1
|
Ladner LR, Tanchanco Ocampo C, Kelly C, Woodson CM, Marvin E, Pickrell AM, Kehn-Hall K, Theus MH. The weight of multiple hits: how TBI and infectious encephalitis co-modulate adverse outcomes. Brain Inj 2025:1-10. [PMID: 39840758 DOI: 10.1080/02699052.2025.2450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Chronic neurologic deficits from traumatic brain injury (TBI) and subsequent infectious encephalitis are poorly characterized. METHODS Using TriNetX database we queried patients 18 years or older with a confirmed diagnosis of encephalitis between 2016 and 2024. Patient cohorts included those with a diagnosis of TBI at least one month before encephalitis (N = 1,038), those with a diagnosis of a TBI anytime before encephalitis (N = 1,886), and those with encephalitis but no TBI, (N = 45,210; N = 45,215). A murine model of controlled cortical impact (CCI) injury and Venezuelan equine encephalitis virus (VEEV) infection was used to reflect the clinical model, followed by extracting hippocampal tissue for bulk RNA sequencing and analysis. RESULTS Patients with a TBI history at least one month before infectious encephalitis have an increased risk of mortality, epilepsy, and dementia or delirium. Bulk RNA sequencing of the hippocampus from mice subjected to CCI injury and VEEV infection demonstrated that key pathways, specifically those involved in granzyme mediated cell death, were enriched compared to VEEV infection alone. CONCLUSION Our findings reveal that infectious encephalitis in patients with TBI history portends worse neurologic outcomes, and the hippocampus may be vulnerable to granzyme mediated cell death under these conditions.
Collapse
Affiliation(s)
- Liliana R Ladner
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Collin Tanchanco Ocampo
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Colin Kelly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Caitlin M Woodson
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Eric Marvin
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Michelle H Theus
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| |
Collapse
|
2
|
Wood GK, Sargent BF, Ahmad ZUA, Tharmaratnam K, Dunai C, Egbe FN, Martin NH, Facer B, Pendered SL, Rogers HC, Hübel C, van Wamelen DJ, Bethlehem RAI, Giunchiglia V, Hellyer PJ, Trender W, Kalsi G, Needham E, Easton A, Jackson TA, Cunningham C, Upthegrove R, Pollak TA, Hotopf M, Solomon T, Pett SL, Shaw PJ, Wood N, Harrison NA, Miller KL, Jezzard P, Williams G, Duff EP, Williams S, Zelaya F, Smith SM, Keller S, Broome M, Kingston N, Husain M, Vincent A, Bradley J, Chinnery P, Menon DK, Aggleton JP, Nicholson TR, Taylor JP, David AS, Carson A, Bullmore E, Breen G, Hampshire A, Michael BD, Paddick SM, Leek EC. Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction. Nat Med 2025; 31:245-257. [PMID: 39312956 PMCID: PMC11750706 DOI: 10.1038/s41591-024-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The spectrum, pathophysiology and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the 1-year cognitive, serum biomarker and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who required hospitalization, compared with 2,927 normative matched controls. Cognitive deficits were global, associated with elevated brain injury markers and reduced anterior cingulate cortex volume 1 year after COVID-19. Severity of the initial infective insult, postacute psychiatric symptoms and a history of encephalopathy were associated with the greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Greta K Wood
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brendan F Sargent
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Zain-Ul-Abideen Ahmad
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franklyn N Egbe
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Naomi H Martin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bethany Facer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sophie L Pendered
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Henry C Rogers
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel J van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London, UK
- Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Peter J Hellyer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - William Trender
- Department of Brain Sciences, Imperial College London, London, UK
| | - Gursharan Kalsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ava Easton
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Encephalitis International, Malton, UK
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tom Solomon
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK
| | - Sarah L Pett
- MRC Clinical Trials Unit, UCL, London, UK
- Institute of Clinical Trials and Methodology, UCL, London, UK
- Institute for Global Health, UCL, London, UK
| | - Pamela J Shaw
- Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, NIHR Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, UCL, London, UK
- UCL Genetics Institute, Division of Biosciences, UCL, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, School of Medicine, Cardiff University, Cardiff, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Guy Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eugene P Duff
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Simon Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nathalie Kingston
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - John Bradley
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Section of Perioperative, Acute, Critical Care and Emergency Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Nicholson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Neuropsychiatry Research and Education Group, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Old Age Psychiatry, Tyne and Wear NHS Trust, Newcastle, UK
| | - Anthony S David
- Department of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ed Bullmore
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Adam Hampshire
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK.
