1
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2025; 17:279-291. [PMID: 40256718 PMCID: PMC12009074 DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Wenze Wu
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yan Mi
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Qingqi Meng
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yue Hou
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
2
|
Liu KL, Sun TZ, Yang Y, Gao QX, Tu LM, Yu JY, Tian QZ, Fu LY, Tang SH, Gao HL, Qi J, Kang YM, Yu XJ. Blockade of PVN neuromedin B receptor alleviates inflammation via the RAS/ROS/NF-κB pathway in spontaneously hypertensive rats. Brain Res Bull 2025; 220:111180. [PMID: 39716597 DOI: 10.1016/j.brainresbull.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Neuromedin B (NMB) has potentially great impacts on the development of cardiovascular diseases by promoting hypertensive and sympatho-excitation effects. However, studies regarding the NMB function in paraventricular nucleus (PVN) are lacking. With selective neuromedin B receptor (NMBR) antagonist, BIM-23127, we aim to determine whether the blockade of NMB function in PVN could alleviate central inflammation and attenuate hypertensive responses. Spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were chronically infused with BIM-23127 in the PVN for 6 weeks. Mean arterial pressure (MAP) was assessed with tail cuff and electrophysiological acquisition systems. PVN tissues were collected to analyze expressions of Fra-LI, inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-10, and IL-4), renin-angiotensin system (angiotensin-converting enzyme (ACE), ACE2, and AT1-reporter (AT1-R)) and oxidative stress (reactive oxygen species (ROS), superoxide dismutase (SOD)1, NADPH oxidase (NOX)2, and NOX4). ELISA was used to detect inflammation indices, norepinephrine (NE), and nuclear factor κB (NF-κB) p65 in plasma and PVN tissue homogenate. Compared to WKY, SHR exhibited higher mean arterial pressure (MAP), plasma NE, and pro-inflammatory cytokines (PICs). Higher PVN levels of Fra-LI, PICs, ACE, AT1-R, ROS, NOX2, NOX4, and NF-κB p65, while lower central levels of anti-inflammatory cytokines (AICs), ACE2, and SOD1 were observed in SHR. Administration of BIM-23127 in PVN reversed all these changes in SHR. In SHR, blockade of NMBR in the PVN inhibited sympatho-excitation and attenuated hypertensive response. The attenuation mechanism may involve reducing inflammation and the RAS/ROS/ NF-κB pathways in PVN.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Tian-Ze Sun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Pharmacology, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Qian-Xi Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Li-Mei Tu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Medical University, Taiyuan 030001, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Qiao-Zhen Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Shanxi Datong University, Datong 037009, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Shu-Huan Tang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
3
|
Chen F, Zheng W, Yang Z, Wang W, Huang J. A bio-functional cryogel with antioxidant activity for potential application in bone tissue repairing. Heliyon 2024; 10:e37055. [PMID: 39286229 PMCID: PMC11402651 DOI: 10.1016/j.heliyon.2024.e37055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Antioxidant and free radical resistance has been a key concern of tissue engineering. In this study, Hydroxyapatite (HAp) with osteogenic activity and Oligomeric Proantho Cyanidins (OPC) with antioxidant activity were chemically grafted to prepare gelatin-based biofunctional aerogel (GHPOS). SEM results confirmed that these aerogels exhibited obvious macroporous structure and could provide a suitable microenvironment for bone cell growth. The addition of HAP-PEI-OPC made it have good antioxidant activity, and the cell results proved that the aerogel prepared in this study had good cytocompatibility and did not produce cytotoxicity. The addition of nanoparticles played an important role in the activity of 3T3-E1. The results showed that these bioactive aerogel scaffolds have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Feng Chen
