1
|
Hunt T, Pontifex MG, Vauzour D. (Poly)phenols and brain health - beyond their antioxidant capacity. FEBS Lett 2024; 598:2949-2962. [PMID: 39043619 PMCID: PMC11665953 DOI: 10.1002/1873-3468.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.
Collapse
Affiliation(s)
- Thomas Hunt
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | | | - David Vauzour
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
Cooper L, Wadhwa K, Rochester M, Biyani CS, Doherty R. A pilot study of performance enhancement coaching for newly appointed urology registrars. Scott Med J 2024; 69:72-79. [PMID: 38767172 DOI: 10.1177/00369330241252715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To assess the feasibility of performance enhancement coaching (PEC) for newly appointed Urology registrars (ST3s), specifically: whether the concept appealed, and which areas beyond technical skills acquisition were felt to be most relevant or useful. SUBJECTS AND METHODS All delegates on the Urology Bootcamp 2023 were invited to take part in an online survey before and after a 2-hour PEC workshop, collecting: basic demographic data, performance challenges, and the important aspects to include in, and consider with, a coaching programme. The workshop was delivered by a surgeon with a professional coaching qualification, to groups of four delegates at a time over 4 days. Ten pre-defined areas were offered during the session. RESULTS On a scale of 1 (poor) to 10 (excellent), the 62 participants' overall health was reported as a median of 8/10 (physical) and 7/10 (mental). Anxiety during performance was the most common concern (63%) and was accompanied by a tremor in 55%. The next most popular concerns, with 19% of responses each, were: sleep, insufficient operative skill or expertise, and worry about relationships with trainers. The commonest topics discussed were 'the inner critic' (100%), 'autonomic modulation' (69%), 'not working, well' (13%) and 'optimising study' (6%). Seventy-seven per cent were unaware of PEC for practising surgeons. All respondents felt that they would benefit from PEC to some extent (80% ≥8/10 where 10/10 was 'very useful'), ideally at the ST3 level. Sixty-two percent of respondents said there should be a fee for trainees, whereas 38% thought it should be free and paid for by their training authorities. CONCLUSION The concept of PEC is acceptable to ST3 Urology trainees, with particular interest in techniques to mitigate negative self-talk and autonomic modulation techniques. Existing barriers to coaching for the surgical community would need to be addressed in designing an acceptable coaching programme.
Collapse
Affiliation(s)
- Lilli Cooper
- Plastic surgery fellow, REAL Clinic, Battersea, London
| | - Karan Wadhwa
- Consultant Urologist, Department of Urology, Broomfield Hospital, Chelmsford, UK
| | - Mark Rochester
- Consultant Urologist, Department of Urology, Norfolk & Norwich University Hospital, Norwich, UK
| | - Chandra Shekhar Biyani
- Consultant Urologist, Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ruth Doherty
- Consultant Urologist, Department of Urology, Norfolk & Norwich University Hospital, Norwich, UK
| |
Collapse
|
3
|
Charbit J, Vidal JS, Hanon O. The role of nutrition in the prevention of cognitive decline. Curr Opin Clin Nutr Metab Care 2024; 27:9-16. [PMID: 38001066 DOI: 10.1097/mco.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
PURPOSE OF REVIEW Dementia is a growing concern and underscores the urgent need for effective preventive measures targeting modifiable risk factors. Nutrition is a key player in the onset and progression of inflammation and cognitive decline. This review provides a comprehensive overview of the effects of different dietary patterns, vitamins and nutrients for preventing cognitive decline, mainly among healthy individuals and those with mild cognitive impairment. RECENT FINDINGS The Mediterranean diet, omega-3 long-chain polyunsaturated fatty acids and B vitamins are the most investigated, with evidence supporting protection against cognitive decline among older adults varying across studies. More recent interventions examined in this review, such as MIND Diet, are promising with positive results, but further research is needed to conclusively establish their efficacy. It is also crucial to consider complete lifestyle as physical activity for preventing cognitive decline. SUMMARY Definitive conclusions are difficult to draw. Future studies should adopt a comprehensive approach and focus on multinutrient strategies and whole diets.
