionary origins and activities, glycine-rich polyproline II helix assemblies share architectonic features which could help design novel proteins.
Collapse
Affiliation(s)
| | - Douglas V Laurents
- Instituto de Química Física "Blas Cabrera" CSIC, Serrano 119 Madrid, Spain.
| |
Collapse
|
24
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
25
|
Byeon CH, Hansen KH, Jeffrey J, Saricayir H, Andreasen M, Akbey Ü. Intrinsically disordered Pseudomonas chaperone FapA slows down the fibrillation of major biofilm-forming functional amyloid FapC. FEBS J 2024; 291:1925-1943. [PMID: 38349812 DOI: 10.1111/febs.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jasper Jeffrey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
van der Wel PC. Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation. Biochem Soc Trans 2024; 52:719-731. [PMID: 38563485 PMCID: PMC11088915 DOI: 10.1042/bst20230731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.
Collapse
|
27
|
Khalili K, Farzam F, Dabirmanesh B, Khajeh K. Prediction of protein aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:229-263. [PMID: 38811082 DOI: 10.1016/bs.pmbts.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The scientific community is very interested in protein aggregation because of its involvement in several neurodegenerative diseases and its significance in industry. Remarkably, fibrillar aggregates are utilized naturally for constructing structural scaffolds or creating biological switches and may be intentionally designed to construct versatile nanomaterials. Consequently, there is a significant need to rationalize and predict protein aggregation. Researchers have developed various computational methodologies and algorithms to predict protein aggregation and understand its underlying mechanics. This chapter aims to summarize the significant advancements in computational methods, accessible resources, and prospective developments in the field of in silico research. We assess the existing computational tools for predicting protein aggregation propensities, detecting areas that are prone to sequential and structural aggregation, analyzing the effects of mutations on protein aggregation, or identifying prion-like domains.
Collapse
Affiliation(s)
- Kavyan Khalili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Agha MM, Uversky VN. Morphological features and types of aggregated structures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:85-109. [PMID: 38811090 DOI: 10.1016/bs.pmbts.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In vivo, protein aggregation arises due to incorrect folding or misfolding. The aggregation of proteins into amyloid fibrils is the characteristic feature of various misfolding diseases known as amyloidosis, such as Alzheimer's and Parkinson's disease. The heterogeneous nature of these fibrils restricts the extent to which their structure may be characterized. Advancements in techniques, such as X-ray diffraction, cryo-electron microscopy, and solid-state NMR have yielded intricate insights into structures of different amyloid fibrils. These studies have unveiled a diverse range of polymorphic structures that typically conform to the cross-β amyloid pattern. This chapter provides a concise overview of the information acquired in the field of protein aggregation, with particular focus on amyloids.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
29
|
Duan P, Hong M. Selective Detection of Intermediate-Amplitude Motion by Solid-State NMR. J Phys Chem B 2024; 128:2293-2303. [PMID: 38417154 DOI: 10.1021/acs.jpcb.3c06839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The coexistence of rigid and mobile molecules or molecular segments abounds in biomolecular assemblies. Examples include the carbohydrate-rich cell walls of plants and intrinsically disordered proteins that contain rigid β-sheet cores. In solid-state nuclear magnetic resonance (NMR) spectroscopy, dipolar polarization transfer experiments are well suited for detecting rigid components, whereas scalar-coupling experiments are well suited for detecting highly mobile components. However, few NMR methods are available to detect the segments that undergo intermediate-amplitude fast motion. Here, we introduce two NMR experiments, a two-dimensional T2H-filtered CP-hCH correlation and a three-dimensional J-INADEQUATE CCH correlation, to observe this intermediate-amplitude motion. Both experiments involve 1H detection under fast magic-angle spinning (MAS). By combining 1H transverse relaxation (T2H) filters with dipolar polarization transfer, we suppress the signals of both highly rigid and highly mobile species, thus revealing the signals of intermediate mobile species. 1H detection under fast MAS is crucial for distinguishing the different motional amplitudes. We demonstrate these techniques on several plant cell wall samples and show that they allow the selective detection and resolution of certain hemicellulose and pectin signals, which are usually masked by the signals of the rigid cellulose and the highly dynamic pectins in purely dipolar and scalar NMR spectra.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Mammeri NE, Dregni AJ, Duan P, Hong M. Structures of AT8 and PHF1 phosphomimetic tau: Insights into the posttranslational modification code of tau aggregation. Proc Natl Acad Sci U S A 2024; 121:e2316175121. [PMID: 38408247 PMCID: PMC10927509 DOI: 10.1073/pnas.2316175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
