1
|
Massoud EN, Hebert MK, Siddharthan A, Ferreira T, Neron A, Goodrow M, Ferreira T. Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review. J Drug Target 2025; 33:691-703. [PMID: 39714878 DOI: 10.1080/1061186x.2024.2446636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.
Collapse
Affiliation(s)
- Engi Nadia Massoud
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | | | - Tyler Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Abid Neron
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Mary Goodrow
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
2
|
Yang Y, Sokolich M, Mallick S, Das S. Quadrupole Magnetic Tweezers for Precise Cell Transportation. IEEE Trans Biomed Eng 2025; 72:1437-1444. [PMID: 40030435 DOI: 10.1109/tbme.2024.3509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This research introduces a quadrupole magnetic tweezers which can be used for precise cell transportation by actuating magnetic spherical microrobots. The focus of the system is on navigating and manipulating cells within environments characterized by high cellular density. Demonstrating efficacy in moving cells through densely packed cell samples, the system underscores its potential to overcome common obstacles such as inaccurate target delivery and inefficiency. The findings from this study highlight the significant promise that microrobotic technologies hold in advancing medical applications, particularly in precise cell delivery mechanisms, setting a foundation for the future exploration and utilization of medical microrobots.
Collapse
|
3
|
Guo C, Zhuang W, He J. Development of Precision Controllable Magnetic Field-Assisted Platform for Micro Electrical Machining. MICROMACHINES 2024; 15:1002. [PMID: 39203653 PMCID: PMC11356375 DOI: 10.3390/mi15081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
In order to introduce the magnetic field into micro electrical machining technology to explore the influence of magnetic field on micro electrical machining, the development of a precision controllable magnetic field-assisted platform is particularly important. This platform needs to precisely control the spatial magnetic field. This study first completes the hardware design and construction of the magnetic field generation device, using electromagnetic coils with soft iron cores as the sources of the magnetic field. Mathematical models of the magnetic field are established and calibrated. Since the magnetic dipole model cannot effectively describe the magnetic field generated by the electromagnetic coil, this study adopts a more precise description method: the spherical harmonic function expansion model and the magnetic multipole superposition model. The calibration of the magnetic field model is based on actual excitation magnetic field data, so a magnetic field sampling device is designed to obtain the excitation magnetic field of the workspace. The model is calibrated based on a combination of the theoretical model and magnetic field data, and the performance of the constructed setup is analyzed. Finally, a magnetic field-assisted platform has been developed which can generate magnetic fields in any direction within the workspace with intensities ranging from 0 to 0.2 T. Its magnetic field model arrives at an error percentage of 2.986%, a variance of 0.9977, and a root mean square error (RMSE) of 0.71 mT, achieving precise control of the magnetic field in the workspace.
Collapse
Affiliation(s)
- Cheng Guo
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weizhen Zhuang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingwen He
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Blümler P, Raudzus F, Schmid F. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems. Sci Rep 2024; 14:7879. [PMID: 38570608 PMCID: PMC10991419 DOI: 10.1038/s41598-024-58091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Achieving non-invasive spatiotemporal control over cellular functions, tissue organization, and behavior is a desirable aim for advanced therapies. Magnetic fields, due to their negligible interaction with biological matter, are promising for in vitro and in vivo applications, even in deep tissues. Particularly, the remote manipulation of paramagnetic (including superparamagnetic and ferromagnetic, all with a positive magnetic susceptibility) entities through magnetic instruments has emerged as a promising approach across various biological contexts. However, variations in the properties and descriptions of these instruments have led to a lack of reproducibility and comparability among studies. This article addresses the need for standardizing the characterization of magnetic instruments, with a specific focus on their ability to control the movement of paramagnetic objects within organisms. While it is well known that the force exerted on magnetic particles depends on the spatial variation (gradient) of the magnetic field, the magnitude of the field is often overlooked in the literature. Therefore, we comprehensively analyze and discuss both actors and propose a novel descriptor, termed 'effective gradient', which combines both dependencies. To illustrate the importance of both factors, we characterize different magnet systems and relate them to experiments involving superparamagnetic nanoparticles. This standardization effort aims to enhance the reproducibility and comparability of studies utilizing magnetic instruments for biological applications.
