1
|
de Deus JL, Maia JM, Soriano RN, Amorim MR, Branco LGS. Psychedelics in neuroinflammation: Mechanisms and therapeutic potential. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111278. [PMID: 39892847 DOI: 10.1016/j.pnpbp.2025.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Neuroinflammation is a critical factor in the pathogenesis of various neurodegenerative and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder. Psychedelics, such as psilocybin, lysergic acid diethylamide (LSD), and dimethyltryptamine (DMT), have demonstrated promising therapeutic effects on neuroinflammation, primarily through interactions with serotonin (5-HT) receptors, particularly the 5-HT2A receptor. Activation of these receptors by psychedelics modulates the production of pro-inflammatory cytokines, regulates microglial activity, and shifts the balance between neurotoxic and neuroprotective metabolites. Additionally, psychedelics affect critical signaling pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and mechanistic target of rapamycin (mTOR) pathways, promoting neuroplasticity and exerting anti-inflammatory effects. Beyond the serotonergic system, other neurotransmitter systems-including the glutamatergic, dopaminergic, noradrenergic, gamma-aminobutyric acid (GABAergic), and cholinergic systems-also play significant roles in mediating the effects of psychedelics. This review examines the intricate mechanisms by which psychedelics modulate neuroinflammation and underscores their potential as innovative therapeutic agents for treating neuroinflammatory and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC, USA; Department of Oral and Basic Biology Ribeirão Preto, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares,MG, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Mateus R Amorim
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC, USA; Program of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Program of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Denton TT, Carter GT, Goddard M, Weiss J, Weeks DL, Weydt P, Russo EB, Weiss MD. Amyotrophic Lateral Sclerosis, the Endocannabinoid System, and Exogenous Cannabinoids: Current State and Clinical Implications. Muscle Nerve 2025. [PMID: 39936266 DOI: 10.1002/mus.28359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
A unifying mechanistic cause for amyotrophic lateral sclerosis (ALS) remains uncertain. Multiple pathophysiological processes appear to occur simultaneously. Cannabinoids, including delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and others found in cannabis, and cannabis extracts (CEs), appear to have activity in these pathogenic pathways, which have led to increasing interest in cannabinoids as therapeutic agents for ALS. The use of cannabinoids as a treatment strategy is substantiated by preclinical evidence suggesting a role for the endocannabinoid system (ECS) in ALS and other neurodegenerative disorders. Preclinical data indicate that cannabis and CEs have powerful antioxidative, anti-inflammatory, and neuroprotective effects in the SOD1G93A mouse model of ALS. The use of CEs in SOD1G93A murine models has been shown to prolong neuronal cell survival, which leads to delayed onset of the disease state, and slows progression of the disease. Although research in humans remains limited, a few studies suggest that cannabis and CBD, in humans, provide benefits for both motor symptoms, including rigidity, cramps, and fasciculations, and non-motor symptoms including sleep quality, pain, emotional state, quality of life, and depression. There remains a need for further, well-designed clinical trials to validate further the use of an individual cannabinoid, or a combination of cannabinoids, as a disease-modifying therapy for ALS.