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Old Age Psychiatry, Gateshead Health NHS Foundation Trust, Gateshead, UK
- Millenium Institute for Care Research (MICARE), Santiago, Chile
| | - E Charles Leek
- Department of Psychology, Institute of Population Health, Institute of Life and Human Sciences, University of Liverpool, Liverpool, UK
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Jalalkamali S, Ghahremani M, Jashn V, Lajevardi NS, Koloor SM, Jazaeri SZ, Fahanik-babaei J. Fasudil attenuates lipopolysaccharide-induced cognitive impairment in C57BL/6 mice through anti-oxidative and anti-inflammatory effects: Possible role of aquaporin-4. IBRO Neurosci Rep 2024; 17:372-381. [PMID: 39534317 PMCID: PMC11555352 DOI: 10.1016/j.ibneur.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Processes that generate systemic inflammation are strongly associated with neurodegenerative diseases. This study aimed to explore the potential anti-oxidative and anti-inflammatory effects of fasudil and its role in modulating aquaporin-4 (AQP-4) to improve cognitive impairment in a systemic inflammation model induced by lipopolysaccharide (LPS). Method fourty C57BL/6 mice were assigned to four groups, including sham, LPS, sham+fasudil, and LPS+fasudil). Intraperitoneal LPS was given (500 μg/kg/day) at hours 0, 24, 48, and 72, and fasudil (30 mg/kg) administered intraperitoneal injections 2 hours after LPS injection. The open field, Y-maze, and Novel object tasks was used to assess learning and memory. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the hippocampus also measured as markers of oxidative stress and inflammation. Furthermore, the expression of AQP-4 measured in the intact and experimental groups. Results The results showed that Fasudil significantly improved memory and anxiety behavior induced by LPS in the open field maze, spatial recognition memory in the Y-maze, and performance in the novel object recognition task. It also mitigates hippocampal MDA and SOD levels. Additionally, fasudil ameliorated LPS-induced hippocampal levels of TNFα and IL-10 and increased hippocampal levels of AQP-4 expression in mice. Conclusion Our results suggest that fasudil in the LPS model of systemic inflammation could improve cognition by suppressing oxidative stress and inflammation and increasing AQP-4 protein expression. These findings highlighted the potential of fasudil as a neuroprotective agent. However, further research is required to fully understand its neuroprotective properties in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sahra Jalalkamali
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghahremani
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Jashn
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Lajevardi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sevda Mahdipoor Koloor
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Catalá P, Gutiérrez L, Écija C, Peñacoba C. The Influence of Physical Activity and Positive Affect on the Relationship between Pain Severity and Cognitive Performance in Women with Fibromyalgia. J Clin Med 2024; 13:4419. [PMID: 39124686 PMCID: PMC11313600 DOI: 10.3390/jcm13154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fibromyalgia, characterized by chronic pain and cognitive impairments, significantly impacts patients' quality of life. Physical exercise has been shown to improve cognitive functions and reduce pain severity. Additionally, positive affect enhances cognitive flexibility and facilitates better adaptation to chronic pain, suggesting that combining physical activity and positive affect could mitigate cognitive deficits in fibromyalgia patients. Objectives: The objective of this work is to explore the relationship between pain severity and cognitive performance through time spent doing moderate physical activity while taking into account the role of positive affect in fibromyalgia. Methods: This prospective study was structured into two phases of evaluation. First, pain severity, positive affect, and time spent performing moderate physical activity were evaluated, and one week later cognitive performance (assessed through the Stroop test) was also evaluated. The final sample consisted of 231 women with fibromyalgia. Moderated mediation analyses were performed using PROCESS. Results: The moderated mediation model showed that the effect of moderate physical activity on the relationship between pain severity and cognitive performance was significant for low levels of positive affect but not for moderate or high levels. That is, the indirect effect of pain intensity on cognitive performance through time spent doing moderate physical activity only has an effect when patients with fibromyalgia present low levels of positive affect. However, there was no significant indirect effect in the simple mediation model. Conclusions: The findings of this study underscore the importance of considering the level of positive affect when examining the impact of moderate physical activity on cognitive performance in women with fibromyalgia.