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang Province, PR China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang Province, PR China
| | - Zeyu Yang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang Province, PR China
| | - Wei Wang
- Department of Tumor Intervention, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang Province, PR China
| | - Jiehe Huang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang Province, PR China
| |
Collapse
|
4
|
Gao S, Xu B, Sun J, Zhang Z. Nanotechnological advances in cancer: therapy a comprehensive review of carbon nanotube applications. Front Bioeng Biotechnol 2024; 12:1351787. [PMID: 38562672 PMCID: PMC10984352 DOI: 10.3389/fbioe.2024.1351787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Nanotechnology is revolutionising different areas from manufacturing to therapeutics in the health field. Carbon nanotubes (CNTs), a promising drug candidate in nanomedicine, have attracted attention due to their excellent and unique mechanical, electronic, and physicochemical properties. This emerging nanomaterial has attracted a wide range of scientific interest in the last decade. Carbon nanotubes have many potential applications in cancer therapy, such as imaging, drug delivery, and combination therapy. Carbon nanotubes can be used as carriers for drug delivery systems by carrying anticancer drugs and enabling targeted release to improve therapeutic efficacy and reduce adverse effects on healthy tissues. In addition, carbon nanotubes can be combined with other therapeutic approaches, such as photothermal and photodynamic therapies, to work synergistically to destroy cancer cells. Carbon nanotubes have great potential as promising nanomaterials in the field of nanomedicine, offering new opportunities and properties for future cancer treatments. In this paper, the main focus is on the application of carbon nanotubes in cancer diagnostics, targeted therapies, and toxicity evaluation of carbon nanotubes at the biological level to ensure the safety and real-life and clinical applications of carbon nanotubes.
Collapse
Affiliation(s)
- Siyang Gao
- Jilin University of College of Biological and Agricultural Engineering, Changchun, Jilin, China
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Binhan Xu
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Jianwei Sun
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Zhihui Zhang
- Jilin University of College of Biological and Agricultural Engineering, Changchun, Jilin, China
| |
Collapse
|
5
|
Hao Y, Liu M, Ni H, Bai Y, Hao Q, Zhang L, Kang X, Lyu M, Wang S. Preparation of Sweet Potato Porous Starch by Marine Dextranase and Its Adsorption Characteristics. Foods 2024; 13:549. [PMID: 38397526 PMCID: PMC10888179 DOI: 10.3390/foods13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Dextranase (EC 3.2.1.11) is primarily applied in food, sugar, and pharmaceutical industries. This study focuses on using a cold shock Escherichia coli expression system to express marine dextranase SP5-Badex; enzyme activity increased about 2.2-fold compared to previous expression. This enzyme was employed to produce sweet potato porous starch, with special emphasis on the pore size of the starch. The water and oil adsorption rates of the porous starch increased by 1.43 and 1.51 times, respectively. Extensive Fourier transform infrared spectroscopy and X-ray diffraction revealed that the crystal structure of the sweet potato starch was unaltered by enzymatic hydrolysis. The adsorption capacities of the porous starch for curcumin and proanthocyanidins were 9.59 and 12.29 mg/g, respectively. Notably, the stability of proanthocyanidins was significantly enhanced through their encapsulation in porous starch. After 2.5 h of ultraviolet irradiation, the free radical scavenging rate of the encapsulated proanthocyanidins remained at 95.10%. Additionally, after 30 days of sunlight exposure, the free radical scavenging rate of the encapsulated proanthocyanidins (84.42%) was significantly higher than that (24.34%) observed in the control group. These research findings provide substantial experimental evidence for preparing sweet potato porous starch using marine dextranase.