Collapse
Affiliation(s)
- Judith Charbit
- Université Paris Cité, Service Gérontologie Hôpital Broca
| | | | - Olivier Hanon
- Université Paris Cité, Chef de service Gérontologie Hôpital Broca, AP-HP, Paris, France
| |
Collapse
|
4
|
Pinto AM, Hobden MR, Brown KD, Farrimond J, Targett D, Corpe CP, Ellis PR, Todorova Y, Socha K, Bahsoon S, Haworth C, Marcel M, Nie X, Hall WL. Acute effects of drinks containing blackcurrant and citrus (poly)phenols and dietary fibre on postprandial glycaemia, gut hormones, cognitive function and appetite in healthy adults: two randomised controlled trials. Food Funct 2023; 14:10163-10176. [PMID: 37902089 DOI: 10.1039/d3fo03085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
(Poly)phenol (PP)-rich blackcurrant (BC) extracts reduce postprandial glucose concentrations. Combinations with other fruit (poly)phenols and fruit fibre may enhance the effect. This study investigated the acute effects of combinations of BC extracts, high (H-BC) and low (L-BC) (poly)phenol concentrations, sweet orange extracts (SO) and fibre-rich orange pulp (F) in reducing postprandial glycaemia. In two randomised, double-blind, crossover design studies, healthy participants consumed seven types of 200 mL beverages: in the GLU-FX trial, H-BC (1600 mg PP); L-BC (800 mg PP); SO (800 mg PP); BC + SO (1600 mg PP) or CON (placebo); in the GLU-MIX trial, BC + F (800 mg PP), F (1.5 g fibre), or CON2 (placebo), immediately followed by consumption of 75 g available carbohydrate (starch and sugars). Blood was sampled at baseline and postprandially to measure changes in glucose, insulin, and gut hormones; appetite changes were assessed by visual analogue scales and, in GLU-MIX, ad libitum food intake and cognitive function were assessed. Twenty-nine and thirty-seven adults completed GLU-FX and GLU-MIX, respectively. L-BC reduced early postprandial glycaemia (0-30 min) with no differences in glucose incremental Cmax or total glycaemic response. No significant effect was observed following other drinks relative to CON. L-BC and H-BC drinks inhibited insulin secretion up to 30 min and GIP up to 120 min. In GLU-MIX, BC + F improved some indicators of cognitive function but not all. Measures of appetite were unaffected. The impact of (poly)phenol-rich BC extracts on total postprandial glycaemia in healthy participants was minimal and not enhanced when administered in combination with an orange (poly)phenol extract or orange pulp. Clinical Trials registered at https://www.clinicaltrials.gov: NCT03184064 (GLU-FX) and NCT03572296 (GLU-MIX).
Collapse
Affiliation(s)
- Ana M Pinto
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Laboratório de Nutrição, Instituto de Saúde Ambiental, Laboratório Associado TERRA, Centro Académico de Medicina de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Mark R Hobden
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Katherine D Brown
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Jonathan Farrimond
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Darren Targett
- Primoris Contract Solutions Ltd., 22 Redwood Drive, Ascot, Berkshire, SL5 0LW, UK
| | - Christopher P Corpe
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, London, UK
| | - Yvanna Todorova
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Klaudia Socha
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Shatha Bahsoon
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Claudia Haworth
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Morgane Marcel
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Xirui Nie
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Wendy L Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
5
|
Le Sayec M, Carregosa D, Khalifa K, de Lucia C, Aarsland D, Santos CN, Rodriguez-Mateos A. Identification and quantification of (poly)phenol and methylxanthine metabolites in human cerebrospinal fluid: evidence of their ability to cross the BBB. Food Funct 2023; 14:8893-8902. [PMID: 37701930 PMCID: PMC10544810 DOI: 10.1039/d3fo01913f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Increasing evidence suggests that dietary (poly)phenols and methylxanthines have neuroprotective effects; however, little is known about whether they can cross the blood-brain barrier (BBB) and exert direct effects on the brain. We investigated the presence of (poly)phenol and methylxanthine metabolites in plasma and cerebrospinal fluid (CSF) from 90 individuals at risk of dementia using liquid chromatography-mass spectrometry and predicted their mechanism of transport across the BBB using in silico modelling techniques. A total of 123 and 127 metabolites were detected in CSF and plasma, respectively. In silico analysis suggests that 5 of the 20 metabolites quantified in CSF can cross the BBB by passive diffusion, while at least 9 metabolites require the aid of cell transporters to cross the BBB. Our results showed that (poly)phenols and methylxanthines are bioavailable, can cross the BBB via passive diffusion or transport carriers, and can reach brain tissues to exert neuroprotective effects.
Collapse
Affiliation(s)
- Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Khadija Khalifa
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Chiara de Lucia
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cláudia N Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
6
|
Banaei P, Tadibi V, Amiri E, Machado DGDS. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep 2023; 13:16473. [PMID: 37777571 PMCID: PMC10542360 DOI: 10.1038/s41598-023-43568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Ten male cyclists were randomized into four experimental conditions in this randomized, cross-over, double-blind, and sham-controlled study to test the combined effect of acute dark chocolate (DC) ingestion and anodal concurrent dual-site transcranial direct current stimulation (a-tDCS) targeting M1 and left DLPFC on cognitive and whole-body endurance performance in hypoxia after performing a cognitive task. Two hours before the sessions, chocolate was consumed. After arriving at the lab, participants completed an incongruent Stroop task for 30 min in hypoxia (O2 = 13%) to induce mental fatigue, followed by 20 min of tDCS (2 mA) in hypoxia. Then, in hypoxia, they performed a time-to-exhaustion task (TTE) while measuring physiological and psychophysiological responses. Cognitive performance was measured at baseline, after the Stroop task, and during and after TTE. TTE in 'DC + a-tDCS' was significantly longer than in 'white chocolate (WC) + a-tDCS' and WC + sham-tDCS'. The vastus medialis muscle electromyography amplitude was significantly higher in 'DC + a-tDCS' and 'DC + sham-tDCS' than in 'WC + sh-tDCS'. During and after the TTE, choice reaction time was significantly lower in 'DC + a-tDCS' compared to 'WC + sh-tDCS'. Other physiological or psychophysiological variables showed no significant differences. The concurrent use of acute DC consumption and dual-site a-tDCS might improve cognitive and endurance performance in hypoxia.