The microtubule-associated protein tau aggregates into amyloid fibrils in Alzheimer's disease and other neurodegenerative diseases. In these tauopathies, tau is hyperphosphorylated, suggesting that this posttranslational modification (PTM) may induce tau aggregation. Tau is also phosphorylated in normal developing brains. To investigate how tau phosphorylation induces amyloid fibrils, here we report the atomic structures of two phosphomimetic full-length tau fibrils assembled without anionic cofactors. We mutated key Ser and Thr residues to Glu in two regions of the protein. One construct contains three Glu mutations at the epitope of the anti-phospho-tau antibody AT8 (AT8-3E tau), whereas the other construct contains four Glu mutations at the epitope of the antibody PHF1 (PHF1-4E tau). Solid-state NMR data show that both phosphomimetic tau mutants form homogeneous fibrils with a single set of chemical shifts. The AT8-3E tau rigid core extends from the R3 repeat to the C terminus, whereas the PHF1-4E tau rigid core spans R2, R3, and R4 repeats. Cryoelectron microscopy data show that AT8-3E tau forms a triangular multi-layered core, whereas PHF1-4E tau forms a triple-stranded core. Interestingly, a construct combining all seven Glu mutations exhibits the same conformation as PHF1-4E tau. Scalar-coupled NMR data additionally reveal the dynamics and shape of the fuzzy coat surrounding the rigid cores. These results demonstrate that specific PTMs induce structurally specific tau aggregates, and the phosphorylation code of tau contains redundancy.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
31
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
32
|
Wilkinson M, Xu Y, Thacker D, Taylor AIP, Fisher DG, Gallardo RU, Radford SE, Ranson NA. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023; 186:5798-5811.e26. [PMID: 38134875 DOI: 10.1016/j.cell.2023.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander I P Taylor
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Declan G Fisher
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
33
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Byeon CH, Akbey Ü. Solution-state NMR assignment and secondary structure analysis of the monomeric Pseudomonas biofilm-forming functional amyloid accessory protein FapA. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:275-280. [PMID: 37798606 DOI: 10.1007/s12104-023-10155-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
FapA is an accessory protein within the biofilm forming functional bacterial amyloid related fap-operon in Pseudomonas, and maybe a chaperone for FapC controlling its fibrillization. To allow further structural analysis, here we present a complete sequential assignment of 1Hamide, 13Cα, 13Cβ, and 15N NMR resonances for the functional form of the monomeric soluble FapA protein, comprising amino acids between 29 and 152. From these observed chemical shifts, the secondary structure propensities (SSPs) were determined. FapA predominantly adopts a random coil conformation, however, we also identified small propensities for α-helical and β-strand conformations. Notably, these observed SSPs are smaller compared to the ones we recently observed for the monomeric soluble FapC protein. These NMR results provide valuable insights into the activity of FapA in functional amyloid formation and regulation, that will also aid developing strategies targeting amyloid formation within biofilms and addressing chronic infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, USA
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, USA.
| |
Collapse
|
35
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
36
|
Cámara-Almirón J, Domínguez-García L, El Mammeri N, Lends A, Habenstein B, de Vicente A, Loquet A, Romero D. Molecular characterization of the N-terminal half of TasA during amyloid-like assembly and its contribution to Bacillus subtilis biofilm formation. NPJ Biofilms Microbiomes 2023; 9:68. [PMID: 37739955 PMCID: PMC10516879 DOI: 10.1038/s41522-023-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Biofilms are bacterial communities that result from a cell differentiation process leading to the secretion of an extracellular matrix (ECM) by part of the population. In Bacillus subtilis, the main protein component of the ECM is TasA, which forms a fiber-based scaffold that confers structure to the ECM. The N-terminal half of TasA is strongly conserved among Bacillus species and contains a protein domain, the rigid core (RcTasA), which is critical for the structural and functional properties of the recombinant protein. In this study, we demonstrate that recombinantly purified RcTasA in vitro retains biochemical properties previously observed for the entire protein. Further analysis of the RcTasA amino acid sequence revealed two aggregation-prone stretches and a region of imperfect amino acid repeats, which are known to contribute to functional amyloid assembly. Biochemical characterization of these stretches found in RcTasA revealed their amyloid-like capacity in vitro, contributing to the amyloid nature of RcTasA. Moreover, the study of the imperfect amino acid repeats revealed the critical role of residues D64, K68 and D69 in the structural function of TasA. Experiments with versions of TasA carrying the substitutions D64A and K68AD69A demonstrated a partial loss of function of the protein either in the assembly of the ECM or in the stability of the core and amyloid-like properties. Taken together, our findings allow us to better understand the polymerization process of TasA during biofilm formation and provide knowledge into the sequence determinants that promote the molecular behavior of protein filaments in bacteria.