Collapse
Affiliation(s)
| | | | | | - Cecilia Peñacoba
- Department of Psychology, Rey Juan Carlos University, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain; (P.C.); (L.G.); (C.É.)
| |
Collapse
|
5
|
Yang W, Chen C, Jiang X, Zhao Y, Wang J, Zhang Q, Zhang J, Feng Y, Cui S. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after 60Co irradiation. Cell Biol Int 2024; 48:695-711. [PMID: 38389270 DOI: 10.1002/cbin.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Chao Chen
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yining Zhao
- Clinical Laboratory, Shanghai Yangpu district mental health center, Shanghai University of Medicine and Health Sciences Teaching Hospital, Shanghai, China
| | - Junyang Wang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Qianqian Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Jingyuan Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yan Feng
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Rezaeimanesh N, Rafiee P, Saeedi R, Khosravian P, Sahraian MA, Eskandarieh S, Moghadasi AN, Jahromi SR. The effect of crocin-selenium nanoparticles on the cognition and oxidative stress markers of multiple sclerosis patients: a randomized triple-blinded placebo-controlled clinical trial. Biometals 2024; 37:305-319. [PMID: 37917350 DOI: 10.1007/s10534-023-00548-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The prevalence of cognitive impairment in multiple sclerosis (MS) patients is estimated to be approximately 40-60%. There is an increasing body of evidence regarding the impact of both selenium and crocin as antioxidant agents on cognitive function. In the present study, for the first time, we investigated the effect of crocin-selenium nanoparticles (Cor@SeNs) on cognitive function and oxidative stress markers in MS patients. A triple-blind randomized clinical trial was conducted among 60 MS patients. The participants were randomly divided in a 1:1 ratio to either the Cor@SeNs or placebo group, employing block randomization. During the course of 12 weeks, the participants received Cor@SeNs capsules, containing 5.74 mg crocin and 55 mcg Selenium, or placebo capsules. Cognition assessed using the Persian version of the Brief International Cognitive Assessment for MS (BICAMS) battery. Serum levels of total antioxidant capacity (TAC), glutathione reductase (GR) activity and malondialdehyde (MDA) determined by colorimetric kits. Data analysis was performed in SPSS, version 26. P < 0.05 was considered as the significant range. The mean ± SD of TAC change was 0.03 ± 0.07 mM vs. - 0.03 ± 0.09 mM in intervention and placebo groups, respectively (Time × group effect P: 0.01; effect size: 0.10). The time effect of intervention on the California Verbal Learning Test second edition (CVLT-II) (P < 0.01; effect size: 0.29), CVLT-II-delay (P < 0.01; effect size: 0.29), and the Symbol Digit Modalities Test (SDMT) (P < 0.01; effect size: 0.18) was increasing and significant. In addition, the time effect of intervention on GR activity was significant and decreasing in both groups (P < 0.01; effect size: 0.20). Our results suggested a significant effect of the Cor@SeNs intervention in improving TAC. We also observed a significant improvement in cognitive function in both groups during our study. However, although not statistically significant, a higher amount of change in cognitive function and serum antioxidant markers was noted in the Cor@SeNs group compared to the placebo group. This is the first study on this nano product with low dose of selenium and crocin. More investigations with longer duration and varied doses are suggested.
Collapse
Affiliation(s)
- Nasim Rezaeimanesh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Pegah Rafiee
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Roghayyeh Saeedi
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran.