Collapse
Affiliation(s)
- Parisa Banaei
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
7
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
8
|
Ferreira DM, de Oliveira NM, Lopes L, Machado J, Oliveira MB. Potential Therapeutic Properties of the Leaf of Cydonia Oblonga Mill. Based on Mineral and Organic Profiles. PLANTS (BASEL, SWITZERLAND) 2022; 11:2638. [PMID: 36235504 PMCID: PMC9573453 DOI: 10.3390/plants11192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
Leaf extract of Cydonia Oblonga Mill. is interesting for further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of green (October), yellow (November), and brown (December) quince leaves collected in the region of Pinhel, Portugal. Mineral analysis determined the measurements of the levels of several macro- and micro-elements. Organic analysis assessed the moisture content, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Mineral analysis was based on ICP-MS techniques, while the profiles of vitamin E and FA relied on HPLC-DAD-FLD and GC-FID techniques, respectively. Moisture content was determined through infrared hygrometry and TPC was determined by spectrophotometric methods. Regarding the mineral content, calcium, magnesium, and iron were the most abundant minerals. Concerning organic analysis, all leaf samples showed similar moisture content, while the TPC of gallic acid equivalents (GAE) and total vitamin E content, the most predominant of which was the α-tocopherol isomer, showed significant variations between green-brown and yellow leaves. FA composition in all leaf samples exhibited higher contents of SFA and PUFA than MUFA, with a predominance of palmitic and linolenic acids. Organic and inorganic analysis of quince leaves allow for the prediction of adequate physiological properties, mainly cardiovascular, pulmonary, and immunological defenses, which with our preliminary in silico studies suggest an excellent supplement to complementary therapy, including drastic pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare (Basel) 2022; 10:healthcare10020186. [PMID: 35206801 PMCID: PMC8872051 DOI: 10.3390/healthcare10020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Factors influencing brain function and cognitive performance can be critical to athletic performance of esports athletes. This review aims to discuss the potential beneficial effects of micronutrients, i.e., vitamins, minerals and biologically active substances on cognitive functions of e-athletes. Minerals (iodine, zinc, iron, magnesium) and vitamins (B vitamins, vitamins E, D, and C) are significant factors that positively influence cognitive functions. Prevention of deficiencies of the listed ingredients and regular examinations can support cognitive processes. The beneficial effects of caffeine, creatine, and probiotics have been documented so far. There are many plant products, herbal extracts, or phytonutrients that have been shown to affect precognitive activity, but more research is needed. Beetroot juice and nootropics can also be essential nutrients for cognitive performance. For the sake of players’ eyesight, it would be useful to use lutein, which, in addition to improving vision and protecting against eye diseases, can also affect cognitive functions. In supporting the physical and mental abilities of e-athletes the base is a well-balanced diet with adequate hydration. There is a lack of sufficient evidence that has investigated the relationship between dietary effects and improved performance in esports. Therefore, there is a need for randomized controlled trials involving esports players.
Collapse
|
10
|
Morton L, Braakhuis AJ. The Effects of Fruit-Derived Polyphenols on Cognition and Lung Function in Healthy Adults: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:4273. [PMID: 34959825 PMCID: PMC8708719 DOI: 10.3390/nu13124273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenols are plant derived nutrients that influence oxidative stress and inflammation and therefore may have positive benefits on cognition and lung function. This systematic review and meta-analysis aimed to evaluate the effects of fruit derived polyphenol intakes on cognition and lung capacity in healthy adults. In August 2020 and October 2021, Medline and Google Scholar were used to search for relevant studies examining the effects of fruit derived polyphenol intakes on cognition and/or lung function in healthy adults (<70 years old). Fourteen studies related to cognition (409 healthy subjects) and seven lung/respiratory studies (20,788 subjects) were used for the systematic review using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The meta-analysis (using six cognition and three lung function studies) indicated a protective effect on lung function from dietary intakes of fruit-derived polyphenols. Neither a benefit nor decrement from fruit-derived polyphenol intakes were detected for cognition. Human intervention trials examining the effects of polyphenol supplementation on lung function in healthy adults are scarce and intervention studies are warranted. More conclusive results are needed to provide recommendations for polyphenol supplementation to support aspects of cognition.
Collapse
Affiliation(s)
- Lillian Morton
- Faculty of Medical & Health Science, Grafton Campus, The University of Auckland, Auckland 1142, New Zealand;
| | | |
Collapse
|