Collapse
Affiliation(s)
- Travis T Denton
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, Washington, USA
- Department of Translational Medicine & Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, Washington, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, Washington, USA
| | - Gregory T Carter
- Department of Translational Medicine & Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, Washington, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, Washington, USA
- Providence St. Luke's Rehabilitation Medical Center, Spokane, Washington, USA
| | - Megan Goddard
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, Washington, USA
| | - Jeremy Weiss
- University of Washington, Seattle, Washington, USA
| | - Douglas L Weeks
- Department of Community and Behavioral Health, Elson S. Floyd College of Medicine, Washington State University Health Sciences, Spokane, Washington, USA
| | - Patrick Weydt
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Michael D Weiss
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
He XF, Yang XF, Li G, Zhao Y, Luo J, Xu JH, Zheng HQ, Zhang LY, Hu XQ. Physical Exercise Improves the Neuronal Function in Ischemic Stroke Via Microglial CB 2R/P2Y12 Signaling. Mol Neurobiol 2025; 62:2039-2057. [PMID: 39066973 DOI: 10.1007/s12035-024-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Physical exercise (PE) may be the single most important and accessible lifestyle habit throughout life, it inhibits the neuroinflammatory response and protects the brain against damage. As the innate cells in brain, microglia undergo morphological and functional changes to communicate with neurons protecting the neurons from injury. Herein, aiming at exploring the effects of PE on the communication between microglia-neuron during acute ischemic cerebral infarction, we carried out running wheel training before the conduction of transient middle cerebral artery occlusion (tMCAO) in C57BL/6 J and Cx3cr1-GFP mice. We found that microglial P2Y12 expression in the peri-infarct area was decreased, microglial dynamics and microglia-neuron communications were impaired, using in vivo two-photon imaging. PE up-regulated the microglial P2Y12 expression, increased the microglial dynamics, and promoted the contacts of microglia with neurons. As a result, PE inhibited neuronal Ca2+ overloads and protected against damage of the neuronal mitochondria in acute tMCAO. Mechanistically, PE increased the cannabinoid receptor 2 (CB2R) in microglia, promoted the phosphorylation of Nrf2 (NF-E2-related factor 2) at ser-344, increased the transcription factor level of Mafk, and up-regulated the level of P2Y12, whereby PE increased the levels of CB2R to promote microglia-neuron contacts to monitor and protect neuronal function.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Hai-Qing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
Sokolaj E, Assareh N, Anderson K, Aubrey KR, Vaughan CW. Cannabis constituents for chronic neuropathic pain; reconciling the clinical and animal evidence. J Neurochem 2024; 168:3685-3698. [PMID: 37747128 DOI: 10.1111/jnc.15964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Chronic neuropathic pain is a debilitating pain syndrome caused by damage to the nervous system that is poorly served by current medications. Given these problems, clinical studies have pursued extracts of the plant Cannabis sativa as alternative treatments for this condition. The vast majority of these studies have examined cannabinoids which contain the psychoactive constituent delta-9-tetrahydrocannabinol (THC). While there have been some positive findings, meta-analyses of this clinical work indicates that this effectiveness is limited and hampered by side-effects. This review focuses on how recent preclinical studies have predicted the clinical limitations of THC-containing cannabis extracts, and importantly, point to how they might be improved. This work highlights the importance of targeting channels and receptors other than cannabinoid CB1 receptors which mediate many of the side-effects of cannabis.
Collapse
Affiliation(s)
- Eddy Sokolaj
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Neda Assareh
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Kristen Anderson
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Kim L, Nan G, Kim HY, Cha M, Lee BH. Modulation of chemotherapy-induced peripheral neuropathy by JZL195 through glia and the endocannabinoid system. Biomed Pharmacother 2024; 180:117515. [PMID: 39362070 DOI: 10.1016/j.biopha.2024.117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) used to treat cancer, is a significant side effect with a complex pathophysiology, and its mechanisms remain unclear. Recent research highlights neuroinflammation, which is modulated by the endocannabinoid system (ECS) and associated with glial activation, and the role of toll-like receptor 4 (TLR4) in CIPN. This study aimed to investigate the effects of JZL195, an inhibitor of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and explore the connection between cannabinoid receptors and TLR4 in glial cells. A CIPN animal model was developed using cisplatin-injected male C57BL/6 mice. Mechanical and cold allodynia were assessed through von Frey and acetone tests. Western blot analysis was used to examine the expression of catabolic enzymes, cannabinoid receptors, glial cells, and neuroinflammatory factors in the dorsal root ganglia (DRGs) and spinal cord. Immunohistochemistry was used to investigate the colocalization of cannabinoid receptors and TLR4 in glial cells. JZL195 alleviated pain by inhibiting FAAH/MAGL, modulating the ECS and neuroinflammatory factors, and suppressing glial cell activity. Additionally, cannabinoid receptors and TLR4 colocalized with astrocytes and microglia in the spinal cord. This study highlights the therapeutic potential of JZL195 in modulating the ECS and suggests a correlation between cannabinoid receptors and TLR4 in spinal glial cells, providing insight into alleviating pain and neuroinflammation in CIPN.