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Multiple Sclerosis Research Center, Sina MS Research Center, Sina Hospital, Neuroscience Institute, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran, Iran.
| |
Collapse
|
7
|
Infante S, Behn A, González M, Pintor L, Franco E, Araya P, Maldonado JR. Reliability and Validity of the Spanish Adaptation of the Stanford Proxy Test for Delirium in Two Clinical Spanish-Speaking Communities. J Acad Consult Liaison Psychiatry 2024; 65:136-147. [PMID: 37806639 DOI: 10.1016/j.jaclp.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Delirium is the most prevalent neuropsychiatric syndrome experienced by patients admitted to inpatient clinical units, occurring in at least 20% of medically hospitalized patients and up to 85% of those admitted to critical care units. Although current guidelines recommend the implementation of universal prevention strategies, the use of management strategies largely depends on constant surveillance and screening. This allows for the timely diagnosis and correction of its underlying causes and implementation of management strategies. OBJECTIVE It was to adapt and analyze the Spanish adaptation of the Stanford Proxy Test for Delirium (S-PTDsv) instrument for its use among Spanish-speaking populations. The S-PTD is an instrument consisting of 13 observational items to be completed by a clinician observer, usually the patient's nurse. The completion of the questionnaire takes about 1 minute and does not require the active participation of the person evaluated, which has important clinical advantages compared to other available instruments (e.g., the Confusion Assessment Method). METHODS The psychometric properties of the S-PTDsv were evaluated in a population of 123 patients using a quantitative, cross-sectional design. All subjects were over 18 years of age and hospitalized in various inpatient medico-surgical and intensive care unit services, either at the Barcelona Clinical Hospital (Barcelona, Spain) or the UC-Christus Health Network Clinical Hospital (Santiago, Chile, S.A.). The ultimate diagnosis of delirium was made by a member of the Psychiatry Consult Service by means of an independent neuropsychiatric evaluation based on the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria, published in 2013, which is the latest version of the diagnostic manual. All study tests were performed by study personnel who were blinded to each other's test results within an hour of each other. RESULTS In the receiver operator characteristic (ROC) curve analysis, the S-PTDsv demonstrated excellent classification qualities when compared with the DSM-5 as the classification reference standard. Using a cutoff point of ≥3, the S-PTDsv had a sensitivity of 94% and a specificity of 97%. The area under the curve indicator was equal to 0.95, suggesting the S-PTDsv has an excellent overall performance in accurately identifying cases of delirium. Accordingly, the S-PTDsv's positive predictive value = 0.93, and the negative predictive value = 0.97. The internal reliability measured with Cronbach's alpha was 0.96. Confirmatory factor analysis revealed a 1-dimensional structure with high loadings (>0.72), demonstrating that all items similarly contribute to the total diagnostic dimension, suggesting adequate construct validity. This provided evidence of convergent validity. CONCLUSIONS The performance of the S-PTDsv, as compared to a blinded neuropsychiatric assessment based on DSM-5, indicates that it is an effective instrument for the detection of delirium, in the Spanish-speaking populations. These results are comparable and consistent with previously published studies in the English language version.
Collapse
Affiliation(s)
- Sanndy Infante
- Department of Psychiatry, Pontifical Catholic University of Chile School of Medicine, Santiago, Chile; Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile; School of Psychology, Pontifical University of Chile, Santiago, Chile.