Collapse
Affiliation(s)
- Jesús Cámara-Almirón
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
| | - Nadia El Mammeri
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV, 1006, Latvia
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
| | - Antonio de Vicente
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, Pessac, France
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, (Campus Universitario de Teatinos), Málaga, Spain.
| |
Collapse
|
37
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
38
|
Faidon Brotzakis Z, Löhr T, Truong S, Hoff S, Bonomi M, Vendruscolo M. Determination of the Structure and Dynamics of the Fuzzy Coat of an Amyloid Fibril of IAPP Using Cryo-Electron Microscopy. Biochemistry 2023; 62:2407-2416. [PMID: 37477459 PMCID: PMC10433526 DOI: 10.1021/acs.biochem.3c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/03/2023] [Indexed: 07/22/2023]
Abstract
In recent years, major advances in cryo-electron microscopy (cryo-EM) have enabled the routine determination of complex biomolecular structures at atomistic resolution. An open challenge for this approach, however, concerns large systems that exhibit continuous dynamics. To address this problem, we developed the metadynamic electron microscopy metainference (MEMMI) method, which incorporates metadynamics, an enhanced conformational sampling approach, into the metainference method of integrative structural biology. MEMMI enables the simultaneous determination of the structure and dynamics of large heterogeneous systems by combining cryo-EM density maps with prior information through molecular dynamics, while at the same time modeling the different sources of error. To illustrate the method, we apply it to elucidate the dynamics of an amyloid fibril of the islet amyloid polypeptide (IAPP). The resulting conformational ensemble provides an accurate description of the structural variability of the disordered region of the amyloid fibril, known as fuzzy coat. The conformational ensemble also reveals that in nearly half of the structural core of this amyloid fibril, the side chains exhibit liquid-like dynamics despite the presence of the highly ordered network backbone of hydrogen bonds characteristic of the cross-β structure of amyloid fibrils.
Collapse
Affiliation(s)
- Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Thomas Löhr
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven Truong
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Samuel Hoff
- Department
of Structural Biology and Chemistry, Institut
Pasteur, Université Paris Cité CNRS UMR 3528, 75015 Paris, France
| | - Massimiliano Bonomi
- Department
of Structural Biology and Chemistry, Institut
Pasteur, Université Paris Cité CNRS UMR 3528, 75015 Paris, France
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
39
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
40
|
Arseni D, Chen R, Murzin AG, Peak-Chew SY, Garringer HJ, Newell KL, Kametani F, Robinson AC, Vidal R, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP. Nature 2023; 620:898-903. [PMID: 37532939 PMCID: PMC10447236 DOI: 10.1038/s41586-023-06405-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Renren Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
41
|
Brotzakis ZF. Guide for determination of protein structural ensembles by combining cryo-EM data with metadynamics. FEBS Open Bio 2023; 13:1193-1203. [PMID: 36562694 PMCID: PMC10315759 DOI: 10.1002/2211-5463.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Metadynamics electron microscopy metaInference (MEMMI) is an integrative structural biology method that enables a rapid and accurate characterization of protein structural dynamics at the atomic level and the error in the cryo-EM experimental data, even in cases where conformations are separated by high energy barriers. It achieves this by incorporating (a) cryo-electron microscopy electron density maps with (b) metadynamic-enhanced-sampling molecular dynamics. Here, I showcase the setup and analysis protocol of MEMMI, used to discover the atomistic structural ensemble and error in the cryo-EM electron density map of the fuzzy coat of IAPP, a fibril implicated in type II diabetes.
