1
|
Zhang S, Chen L, Woon E, Liu J, Ryu J, Chen H, Fang H, Feng B. Suppression of Visceral Nociception by Selective C-Fiber Transmission Block Using Temporal Interference Sinusoidal Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618090. [PMID: 39464113 PMCID: PMC11507756 DOI: 10.1101/2024.10.13.618090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS. We demonstrated that TIS (2000 Hz and 2020 Hz carrier frequencies) enabled tunable activation of L6 DRG neurons, with the focal region adjustable by altering stimulation amplitude ratios. Low-frequency (20-50 Hz) sinusoidal stimulation effectively blocked C-fiber and Aδ-fiber transmission while sparing fast-conducting A-fibers, with 20 Hz showing highest efficacy. TIS of L6 DRG reversibly suppressed VMR to colorectal distension in both control and TNBS-induced visceral hypersensitive mice. The blocking effect was fine-tunable by adjusting interfering stimulus signal amplitude ratios. No apparent immediate immune responses were observed in DRG following hours-long TIS. In conclusion, TIS on lumbosacral DRG demonstrates promise as a selective, tunable approach for managing chronic visceral pain by effectively blocking C-fiber transmission. This technique addresses limitations of current neuromodulation methods and offers potential for more targeted relief in chronic visceral pain conditions.
Collapse
|
2
|
Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, Bai T, Qi Y, Zhang S, Liou JY, Seo KJ, Feng B, Fang H. Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403141. [PMID: 39011796 PMCID: PMC11410539 DOI: 10.1002/adma.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.
Collapse
Affiliation(s)
- Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xun Han
- Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, China
| | - Eric Woon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jyun-You Liou
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Science Corporation, 300 Wind River Way, Alameda, CA, 94501, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Guo T, Liu J, Chen L, Bian Z, Zheng G, Feng B. Sex differences in zymosan-induced behavioral visceral hypersensitivity and colorectal afferent sensitization. Am J Physiol Gastrointest Liver Physiol 2024; 326:G133-G146. [PMID: 38050686 PMCID: PMC11208018 DOI: 10.1152/ajpgi.00081.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Sex differences in visceral nociception have been reported in clinical and preclinical studies, but the potential differences in sensory neural encoding of the colorectum between males and females are not well understood. In this study, we systematically assessed sex differences in colorectal neural encoding by conducting high-throughput optical recordings in intact dorsal root ganglia (DRGs) from control and visceral hypersensitive mice. We found an apparent sex difference in zymosan-induced behavioral visceral hypersensitivity: enhanced visceromotor responses to colorectal distension were observed only in male mice, not in female mice. In addition, a higher number of mechanosensitive colorectal afferents were identified per mouse in the zymosan-treated male group than in the saline-treated male group, whereas the mechanosensitive afferents identified per mouse were comparable between the zymosan- and saline-treated female groups. The increased number of identified afferents in zymosan-treated male mice was predominantly from thoracolumbar (TL) innervation, which agrees with the significant increase in the TL afferent proportion in the zymosan group as compared with the control group in male mice. In contrast, female mice showed no difference in the proportion of colorectal neurons between saline- and zymosan-treated groups. Our results revealed a significant sex difference in colorectal afferent innervation and sensitization in the context of behavioral visceral hypersensitivity, which could drive differential clinical symptoms in male and female patients.NEW & NOTEWORTHY We used high-throughput GCaMP6f recordings to study 2,275 mechanosensitive colorectal afferents in mice. Our results revealed significant sex differences in the zymosan-induced behavioral visceral hypersensitivity, which were present in male but not female mice. Male mice also showed sensitization of colorectal afferents in the thoracolumbar pathway, whereas female mice did not. These findings highlight sex differences in sensory neural anatomy and function of the colorectum, with implications for sex-specific therapies for treating visceral pain.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| |
Collapse
|
4
|
Kyloh MA, Hibberd TJ, Castro J, Harrington AM, Travis L, Dodds KN, Wiklendt L, Brierley SM, Zagorodnyuk VP, Spencer NJ. Disengaging spinal afferent nerve communication with the brain in live mice. Commun Biol 2022; 5:915. [PMID: 36104503 PMCID: PMC9475039 DOI: 10.1038/s42003-022-03876-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of how abdominal organs (like the gut) communicate with the brain, via sensory nerves, has been limited by a lack of techniques to selectively activate or inhibit populations of spinal primary afferent neurons within dorsal root ganglia (DRG), of live animals. We report a survival surgery technique in mice, where select DRG are surgically removed (unilaterally or bilaterally), without interfering with other sensory or motor nerves. Using this approach, pain responses evoked by rectal distension were abolished by bilateral lumbosacral L5-S1 DRG removal, but not thoracolumbar T13-L1 DRG removal. However, animals lacking T13-L1 or L5-S1 DRG both showed reduced pain sensitivity to distal colonic distension. Removal of DRG led to selective loss of peripheral CGRP-expressing spinal afferent axons innervating visceral organs, arising from discrete spinal segments. This method thus allows spinal segment-specific determination of sensory pathway functions in conscious, free-to-move animals, without genetic modification. A surgical method in mice can selectively remove dorsal root ganglia (DRG) at specific spinal levels without interfering with other nerves, providing insight on thoracolumbar vs. lumbosacral DRG contributions to pain signalling and behaviour.
Collapse
|