Collapse
Affiliation(s)
- Yue Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
He Y, Yang W, Zhang C, Yang M, Yu Y, Zhao H, Guan F, Yao M. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing. Int J Biol Macromol 2024; 258:128962. [PMID: 38145691 DOI: 10.1016/j.ijbiomac.2023.128962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Platelet-rich plasma (PRP) contains a variety of growth factors (GFs) and has been used in the treatment of a variety of diseases, including skin lesions. In particular, PRP with low immunogenicity will be more widely used. However, the explosive release of GFs limits its further application. In order to achieve controlled release of GFs, a multifunctional and reactive oxygen species (ROS)/pH dual responsive hydrogel was developed to load PRP derived from human cord blood for the treatment of skin wound healing. Based on the hydrogen bond and Schiff base interaction, carboxymethyl chitosan (CMCS), oxidized dextran (Odex) and oligomeric procyanidins (OPC) were crosslinked to form CMCS/Odex/OPC/PRP hydrogel with good injectability, self-healing, adhesion, ROS scavenging, antibacterial activity, controlled and sustained release of GFs. In vitro cell experiments suggested that this hydrogel possessed excellent biocompatibility and could promote the proliferation and migration of L929. In vivo healing of full-layer skin wounds further indicated that the prepared hydrogel could regulate inflammation and promote epithelialization, collagen deposition, and angiogenesis. In summary, this present study demonstrates that CMCS/Odex/OPC/PRP hydrogel may serve as a promising multifunctional dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Weijuan Yang
- Shandong Qilu Stem Cell Engineering Co. LTD, Jinan 250102, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Jia XY, Jiang DL, Jia XT, Fu LY, Tian H, Liu KL, Qi J, Kang YM, Yu XJ. Capsaicin improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the hypothalamic paraventricular nucleus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154951. [PMID: 37453193 DOI: 10.1016/j.phymed.2023.154951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKβ, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Da-Li Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Tao Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
8
|
Huang P. Proanthocyanidins may be potential therapeutic agents for the treatment of carotid atherosclerosis: A review. J Int Med Res 2023; 51:3000605231167314. [PMID: 37096349 PMCID: PMC10134127 DOI: 10.1177/03000605231167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Atherosclerotic cerebrovascular disease is one of the major causes of death in China, with associated serious risk of disability and burden on society and families. Therefore, the development of active and effective therapeutic drugs for this disease is of great significance. Proanthocyanidins are a class of naturally occurring active substances, rich in hydroxyl groups and from a wide range of sources. Studies have suggested that they have a strong potential for anti-atherosclerosis activity. In this paper, we review published evidence regarding anti-atherosclerotic effects of proanthocyanidins in different atherosclerotic research models.
Collapse
Affiliation(s)
- Pan Huang
- Department of Neurology, People's Hospital of Deyang City, No. 173 TaiShan North Road, DeYang, Sichuan 618000, China
| |
Collapse
|
9
|
Liu XJ, Yu XJ, Su YK, Qiao JA, Sun YJ, Bai XJ, Zhang N, Yang HY, Yin LX, Kang YM, Yang ZM. Minocycline and Pyrrolidine Dithiocarbamate Attenuate Hypertension via Suppressing Activation of Microglia in the Hypothalamic Paraventricular Nucleus. TOHOKU J EXP MED 2023; 259:163-172. [PMID: 36450479 DOI: 10.1620/tjem.2022.j102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Proinflammatory cytokines, reactive oxygen species and imbalance of neurotransmitters are involved in the pathophysiology of angiotensin II-induced hypertension. The hypothalamic paraventricular nucleus (PVN) plays a vital role in hypertension. Evidences show that microglia are activated and release proinflammatory cytokines in angiocardiopathy. We hypothesized that angiotensin II induces PVN microglial activation, and the activated PVN microglia release proinflammatory cytokines and cause oxidative stress through nuclear factor-kappa B (NF-κB) pathway, which contributes to sympathetic overactivity and hypertension. Male Sprague-Dawley rats (weight 275-300 g) were infused with angiotensin II to induce hypertension. Then, rats were treated with bilateral PVN infusion of microglial activation inhibitor minocycline, NF-κB activation inhibitor pyrrolidine dithiocarbamate or vehicle for 4 weeks. When compared to control groups, angiotensin II-induced hypertensive rats had higher mean arterial pressure, PVN proinflammatory cytokines, and imbalance of neurotransmitters, accompanied with PVN activated microglia. These rats also had more PVN gp91phox (source of reactive oxygen species production), and NF-κB p65. Bilateral PVN infusion of minocycline or pyrrolidine dithiocarbamate partly or completely ameliorated these changes. This study indicates that angiotensin II-induced hypertensive rats have more activated microglia in PVN, and activated PVN microglia release proinflammatory cytokines and result in oxidative stress, which contributes to sympathoexcitation and hypertensive response. Suppression of activated PVN microglia by minocycline or pyrrolidine dithiocarbamate attenuates inflammation and oxidative stress, and improves angiotensin II-induced hypertension, which indicates that activated microglia promote hypertension through activated NF-κB. The findings may offer hypertension new strategies.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- The Second Clinical Medical College, Shanxi Medical University