Collapse
Affiliation(s)
- Peter Blümler
- Institute of Physics, University of Mainz, 55128, Mainz, Germany.
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Neuronal Signaling and Regeneration Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Medical Education Center/International Education Section, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
5
|
Liu Y, Song D, Zhang G, Bu Q, Dong Y, Hu C, Shi C. A Novel Electromagnetic Driving System for 5-DOF Manipulation in Intraocular Microsurgery. CYBORG AND BIONIC SYSTEMS 2024; 5:0083. [PMID: 38533379 PMCID: PMC10964225 DOI: 10.34133/cbsystems.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 03/28/2024] Open
Abstract
This work presents a novel electromagnetic driving system that consists of eight optimized electromagnets arranged in an optimal configuration and employs a control framework based on an active disturbance rejection controller (ADRC) and virtual boundary. The optimal system configuration enhances the system's compatibility with other ophthalmic surgical instruments, while also improving its capacity to generate magnetic force in the vertical direction. Besides, the optimal electromagnet parameters provide a superior comprehensive performance on magnetic field generation capacity and thermal power. Hence, the presented design achieves a stronger capacity for sustained work. Furthermore, the ADRC controller effectively monitors and further compensates the total disturbance as well as gravity to enhance the system's robustness. Meanwhile, the implementation of virtual boundaries substantially enhances interactive security via collision avoidance. The magnetic and thermal performance tests have been performed on the electromagnet to verify the design optimization. The proposed electromagnet can generate a superior magnetic field of 2.071 mT at a distance of 65 mm with an applied current of 1 A. Moreover, it demonstrates minimal temperature elevation from room temperature (25 °C) to 46 °C through natural heat dissipation in 3 h, thereby effectively supporting prolonged magnetic manipulation of intraocular microsurgery. Furthermore, trajectory tracking experiments with disturbances have been performed in a liquid environment similar to the practical ophthalmic surgery scenarios, to verify the robustness and security of the presented control framework. The maximum root mean square (RMS) error of performance tests in different operation modes remains 35.8 μm, providing stable support for intraocular microsurgery.
Collapse
Affiliation(s)
- Yangyu Liu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Dezhi Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Guanghao Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Qingyu Bu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Yuanqing Dong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Chengzhi Hu
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Department of Mechanical and Energy Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Liu R, Xiang Y, Wei Z, Zhang J. A Computer‐Aided Teleoperation System for Intuitively Controlling the Behavior of a Magnetic Millirobot within a Stomach Phantom. ADVANCED INTELLIGENT SYSTEMS 2024; 6. [DOI: 10.1002/aisy.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 01/03/2025]
Abstract
Untethered magnetic millirobots with a characteristic length of a few millimeters can be wirelessly controlled. They exhibit promising potential in a wide variety of applications, particularly for tasks in clinic workspaces. However, magnetically controlling these robots is counter‐intuitive and requires a steep learning curve, hindering their wide adoption. Herein, a computer‐aided teleoperation platform is developed to operate a soft millirobot, with its feedback control being conducted behind‐the‐scenes, bridging the user's inputs directly with the millirobot's actions to offer an intuitive control. This system enables untrained users to conveniently control the position and actions of the millirobot inside a human stomach phantom by pointing‐and‐clicking on a real‐time video monitor or using a keyboard. The platform automatically materializes the user's instructions by maneuvering a robotic arm with a tip‐mounted magnet to exert a magnetic field to induce the desired response from the millirobot. Experiments show that the system allows the user to intuitively operate the millirobot and deliver its cargo without splitting their attention to monitor the workspace or to calculate the constantly changing control parameters. This platform can lower the barrier for healthcare practitioners without engineering expertise to adopt miniature robotic systems into their workflow and realize these systems’ promising potential.