Collapse
Affiliation(s)
- Z. Faidon Brotzakis
- Department of ChemistryUniversity of CambridgeUK
- Institute of BioinnovationBSRC FlemingVariGreece
| |
Collapse
|
42
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
43
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
44
|
Thacker D, Willas A, Dear AJ, Linse S. Role of Hydrophobicity at the N-Terminal Region of Aβ42 in Secondary Nucleation. ACS Chem Neurosci 2022; 13:3477-3487. [PMID: 36411082 PMCID: PMC9732875 DOI: 10.1021/acschemneuro.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of the amyloid β 42 (Aβ42) peptide is linked to Alzheimer's disease, and oligomeric intermediates are linked to neuronal cell death during the pathology of the disease. These oligomers are produced prolifically during secondary nucleation, by which the aggregation of monomers is catalyzed on fibril surfaces. Significant progress has been made in understanding the aggregation mechanism of Aβ42; still, a detailed molecular-level understanding of secondary nucleation is lacking. Here, we explore the role of four hydrophobic residues on the unstructured N-terminal region of Aβ42 in secondary nucleation. We create eight mutants with single substitutions at one of the four positions─Ala2, Phe4, Tyr10, and Val12─to decrease the hydrophobicity at respective positions (A2T, A2S, F4A, F4S, Y10A, Y10S, V12A, and V12S) and one mutant (Y10F) to remove the polar nature of Tyr10. Kinetic analyses of aggregation data reveal that the hydrophobicity at the N-terminal region of Aβ42, especially at positions 10 and 12, affects the rate of fibril mass generated via secondary nucleation. Cryo-electron micrographs reveal that most of the mutants with lower hydrophobicity form fibrils that are markedly longer than WT Aβ42, in line with the reduced secondary nucleation rates for these peptides. The dominance of secondary nucleation, however, is still retained in the aggregation mechanism of these mutants because the rate of primary nucleation is even more reduced. This highlights that secondary nucleation is a general phenomenon that is not dependent on any one particular feature of the peptide and is rather robust to sequence perturbations.
Collapse
Affiliation(s)
- Dev Thacker
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Amanda Willas
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| | - Alexander J. Dear
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, Lund22362, Sweden
| |
Collapse
|
45
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
46
|
Matlahov I, Boatz JC, C.A. van der Wel P. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. J Struct Biol X 2022; 6:100077. [PMID: 36419510 PMCID: PMC9677204 DOI: 10.1016/j.yjsbx.2022.100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin exon 1 fibrils feature a broad range of molecular dynamics. Molecular motion is coupled to water dynamics outside the fiber core. Dynamics-based spectral editing ssNMR reveals mobile non-core residues. Intermediate-motion selection via dipolar dephasing of rigid sites. Semi-mobile glutamines outside the fiber core observed and identified.
Many amyloid-forming proteins, which are normally intrinsically disordered, undergo a disorder-to-order transition to form fibrils with a rigid β-sheet core flanked by disordered domains. Solid-state NMR (ssNMR) and cryogenic electron microscopy (cryoEM) excel at resolving the rigid structures within amyloid cores but studying the dynamically disordered domains remains challenging. This challenge is exemplified by mutant huntingtin exon 1 (HttEx1), which self-assembles into pathogenic neuronal inclusions in Huntington disease (HD). The mutant protein’s expanded polyglutamine (polyQ) segment forms a fibril core that is rigid and sequestered from the solvent. Beyond the core, solvent-exposed surface residues mediate biological interactions and other properties of fibril polymorphs. Here we deploy magic angle spinning ssNMR experiments to probe for semi-rigid residues proximal to the fibril core and examine how solvent dynamics impact the fibrils’ segmental dynamics. Dynamic spectral editing (DYSE) 2D ssNMR based on a combination of cross-polarization (CP) ssNMR with selective dipolar dephasing reveals the weak signals of solvent-mobilized glutamine residues, while suppressing the normally strong background of rigid core signals. This type of ‘intermediate motion selection’ (IMS) experiment based on cross-polarization (CP) ssNMR, is complementary to INEPT- and CP-based measurements that highlight highly flexible or highly rigid protein segments, respectively. Integration of the IMS-DYSE element in standard CP-based ssNMR experiments permits the observation of semi-rigid residues in a variety of contexts, including in membrane proteins and protein complexes. We discuss the relevance of semi-rigid solvent-facing residues outside the fibril core to the latter’s detection with specific dyes and positron emission tomography tracers.