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China
| | - Yu-Kun Su
- Hemodialysis Center, Shanxi Second People's Hospital
| | - Jin-An Qiao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China
- Institute of Pediatric Diseases, Xi'an Children's Hospital
| | - Yao-Jun Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| | - Xiao-Jie Bai
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| | - Nana Zhang
- Department of Hypertension, The First Hospital of Shanxi Medical University
| | - Hui-Yu Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University
| | - Li-Xi Yin
- Basic Medical College of Shanxi Medical University
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China
| | - Zhi-Ming Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University
| |
Collapse
|
10
|
Luteolin Attenuates Hypertension via Inhibiting NF-κB-Mediated Inflammation and PI3K/Akt Signaling Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients 2023; 15:nu15030502. [PMID: 36771206 PMCID: PMC9921115 DOI: 10.3390/nu15030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.
Collapse
|
11
|
Issotina Zibrila A, Wang Z, Sangaré-Oumar MM, Zeng M, Liu X, Wang X, Zeng Z, Kang YM, Liu J. Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sci 2022; 320:121351. [PMID: 36592790 DOI: 10.1016/j.lfs.2022.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Hypertension remains a threat for society due to its unknown causes, preventing proper management, for the growing number of patients, for its state as a high-risk factor for stroke, cardiac and renal complication and as cause of disability. Data from clinical and animal researches have suggested the important role of many soluble factors in the pathophysiology of hypertension through their neuro-stimulating effects. Central targets of these factors are of molecular, cellular and structural nature. Preeclampsia (PE) is characterized by high level of soluble factors with strong pro-hypertensive activity and includes immune factors such as proinflammatory cytokines (PICs). The potential neural effect of those factors in PE is still poorly understood. Shedding light into the potential central effect of the soluble factors in PE may advance our current comprehension of the pathophysiology of hypertension in PE, which will contribute to better management of the disease. In this paper, we summarized existing data in respect of hypothesis of this review, that is, the existence of the neural component in the pathophysiology of the hypertension in PE. Future studies would address this hypothesis to broaden our understanding of the pathophysiology of hypertension in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China; Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, PR China
| | - Machioud Maxime Sangaré-Oumar
- Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
12
|
Niu LG, Sun N, Liu KL, Su Q, Qi J, Fu LY, Xin GR, Kang YM. Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension. Cardiovasc Toxicol 2022; 22:898-909. [PMID: 35986807 DOI: 10.1007/s12012-022-09765-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Hypertension caused by a high-salt (HS) diet is one of the major causes of cardiovascular diseases. Underlining pathology includes oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN). This study investigates genistein's (Gen) role in HS-induced hypertension and the underlying molecular mechanism. We placed male Wistar rats on HS (8% NaCl) or normal salt diet (0.3% NaCl). Then, we injected bilateral PVN in rats with Gen, vehicle, or nicotinamide (NAM) for 4 weeks. Tail cuff was used weekly to assess the systolic pressure, diastolic pressure, and mean arterial pressure (MAP). Cardiac hypertrophy was analyzed by heart weight/body weight ratio and wheat germ agglutinin staining. ELISA kits, Western blot, or dihydroethidium staining determined the levels of inflammatory cytokines and oxidative stress markers. Western blot measured protein levels of Sirt1, Ac-FOXO1, Nrf2, NQO-1, HO-1, and gp91phox. Our result showed that PVN infusion of Gen significantly reduced the increase of systolic pressure, diastolic pressure, and MAP induced by an HS diet. Additionally, there was a decrease in cardiac hypertrophy and the levels of inflammatory cytokines in PVN and plasma. Meanwhile, PVN infusion of Gen notably inhibited the levels of oxidized glutathione and superoxide dismutase and improved the glutathione level and total antioxidant capacities and superoxide dismutase activities. It also decreased the level of reactive oxygen species and gp91phox expression in PVN. Furthermore, Gen infusion markedly increases the Sirt1, Nrf2, HO-1, and NQO-1 levels and decreases the Ac-FOXO1 level. However, PVN infusion of NAM could significantly block these changes induced by Gen in HS diet rats. Our results demonstrated that PVN infusion of Gen could inhibit the progression of hypertension induced by an HS diet by activating the Sirt1/Nrf2 pathway.