Collapse
Affiliation(s)
- Leejeong Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Fassarella LB, Neto JGO, Woyames J, Santos GRC, Pereira HMG, Pazos-Moura CC, Trevenzoli IH. Fish oil supplementation during pregnancy decreases liver endocannabinoid system and lipogenic markers in newborn rats exposed to maternal high-fat diet. Eur J Nutr 2024; 63:1565-1579. [PMID: 38727803 DOI: 10.1007/s00394-024-03422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/09/2024] [Indexed: 08/18/2024]
Abstract
PURPOSE Maternal high-fat diet (HF) programs obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), hypertriglyceridemia, and hyperglycemia associated with increased endocannabinoid system (ECS) in the liver of adult male rat offspring. We hypothesized that maternal HF would induce sex specific ECS changes in the liver of newborn rats, prior to obesity onset, and maternal fish oil (FO) supplementation would reprogram the ECS and lipid metabolism markers preventing liver triglycerides (TG) accumulation. METHODS Female rats received a control (CT) (10.9% fat) or HF (28.7% fat) diet 8 weeks prior to mating and during pregnancy. A subgroup of HF dams received 3% FO supplementation in the HF diet (35.4% fat) during pregnancy (HFFO). Serum hormones and liver TG, ECS, lipid metabolism, oxidative stress and autophagy markers were assessed in male and female newborn offspring. RESULTS Maternal HF diet increased liver cannabinoid receptor 1 (CB1) in males and decreased CB2 in females, with no effect on liver TG. Maternal FO supplementation reduced liver CB1 regardless of the offspring sex, but reduced TG liver content only in females. FO reduced the liver content of the endocannabinoid anandamide in males, and the content of 2-arachidonoylglycerol in both sexes. Maternal HF increased lipogenic and decreased lipid oxidation markers, and FO induced the opposite regulation in the liver of offspring. CONCLUSION Prenatal HF and FO differentially modulate liver ECS in the offspring before obesity and MASLD development. These results suggest that maternal nutrition at critical stages of development can modulate the offspring's ECS, predisposing or preventing the onset of metabolic diseases.
Collapse
Affiliation(s)
- Larissa B Fassarella
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Jessika G O Neto
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Juliana Woyames
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Gustavo R C Santos
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Henrique M G Pereira
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carmen C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil
| | - Isis H Trevenzoli
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, 21941-902, Brasil.
| |
Collapse
|
7
|
Kim AT, Li S, Kim Y, You YJ, Park Y. Food preference-based screening method for identification of effectors of substance use disorders using Caenorhabditis elegans. Life Sci 2024; 345:122580. [PMID: 38514005 DOI: 10.1016/j.lfs.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Substance use disorder (SUD) affects over 48 million Americans aged 12 and over. Thus, identifying novel chemicals contributing to SUD will be critical for developing efficient prevention and mitigation strategies. Considering the complexity of the actions and effects of these substances on human behavior, a high-throughput platform using a living organism is ideal. We developed a quick and easy screening assay using Caenorhabditis elegans. C. elegans prefers high-quality food (Escherichia coli HB101) over low-quality food (Bacillus megaterium), with a food preference index of approximately 0.2, defined as the difference in the number of worms at E. coli HB101 and B. megaterium over the total worm number. The food preference index was significantly increased by loperamide, a μ-opioid receptor (MOPR) agonist, and decreased by naloxone, a MOPR antagonist. These changes depended on npr-17, a C. elegans homolog of opioid receptors. In addition, the food preference index was significantly increased by arachidonyl-2'-chloroethylamide, a cannabinoid 1 receptor (CB1R) agonist, and decreased by rimonabant, a CB1R inverse agonist. These changes depended on npr-19, a homolog of CB1R. These results suggest that the conserved opioid and endocannabinoid systems modulate the food preference behaviors of C. elegans. Finally, the humanoid C. elegans strains where npr-17 was replaced with human MOPR and where npr-19 was replaced with human CB1R phenocopied the changes in food preference by the drug treatment. Together, the current results show that this method can be used to rapidly screen the potential effectors of MOPR and CB1R to yield results highly translatable to humans.