| | - Alex Behn
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile; School of Psychology, Pontifical University of Chile, Santiago, Chile
| | - Matías González
- Department of Psychiatry, Pontifical Catholic University of Chile School of Medicine, Santiago, Chile; Health Service of Reloncaví, Puerto Montt, Chile
| | - Luis Pintor
- Department of Psychiatry, Hospital Clinic of Barcelona, Barcelona, Spain; School Medicine, University of Barcelona, Barcelona, Spain
| | - Eduardo Franco
- Research Department, Universidad Maria Auxiliadora, Lima, Peru
| | - Pablo Araya
- Department of Psychiatry, Pontifical Catholic University of Chile School of Medicine, Santiago, Chile
| | - José R Maldonado
- Division of Medical Psychiatry, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
8
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Kundura L, Cezar R, Pastore M, Reynes C, Deverdun J, Le Bars E, Sotto A, Reynes J, Makinson A, Corbeau P. Low levels of peripheral blood activated and senescent T cells characterize people with HIV-1-associated neurocognitive disorders. Front Immunol 2023; 14:1267564. [PMID: 37954593 PMCID: PMC10634248 DOI: 10.3389/fimmu.2023.1267564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Background HIV infection induces a 75% increase in the risk of developing neurocognitive impairment (NCI), which has been linked to immune activation. We therefore looked for immune activation markers correlating with NCI. Method Sixty-five people aged 55-70 years living with controlled HIV-1 infection were enrolled in the study and their neurocognitive ability was assessed according to the Frascati criteria. Fifty-nine markers of T4 cell, T8 cell, NK cell, and monocyte activation, inflammation and endothelial activation were measured in their peripheral blood. White matter hyperintensities (WMH) were identified by magnetic resonance imaging. Double hierarchical clustering was performed for the activation markers and 240 patients including the 65 whose neurocognitive performance had been evaluated. Results Thirty-eight percent of volunteers presented NCI. Twenty-four percent of them were asymptomatic and fourteen percent had a mild disorder. Strikingly, activated (HLA-DR+) as well as senescent (CD57+CD28-CD27±) T4 cells and T8 cells were less prevalent in the peripheral blood of participants with NCI than in participants without the disorder. Accordingly, the percentage of HLA-DR+ T4 cells was lower in volunteers with periventricular and deep WMH. The double hierarchical clustering unveiled six different immune activation profiles. The neurocognitive performances of participants with two of these six profiles were poor. Here again, these two profiles were characterized by a low level of T4 and T8 cell activation and senescence. Conclusion Our observation of low circulating levels of activated and senescent T cells in HIV-1 patients with NCI raises the interesting hypothesis that these lymphocytes may be recruited into the central nervous system.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, Centre National de la Recherche Scientifique-Montpellier University UMR9002, 141 rue de la Cardonille, Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Place du Pr Debré, Nîmes, France
| | - Manuela Pastore
- Institute of Functional Genomics UMR5203 and BCM, CNRS-INSERM-Montpellier University, 141 rue de la Cardonille, Montpellier, France
| | - Christelle Reynes
- Institute of Functional Genomics UMR5203 and BCM, CNRS-INSERM-Montpellier University, 141 rue de la Cardonille, Montpellier, France
| | - Jérémy Deverdun
- Institute of Human Functional Imaging, Montpellier University Hospital, Montpellier, France
| | - Emmanuelle Le Bars
- Institute of Human Functional Imaging, Montpellier University Hospital, Montpellier, France
- Department of Neuroradiology, Montpellier University Hospital, Montpellier, France
| | - Albert Sotto
- Infectious and Tropical Diseases Department, Nîmes University Hospital, Nîmes, France
- Faculty of Medicine, Montpellier University, Montpellier, France
| | - Jacques Reynes
- Faculty of Medicine, Montpellier University, Montpellier, France
- Infectious and Tropical Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Alain Makinson
- Faculty of Medicine, Montpellier University, Montpellier, France
- Infectious and Tropical Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Pierre Corbeau
- Institute of Human Genetics, Centre National de la Recherche Scientifique-Montpellier University UMR9002, 141 rue de la Cardonille, Montpellier, France
- Immunology Department, Nîmes University Hospital, Place du Pr Debré, Nîmes, France
- Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
10
|