Collapse
Affiliation(s)
- Li-Gang Niu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Sun
- Department of Physiology, Xi'an Medical University, Xi'an, 710021, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Guo-Rui Xin
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
13
|
Exercise Training Attenuates Hypertension via Suppressing ROS/MAPK/NF-κB/AT-1R Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients 2022; 14:nu14193968. [PMID: 36235619 PMCID: PMC9573547 DOI: 10.3390/nu14193968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Aerobic exercise training (ExT) is beneficial for hypertension, however, its central mechanisms in improving hypertension remain unclear. Since the importance of the up-regulation of angiotensin II type 1 receptor (AT-1R) in the paraventricular nucleus (PVN) of the hypothalamic in sympathoexcitation and hypertension has been shown, we testified the hypothesis that aerobic ExT decreases blood pressure in hypertensive rats by down-regulating the AT-1R through reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK)/nuclear factors κB (NF-κB) pathway within the PVN. Methods: Forty-eight male Sprague-Dawley (SD) rats were assigned to the following groups: sham operation (SHAM) + kept sedentary (Sed), SHAM + exercise training (ExT), two kidney-one clamp (2K1C) + Sed, and 2K1C + ExT groups. Results: The 2K1C + Sed hypertensive rats showed higher systolic blood pressure (SBP), upregulated ROS, phosphorylated (p-) p44/42 MAPK, p-p38 MAPK, NF-κB p65 activity, and AT-1R expression in the PVN, and increased circulating norepinephrine (NE) than those of SHAM rats. After eight weeks of aerobic ExT, the 2K1C + ExT hypertensive rats showed attenuated NE and SBP levels, suppressed NF-κB p65 activity, and reduced expression of ROS, p-p44/42 MAPK, p-p38 MAPK, and AT-1R in the PVN, relatively to the 2K1C + Sed group. Conclusions: These data are suggestive of beneficial effects of aerobic ExT in decreasing SBP in hypertensive rats, via down-regulating the ROS/MAPK/NF-κB pathway that targets AT-1R in the PVN, and eventually ameliorating 2K1C-induced hypertension.