Collapse
Affiliation(s)
- Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Young-Jai You
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Stanciu GD, Ababei DC, Solcan C, Uritu CM, Craciun VC, Pricope CV, Szilagyi A, Tamba BI. Exploring Cannabinoids with Enhanced Binding Affinity for Targeting the Expanded Endocannabinoid System: A Promising Therapeutic Strategy for Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2024; 17:530. [PMID: 38675490 PMCID: PMC11053678 DOI: 10.3390/ph17040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite decades of rigorous research and numerous clinical trials, Alzheimer's disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory role in different physiological processes, such as neuroprotection, modulation of inflammation, and synaptic plasticity. This aligns with previous research showing that cannabinoid receptor ligands have the potential to trigger the functional structure of neuronal and brain networks, potentially impacting memory processing. Therefore, our study aims to assess the effects of prolonged, intermittent exposure (over 90 days) to JWH-133 (0.2 mg/kg) and an EU-GMP certified Cannabis sativa L. (Cannabixir® Medium Flos, 2.5 mg/kg) on recognition memory, as well as their influence on brain metabolism and modulation of the expanded endocannabinoid system in APP/PS1 mice. Chronic therapy with cannabinoid receptor ligands resulted in reduced anxiety-like behavior and partially reversed the cognitive deficits. Additionally, a reduction was observed in both the number and size of Aβ plaque deposits, along with decreased cerebral glucose metabolism, as well as a decline in the expression of mTOR and CB2 receptors. Furthermore, the study revealed enlarged astrocytes and enhanced expression of M1 mAChR in mice subjected to cannabinoid treatment. Our findings highlight the pivotal involvement of the extended endocannabinoid system in cognitive decline and pathological aspects associated with AD, presenting essential preclinical evidence to support the continued exploration and assessment of cannabinoid receptor ligands for AD treatment.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Cristina-Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Vlad-Constantin Craciun
- Department of Computer Science, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania;
| | - Cosmin-Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
9
|
Jung YS, Radhakrishnan K, Kim HJ, Kim YH, Lee CH, Choi HS. Macrophage stimulating protein is a novel transcriptional target of estrogen related receptor gamma in alcohol-intoxicated mice. Cell Signal 2024; 116:111059. [PMID: 38237793 DOI: 10.1016/j.cellsig.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Macrophage stimulating protein (MSP) is a multifunctional serum protein produced in the liver, belonging to the plasminogen-related kringle protein family. It exerts diverse biological functions by activating a transmembrane receptor protein-tyrosine kinase known as RON in humans and SKT in mice. MSP plays a pivotal role in innate immunity and is involved in various activities such as cell survival, migration, and phagocytosis. Elucidating the regulatory mechanisms governing MSP gene expression is of great importance. In this study, we comprehensively elucidate the molecular mechanism underlying hepatic MSP gene expression in response to alcoholism. Exposure to ethanol specifically upregulated the expression of ERRγ and MSP in the liver, while not in other organs. Liver-specific knockout of the cannabinoid receptor type 1 (CB1R), an upstream regulator of ERRγ, inhibited the alcohol-induced upregulation of MSP expression. Overexpression of ERRγ alone was sufficient to enhance MSP expression in hepatic cell lines and in mice. Conversely, knockdown of ERRγ in cell lines or liver-specific knockout of ERRγ in mice reversed ethanol-induced MSP gene expression. Promoter studies revealed the direct binding of ERRγ to the MSP gene promoter at the ERR response element (ERRE), resulting in the positive regulation of MSP gene expression in response to alcohol. This finding was further supported by ERRE-mutated MSP-luciferase reporter assays. Notably, treatment with GSK5182, an ERRγ-specific inverse agonist, significantly suppressed alcohol-induced hepatic MSP expression. Collectively, we exposed a novel mechanistic understanding of how alcohol-induced ERRγ controls the transcriptional regulation of MSP gene expression in the liver.