Collapse
Affiliation(s)
- Ruomao Liu
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Yuxuan Xiang
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Zihan Wei
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| | - Jiachen Zhang
- Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 000000 China
| |
Collapse
|
7
|
Fan X, Zhang Y, Wu Z, Xie H, Sun L, Chen T, Yang Z. Combined three dimensional locomotion and deformation of functional ferrofluidic robots. NANOSCALE 2023. [PMID: 37982182 DOI: 10.1039/d3nr02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Magnetic microrobots possess remarkable potential for targeted applications in the medical field, primarily due to their non-invasive, controllable properties. These unique qualities have garnered increased attention and fascination among researchers. However, these robotic systems do face challenges such as limited deformation capabilities and difficulties navigating confined spaces. Recently, researchers have turned their attention towards magnetic droplet robots, which are notable for their superior deformability, controllability, and potential for a range of applications such as automated virus detection and targeted drug delivery. Despite these advantages, the majority of current research is constrained to two-dimensional deformation and motion, thereby limiting their broader functionality. In response to these limitations, this study proposes innovative strategies for controlling deformation and achieving a three-dimensional (3D) trajectory in ferrofluidic robots. These strategies leverage a custom-designed eight-axis electromagnetic coil and a sliding mode controller. The implementation of these methods exhibits the potential of ferrofluidic robots in diverse applications, including microfluidic pump systems, 3D micromanipulation, and selective vascular occlusion. In essence, this study aims to broaden the capabilities of ferrofluidic robots, thereby enhancing their applicability across a multitude of fields such as medicine, micromanipulation, bioengineering, and more by maximizing the potential of these intricate robotic systems.
Collapse
Affiliation(s)
- Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yunfei Zhang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Yikuang, Harbin 150080, China
| | - Lining Sun
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
- School of Future Science and Engineering, Soochow University, No. 1, Jiuyongxi Road, Suzhou 215222, China.
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Kirmizitas FC, Rivas D, Mallick S, DePope S, Das S. Magnetic Microrobots as a Platform for Cell Clean Up. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2023; 2023:10.1109/marss58567.2023.10294141. [PMID: 39421403 PMCID: PMC11484213 DOI: 10.1109/marss58567.2023.10294141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mobile magnetic microrobots have been extensively used in a wide range of biomedical applications due to their numerous advantages. Magnetic microrobots in particular have been developed and shown great potential over the past two decades for the manipulation and migration of both single cells and cell aggregates. The efficient clearance of cell aggregates is crucial to prevent uncontrolled cell proliferation, tissue damage, and invasive surgeries, especially for those related to the vascular system. In this work, we showed cellular manipulation and mobility to achieve cellular clean up on Human Liver Cancer (HepG2) cells by using two types of untethered magnetic microrobots that are different in type and size. We performed the cellular clean up in the microchannel, which can demonstrate the closed working environment, and also on a glass slide to present an air-liquid interface. We showed that the microrobots could be able to move a cluster of cells in both conditions which could make them useful for sorting and separation applications. Furthermore, cell viability was assessed by using a trypan blue staining assay on HepG2 cells right after and 24 hours after microrobot actuation.
Collapse
Affiliation(s)
- Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - David Rivas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sudipta Mallick
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Scott DePope
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
9
|
Kararsiz G, Duygu YC, Wang Z, Rogowski LW, Park SJ, Kim MJ. Navigation and Control of Motion Modes with Soft Microrobots at Low Reynolds Numbers. MICROMACHINES 2023; 14:1209. [PMID: 37374794 DOI: 10.3390/mi14061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This study investigates the motion characteristics of soft alginate microrobots in complex fluidic environments utilizing wireless magnetic fields for actuation. The aim is to explore the diverse motion modes that arise due to shear forces in viscoelastic fluids by employing snowman-shaped microrobots. Polyacrylamide (PAA), a water-soluble polymer, is used to create a dynamic environment with non-Newtonian fluid properties. Microrobots are fabricated via an extrusion-based microcentrifugal droplet method, successfully demonstrating the feasibility of both wiggling and tumbling motions. Specifically, the wiggling motion primarily results from the interplay between the viscoelastic fluid environment and the microrobots' non-uniform magnetization. Furthermore, it is discovered that the viscoelasticity properties of the fluid influence the motion behavior of the microrobots, leading to non-uniform behavior in complex environments for microrobot swarms. Through velocity analysis, valuable insights into the relationship between applied magnetic fields and motion characteristics are obtained, facilitating a more realistic understanding of surface locomotion for targeted drug delivery purposes while accounting for swarm dynamics and non-uniform behavior.