Collapse
|
47
|
Sharma R, Kumari A, Kundu B, Grover A. Amyloid fibrillation of the glaucoma associated myocilin protein is inhibited by epicatechin gallate (ECG). RSC Adv 2022; 12:29469-29481. [PMID: 36320765 PMCID: PMC9562371 DOI: 10.1039/d2ra05061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Inherited glaucoma is a recent addition to the inventory of diseases arising due to protein misfolding. Mutations in the olfactomedin (OLF) domain of myocilin are the most common genetic cause behind this disease. Disease associated variants of m-OLF are predisposed to misfold and aggregate in the trabecular meshwork (TM) tissue of the eye. In recent years, the nature of these aggregates was revealed to exhibit the hallmarks of amyloids. Amyloid aggregates are highly stable structures that are formed, often with toxic consequences in a number of debilitating diseases. In spite of its clinical relevance the amyloidogenic nature of m-OLF has not been studied adequately. Here we have studied the amyloid fibrillation of m-OLF and report ECG as an inhibitor against it. Using biophysical and biochemical assays, coupled with advanced microscopic evaluations we show that ECG binds and stabilizes native m-OLF and thus prevents its aggregation into amyloid fibrils. Furthermore, we have used REMD simulations to delineate the stabilizing effects of ECG on the structure of m-OLF. Collectively, we report ECG as a molecular scaffold for designing and testing of novel inhibitors against m-OLF amyloid fibrillation.
Collapse
Affiliation(s)
- Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| | - Anchala Kumari
- Indian Council of Medical Research, International Health DivisionNew Delhi-110029India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology DelhiHauz KhasNew DelhiIndia – 110016
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi-110067India+91-8130738032
| |
Collapse
|
48
|
Xing Y, Andrikopoulos N, Zhang Z, Sun Y, Ke PC, Ding F. Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed Flanking Sequences. Biomacromolecules 2022; 23:4179-4191. [PMID: 36137260 PMCID: PMC9618360 DOI: 10.1021/acs.biomac.2c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers populating early amyloid aggregation can be regarded as nanodroplets of liquid-liquid phase separation (LLPS). Amyloid peptides typically contain hydrophobic aggregation-prone regions connected by hydrophilic linkers and flanking sequences, and such a sequence hydropathy pattern drives the formation of supramolecular structures in the nanodroplets and modulates subsequent fibrillization. Here, we studied LLPS and fibrillization of coarse-grained amyloid peptides with increasing flanking sequences. Nanodroplets assumed lamellar, cylindrical micellar, and spherical micellar structures with increasing peptide hydrophilic/hydrophobic ratios, and such morphologies governed subsequent fibrillization processes. Adding glycine-serine repeats as flanking sequences to Aβ16-22, the amyloidogenic core of amyloid-β, our computational predictions of morphological transitions were corroborated experimentally. The uncovered inter-relationships between the peptide sequence pattern, oligomer/nanodroplet morphology, and fibrillization pathway, kinetics, and structure may contribute to our understanding of pathogenic amyloidosis in aging, facilitate future efforts ameliorating amyloidosis through peptide engineering, and aid in the design of novel amyloid-based functional nanobiomaterials and nanocomposites.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
49
|
Sarkar D, Maity NC, Shome G, Varnava KG, Sarojini V, Vivekanandan S, Sahoo N, Kumar S, Mandal AK, Biswas R, Bhunia A. Mechanistic insight into functionally different human islet polypeptide (hIAPP) amyloid: the intrinsic role of the C-terminal structural motifs. Phys Chem Chem Phys 2022; 24:22250-22262. [PMID: 36098073 DOI: 10.1039/d2cp01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| |
Collapse
|
50
|
Housmans JAJ, Houben B, Monge-Morera M, Asvestas D, Nguyen HH, Tsaka G, Louros N, Carpentier S, Delcour JA, Rousseau F, Schymkowitz J. Investigating the Sequence Determinants of the Curling of Amyloid Fibrils Using Ovalbumin as a Case Study. Biomacromolecules 2022; 23:3779-3797. [PMID: 36027608 DOI: 10.1021/acs.biomac.2c00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly ordered, straight amyloid fibrils readily lend themselves to structure determination techniques and have therefore been extensively characterized. However, the less ordered curly fibrils remain relatively understudied, and the structural organization underlying their specific characteristics remains poorly understood. We found that the exemplary curly fibril-forming protein ovalbumin contains multiple aggregation prone regions (APRs) that form straight fibrils when isolated as peptides or when excised from the full-length protein through hydrolysis. In the context of the intact full-length protein, however, the regions separating the APRs facilitate curly fibril formation. In fact, a meta-analysis of previously reported curly fibril-forming proteins shows that their inter-APRs are significantly longer and more hydrophobic when compared to straight fibril-forming proteins, suggesting that they may cause strain in the amyloid state. Hence, inter-APRs driving curly fibril formation may not only apply to our model protein but rather constitute a more general mechanism.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Margarita Monge-Morera
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Diego Asvestas
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Hung Huy Nguyen
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Grigoria Tsaka
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| |
Collapse
|