Collapse
Affiliation(s)
- Yoon Seok Jung
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyo-Jin Kim
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Castro-Navarro I, McGuire MA, Williams JE, Holdsworth EA, Meehan CL, McGuire MK. Maternal Cannabis Use during Lactation and Potential Effects on Human Milk Composition and Production: A Narrative Review. Adv Nutr 2024; 15:100196. [PMID: 38432590 PMCID: PMC10997876 DOI: 10.1016/j.advnut.2024.100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cannabis use has increased sharply in the last 20 y among adults, including reproductive-aged women. Its recent widespread legalization is associated with a decrease in risk perception of cannabis use during breastfeeding. However, the effect of cannabis use (if any) on milk production and milk composition is not known. This narrative review summarizes current knowledge related to maternal cannabis use during breastfeeding and provides an overview of possible pathways whereby cannabis might affect milk composition and production. Several studies have demonstrated that cannabinoids and their metabolites are detectable in human milk produced by mothers who use cannabis. Due to their physicochemical properties, cannabinoids are stored in adipose tissue, can easily reach the mammary gland, and can be secreted in milk. Moreover, cannabinoid receptors are present in adipocytes and mammary epithelial cells. The activation of these receptors directly modulates fatty acid metabolism, potentially causing changes in milk fatty acid profiles. Additionally, the endocannabinoid system is intimately connected to the endocrine system. As such, it is probable that interactions of exogenous cannabinoids with the endocannabinoid system might modify release of critical hormones (e.g., prolactin and dopamine) that regulate milk production and secretion. Nonetheless, few studies have investigated effects of cannabis use (including on milk production and composition) in lactating women. Additional research utilizing robust methodologies are needed to elucidate whether and how cannabis use affects human milk production and composition.
Collapse
Affiliation(s)
- Irma Castro-Navarro
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States.
| | - Mark A McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Janet E Williams
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | | | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
11
|
Malek A, Ahmadi Badi S, Karimi G, Bizouarn T, Irian S, Siadat SD. The effect of Bacteroides fragilis and its postbiotics on the expression of genes involved in the endocannabinoid system and intestinal epithelial integrity in Caco-2 cells. J Diabetes Metab Disord 2023; 22:1417-1424. [PMID: 37975078 PMCID: PMC10638345 DOI: 10.1007/s40200-023-01264-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 11/19/2023]
Abstract
Purpose Gut microbiota and its derivatives by constantly interacting with the host, regulate the host function. Intestinal epithelium integrity is under the control of various factors including the endocannabinoid system (ECS). Accordingly, we aimed at investigating the effect of Bacteroides fragilis and its postbiotics (i.e., heat-inactivated, cell-free supernatants (CFS) and outer membrane vesicles (OMVs)) on the expression of genes involved in ECS (cnr1, faah, pparg) and the epithelial barrier permeability (ocln, tjp1) in a Caco-2 cell line. Methods Caco-2 cell line was treated with live or heat-inactivated B. fragilis at MOIs of 50 and 100, or stimulated with 7% V/V CFS and B. fragilis OMVs at a dose of 50 and 100 µg/ml overnight. RT-qPCR was applied for expression analysis. Results Heat-inactivated B. fragilis induced cnr1, pparg, tjp1, and suppressed faah expression, while live B. fragilis had the opposite effect. OMVs increased pparg, and tjp1 expression by reducing the activity of ECS through an increase in faah and a reduction in cnr1 expression. Finally, an increase in the expression of pparg and ocln, and a reduction in the expression of cnr1 was detected in Caco-2 cells treated with CFS. Conclusion The live and heat-inactivated B. fragilis inversely affected cnr1, faah, pparg, and tjp1 expression in Caco-2 cells. Increased tjp1 mRNA levels by affecting the expression of ECS related genes is taken as an indication of the potential beneficial effects of B. fragilis postbiotics and making them potential candidates for improving permeability in the leaky gut syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01264-8.