Collapse
|
14
|
Yu XJ, Liu XJ, Guo J, Su YK, Zhang N, Qi J, Li Y, Fu LY, Liu KL, Li Y, Kang YM. Blockade of Microglial Activation in Hypothalamic Paraventricular Nucleus Improves High Salt-Induced Hypertension. Am J Hypertens 2022; 35:820-827. [PMID: 35439285 DOI: 10.1093/ajh/hpac052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/07/2022] [Accepted: 04/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND It has been shown that activated microglia in brain releasing proinflammatory cytokines (PICs) contribute to the progression of cardiovascular diseases. In this study, we tested the hypothesis that microglial activation in hypothalamic paraventricular nucleus (PVN), induced by high-salt diet, increases the oxidative stress via releasing PICs and promotes sympathoexcitation and development of hypertension. METHODS High-salt diet was given to male Dahl salt-sensitive rats to induce hypertension. Those rats were bilaterally implanted with cannula for PVN infusion of minocycline, a selective microglial activation blocker, or artificial cerebrospinal fluid for 4 weeks. RESULTS High-salt diet elevated mean arterial pressure of Dahl salt-sensitive rats. Meanwhile, elevations of renal sympathetic nerve activity and central prostaglandin E2, as well as increase of plasma norepinephrine, were observed in those hypertensive rats. Tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 increased in the PVN of those rats, associated with a significant activation of microglia and prominent disruption of redox balance, which was demonstrated by higher superoxide and NAD(P)H oxidase 2 (NOX-2) and NAD(P)H oxidase 4 (NOX-4), and lower Cu/Zn superoxide dismutase in PVN. PVN infusion of minocycline attenuated all hypertension-related alterations described above. CONCLUSION This study indicates that high salt leads to microglial activation within PVN of hypertensive rats, and those activated PVN microglia release PICs and trigger the production of reactive oxygen species, which contributes to sympathoexcitation and development of hypertension. Blockade of PVN microglial activation inhibits inflammation and oxidative stress, therefore attenuating the development of hypertension induced by high-salt diet.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Kun Su
- Hemodialysis Center, Shanxi Second People's Hospital, Taiyuan, China
| | - Nianping Zhang
- Department of Clinical Medicine, Shanxi Datong University School of Medicine, Datong, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yanjun Li
- Department of Microbiology and Immunology, Shanxi Datong University School of Medicine, Datong, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Yu XJ, Xiao T, Liu XJ, Li Y, Qi J, Zhang N, Fu LY, Liu KL, Li Y, Kang YM. Effects of Nrf1 in Hypothalamic Paraventricular Nucleus on Regulating the Blood Pressure During Hypertension. Front Neurosci 2021; 15:805070. [PMID: 34938159 PMCID: PMC8685333 DOI: 10.3389/fnins.2021.805070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
The incidence rate and mortality of hypertension increase every year. Hypothalamic paraventricular nucleus (PVN) plays a critical role on the pathophysiology of hypertension. It has been demonstrated that the imbalance of neurotransmitters including norepinephrine (NE), glutamate (Glu) and γ-aminobutyric acid (GABA) are closely related to sympathetic overactivity and pathogenesis of hypertension. N-methyl-D-aspartate receptor (NMDAR), consisting of GluN1 and GluN2 subunits, is considered to be a glutamate-gated ion channel, which binds to Glu, and activates neuronal activity. Studies have found that the synthesis of respiratory chain enzyme complex was affected and mitochondrial function was impaired in spontaneously hypertensive rats (SHR), further indicating that mitochondria is associated with hypertension. Nuclear respiratory factor 1 (Nrf1) is a transcription factor that modulates mitochondrial respiratory chain and is related to GluN1, GluN2A, and GluN2B promoters. However, the brain mechanisms underlying PVN Nrf1 modulating sympathoexcitation and blood pressure during the development of hypertension remains unclear. In this study, an adeno-associated virus (AAV) vector carrying the shRNA targeting rat Nrf1 gene (shNrf1) was injected into bilateral PVN of male rats underwent two kidneys and one clip to explore the role of Nrf1 in mediating the development of hypertension and sympathoexcitation. Administration of shNrf1 knocked down the expression of Nrf1 and reduced the expression of excitatory neurotransmitters, increased the expression of inhibitory neurotransmitters, and reduced the production of reactive oxygen species (ROS), and attenuated sympathoexcitation and hypertension. The results indicate that knocking down Nrf1 suppresses sympathoexcitation in hypertension by reducing PVN transcription of NMDAR subunits (GluN1, GluN2A, and GluN2B), rebalancing PVN excitatory and inhibitory neurotransmitters, inhibiting PVN neuronal activity and oxidative stress, and attenuating sympathetic activity.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Shanxi Datong University School of Medicine, Datong, China
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yanjun Li
- Department of Microbiology and Immunology, Shanxi Datong University School of Medicine, Datong, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|