Groth M, Skrzydlewska E, Czupryna P, Biernacki M, Moniuszko-Malinowska A. Lipid mediators of cerebrospinal fluid in response to TBE and bacterial co-infections. Free Radic Biol Med 2023; 207:272-278. [PMID: 37499889 DOI: 10.1016/j.freeradbiomed.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Tick-borne diseases are caused by monoinfection or co-infection with different pathogens, including viruses, bacteria and protozoa. Tick-borne diseases are usually accompanied by oxidative stress which promotes the modifications of the host's lipid metabolism. The aim of the study was to compare total antioxidant status and the level of lipid mediators in the cerebrospinal fluid in response to tick-borne encephalitis (TBE) and bacterial co-infections that cause diseases such as that is Lyme borreliosis (LB) and human granulocytic anaplasmosis (HGA). In our study cerebrospinal fluid samples were obtained from 15 patients with TBE and 6 patients with TBE co-infection with LB and/or HGA at admission and after treatment. Control group consisted of 14 patients in whom meningitis was excluded. Total antioxidant status, levels of lipid peroxidation products, endocannabinoids and eicosanoids (determined by liquid and gas chromatography-mass spectrometry) were compared between the groups. It was found that in TBE patients, total antioxidant status was decreased and accompanied by increased levels of lipid peroxidation products (4-HNE, MDA, isoprostanes and neuroprostanes), major endocannabinoids (AEA and 2AG), and eicosanoids (both anti-inflammatory and pro-inflammatory), which generally declined after treatment. On the other hand, in co-infections, significant changes in the levels of some lipid mediators were observed even after the treatment. TBE alone or along with bacterial co-infections promote redox balance disturbances in the cerebrospinal fluid leading to oxidative stress and increased metabolism of phospholipids in the brain tissue reflected in the level of lipid peroxidation products and lipid mediators. Changes in the level of lipid mediators in patients with co-infections after treatment suggest further intensification of metabolic disturbances rather than their resolution.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Poland
| | | | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Białystok, Poland
| | | |
Collapse
|
11
|
Canseco-Rodriguez A, Masola V, Aliperti V, Meseguer-Beltran M, Donizetti A, Sanchez-Perez AM. Long Non-Coding RNAs, Extracellular Vesicles and Inflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:13171. [PMID: 36361952 PMCID: PMC9654199 DOI: 10.3390/ijms232113171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's Disease (AD) has currently no effective treatment; however, preventive measures have the potential to reduce AD risk. Thus, accurate and early prediction of risk is an important strategy to alleviate the AD burden. Neuroinflammation is a major factor prompting the onset of the disease. Inflammation exerts its toxic effect via multiple mechanisms. Amongst others, it is affecting gene expression via modulation of non-coding RNAs (ncRNAs), such as miRNAs. Recent evidence supports that inflammation can also affect long non-coding RNA (lncRNA) expression. While the association between miRNAs and inflammation in AD has been studied, the role of lncRNAs in neurodegenerative diseases has been less explored. In this review, we focus on lncRNAs and inflammation in the context of AD. Furthermore, since plasma-isolated extracellular vesicles (EVs) are increasingly recognized as an effective monitoring strategy for brain pathologies, we have focused on the studies reporting dysregulated lncRNAs in EVs isolated from AD patients and controls. The revised literature shows a positive association between pro-inflammatory lncRNAs and AD. However, the reports evaluating lncRNA alterations in EVs isolated from the plasma of patients and controls, although still limited, confirm the value of specific lncRNAs associated with AD as reliable biomarkers. This is an emerging field that will open new avenues to improve risk prediction and patient stratification, and may lead to the discovery of potential novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Ania Canseco-Rodriguez
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| | - Valeria Masola
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Maria Meseguer-Beltran
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Ana María Sanchez-Perez
- Neurobiotecnology Group, Faculty of Health Science, Institute of Advanced Materials (INAM), University of Jaume I, 12006 Castellon, Spain
| |
Collapse
|
12
|
Xu Y, Ma Q, Du H, Yang C, Lin G. Postoperative Delirium in Neurosurgical Patients: Recent Insights into the Pathogenesis. Brain Sci 2022; 12:brainsci12101371. [PMID: 36291305 PMCID: PMC9599232 DOI: 10.3390/brainsci12101371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative delirium (POD) is a complication characterized by disturbances in attention, awareness, and cognitive function that occur shortly after surgery or emergence from anesthesia. Since it occurs prevalently in neurosurgical patients and poses great threats to the well-being of patients, much emphasis is placed on POD in neurosurgical units. However, there are intricate theories about its pathogenesis and limited pharmacological interventions for POD. In this study, we review the recent insights into its pathogenesis, mainly based on studies within five years, and the five dominant pathological theories that account for the development of POD, with the intention of furthering our understanding and boosting its clinical management.
Collapse
Affiliation(s)
- Yinuo Xu
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haiming Du
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- North America Medical Education Foundation, Union City, CA 94587, USA
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| |
Collapse
|