Collapse
Affiliation(s)
- Amin Malek
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gilda Karimi
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tania Bizouarn
- Universit´e Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, Orsay, 91405 France
| | - Saeed Irian
- Department of Cell & Molecular Sciences Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Raux PL, Vallée M. Cross-talk between neurosteroid and endocannabinoid systems in cannabis addiction. J Neuroendocrinol 2023; 35:e13191. [PMID: 36043319 DOI: 10.1111/jne.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Steroids and endocannabinoids are part of two modulatory systems and some evidence has shown their interconnections in several functions. Homeostasis is a common steady-state described in the body, which is settled by regulatory systems to counterbalance deregulated or allostatic set points towards an equilibrium. This regulation is of primary significance in the central nervous system for maintaining neuronal plasticity and preventing brain-related disorders. In this context, the recent discovery of the shutdown of the endocannabinoid system (ECS) overload by the neurosteroid pregnenolone has highlighted new endogenous mechanisms of ECS regulation related to cannabis-induced intoxication. These mechanisms involve a regulatory loop mediated by overactivation of the central type-1 cannabinoid receptor (CB1R), which triggers the production of its own regulator, pregnenolone. Therefore, this highlights a new process of regulation of steroidogenesis in the brain. Pregnenolone, long considered an inactive precursor of neurosteroids, can then act as an endogenous negative allosteric modulator of CB1R. The present review aims to shed light on a new framework for the role of ECS in the addictive characteristics of cannabis with the novel endogenous mechanism of ECS involving the neurosteroid pregnenolone. In addition, this new endogenous regulatory loop could provide a relevant therapeutic model in the current context of increasing recreational and medical use of cannabis.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Mechoulam R. A Delightful Trip Along the Pathway of Cannabinoid and Endocannabinoid Chemistry and Pharmacology. Annu Rev Pharmacol Toxicol 2023; 63:1-13. [PMID: 35850522 DOI: 10.1146/annurev-pharmtox-051921-083709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ9-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.
Collapse
Affiliation(s)
- Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
14
|
Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals (Basel) 2023; 16:ph16020148. [PMID: 37017445 PMCID: PMC9966761 DOI: 10.3390/ph16020148] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes. Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases. This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB.
Collapse
|
15
|
Ishiguro H. Editorial: Targeting the endocannabinoidome in neurodegenerative disorders. Front Aging Neurosci 2023; 14:1116635. [PMID: 36688166 PMCID: PMC9846791 DOI: 10.3389/fnagi.2022.1116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Hiroki Ishiguro
- Department of Neuropsychiatry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan,Department of Clinical Genetics, Graduate School of Medicine, University of Yamanashi, Chuo, Japan,*Correspondence: Hiroki Ishiguro ✉
| |
Collapse
|
16
|
Battista N, Fanti F, Sergi M. LC-MS/MS Analysis of AEA and 2-AG. Methods Mol Biol 2023; 2576:41-47. [PMID: 36152176 DOI: 10.1007/978-1-0716-2728-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
LC-MS/MS is a powerful analytical technique that provides unequivocal identification and reliable quantification of the analytes, using Selected Reaction Monitoring or Multi Reaction Monitoring acquisition mode.Anandamide (N-arachidonoylethanolamine, AEA) and 2-Arachidonoylglycerol (2-AG) are the most abundant endocannabinoids (eCBs), which play a major role in a wide variety of physiological and pathological processes. Analysis of those compounds by means of LC-MS/MS allows the detection of very low concentrations in biological samples. Here, we describe how to determine AEA and 2-AG levels in tiny samples of tissues and plasma through LC-MS/MS, by using very quick and easy-to-perform extraction procedures, with reduced solvent consumption.