Collapse
Affiliation(s)
- Gokhan Kararsiz
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| | - Yasin Cagatay Duygu
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| | - Zhengguang Wang
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| | - Louis William Rogowski
- Applied Research Associates, Inc. (ARA), 4300 San Mateo Blvd. NE, Suite A-220, Albuquerque, NM 87110, USA
| | - Sung Jea Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
10
|
Lim S, Du Y, Lee Y, Panda SK, Tong D, Khalid Jawed M. Fabrication, control, and modeling of robots inspired by flagella and cilia. BIOINSPIRATION & BIOMIMETICS 2022; 18:011003. [PMID: 36533860 DOI: 10.1088/1748-3190/aca63d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medicalin vivomicrobots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yayun Du
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yongkyu Lee
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Shivam Kumar Panda
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Dezhong Tong
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
11
|
Konara M, Mudugamuwa A, Dodampegama S, Roshan U, Amarasinghe R, Dao DV. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. MICROMACHINES 2022; 13:1987. [PMID: 36422416 PMCID: PMC9699214 DOI: 10.3390/mi13111987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/19/2023]
Abstract
Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.
Collapse
Affiliation(s)
- Menaka Konara
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Amith Mudugamuwa
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Shanuka Dodampegama
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Uditha Roshan
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Ranjith Amarasinghe
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
12
|
Sun H, Liu J, Wang Q, Lai C, Chi W, Niu C, Wang L, Teng Z, Shi Y, Tian P. In vivo animal study of the magnetic navigation system for capsule endoscope manipulation within the esophagus, stomach, and colorectum. Med Phys 2022; 49:6813-6823. [PMID: 36087029 DOI: 10.1002/mp.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/PURPOSES Magnetic navigation capsule endoscopy (MNCE) is considered to be an important means to realize the controllable and precise examination of capsule endoscopy (CE) in the unstructured gastrointestinal (GI) tract. For the current magnetic navigation system (MNS), due to the limitation of workspace, driving force, and control method of the CE, only clinical application in the stomach has been realized, whereas the examination of other parts of the GI tract is still in the experimental stage. More preclinical studies are needed to achieve the multisite examination of the GI tract. METHODS Based on the MNS (Supiee) developed in the laboratory, an X-ray imaging system with magnetic shielding and a commercial CE are integrated to form the MNCE system. Then, in vivo GI tract experiments with a porcine model are performed to verify the clinical feasibility and safety of this system. Moreover, the effects of different control modes on the efficiency and effect of GI tract examination are studied. RESULTS Animal experiments demonstrate that with the MNCE system, it is convenient to achieve steering control in any direction and multiple reciprocating movements of CE in the GI tract. Benefiting from the flexibility of the three basic control modes, the achieved swing movement pattern of CE can effectively reduce the inspection time. It is demonstrated that the esophageal examination time can be reduced from 13.2 to 9.2 min with a maximum movement speed of 5 mm/s. CONCLUSION In this paper, the feasibility, safety, and efficacy of the MNCE system for a one-stop examination of the in vivo GI tract (esophagus, stomach, and colorectum) is first demonstrated. In addition, complex movement patterns of CE such as the swinging are proved to effectively improve examination efficiency and disease detection rates. This study is crucial for the clinical application of the MNCE system.
Collapse
Affiliation(s)
- Hongbo Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuliang Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiao Lai
- Department of Gastroenterology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqiang Chi
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chaoqun Niu
- College of Information and Communication Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Lei Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhifan Teng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yang Shi
- School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an, China
| | - Peilong Tian
- School of Mechanical and Electrical Engineering, Xi'an Technological University, Xi'an, China
| |
Collapse
|
13
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
14
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|