Collapse
Affiliation(s)
- Natalia Battista
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Federico Fanti
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| |
Collapse
|
17
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
18
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
19
|
Dias-Rocha CP, Almeida MM, Woyames J, Mendonça R, Andrade CBV, Pazos-Moura CC, Trevenzoli IH. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci 2022; 306:120831. [PMID: 35882274 DOI: 10.1016/j.lfs.2022.120831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022]
Abstract
AIMS The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD. We hypothesized that maternal HFD would modulate ECS and energy metabolism markers in BAT and skeletal muscle of adult male offspring. MATERIALS AND METHODS Female rats received standard diet (9.4 % of calories as fat) or isocaloric HFD (28.9 % of calories as fat) for 8 weeks premating and throughout gestation and lactation. Male offspring were weaned on standard diet and euthanatized in adulthood. KEY FINDINGS Maternal HFD increased body weight, adiposity, glycemia, leptinemia while decreased testosterone levels in adult offspring. Maternal HFD did not change cannabinoid receptors in BAT or skeletal muscle as hypothesized but increased the content of uncoupling protein and tyrosine hydroxylase (thermogenic markers) in parallel to changes in mitochondrial morphology in skeletal muscle of adult offspring. SIGNIFICANCE In metabolic programming models, the ECS modulation in the BAT and skeletal muscle may be more important early in life to adapt energy metabolism during maternal dietary insult, and other mechanisms are possibly involved in muscle metabolism long-term regulation.
Collapse
Affiliation(s)
- Camilla P Dias-Rocha
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Mariana M Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Juliana Woyames
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raphael Mendonça
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Cherley B V Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carmen C Pazos-Moura
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Paes-Colli Y, Aguiar AFL, Isaac AR, Ferreira BK, Campos RMP, Trindade PMP, de Melo Reis RA, Sampaio LS. Phytocannabinoids and Cannabis-Based Products as Alternative Pharmacotherapy in Neurodegenerative Diseases: From Hypothesis to Clinical Practice. Front Cell Neurosci 2022; 16:917164. [PMID: 35707521 PMCID: PMC9189313 DOI: 10.3389/fncel.2022.917164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Historically, Cannabis is one of the first plants to be domesticated and used in medicine, though only in the last years the amount of Cannabis-based products or medicines has increased worldwide. Previous preclinical studies and few published clinical trials have demonstrated the efficacy and safety of Cannabis-based medicines in humans. Indeed, Cannabis-related medicines are used to treat multiple pathological conditions, including neurodegenerative disorders. In clinical practice, Cannabis products have already been introduced to treatment regimens of Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis’s patients, and the mechanisms of action behind the reported improvement in the clinical outcome and disease progression are associated with their anti-inflammatory, immunosuppressive, antioxidant, and neuroprotective properties, due to the modulation of the endocannabinoid system. In this review, we describe the role played by the endocannabinoid system in the physiopathology of Alzheimer, Parkinson, and Multiple Sclerosis, mainly at the neuroimmunological level. We also discuss the evidence for the correlation between phytocannabinoids and their therapeutic effects in these disorders, thus describing the main clinical studies carried out so far on the therapeutic performance of Cannabis-based medicines.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey F. L. Aguiar
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna K. Ferreira
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria P. Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila Martins Pinheiro Trindade
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
21
|
O’Brien K. Cannabidiol (CBD) in Cancer Management. Cancers (Basel) 2022; 14:cancers14040885. [PMID: 35205633 PMCID: PMC8869992 DOI: 10.3390/cancers14040885] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa. Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD is one of the key constituents of cannabis, and does not have the potentially intoxicating effects that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD may have potential for the treatment of cancer, including the symptoms and signs associated with cancer and its treatment. Preclinical research suggests CBD may address many of the pathways involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic agents and radiation therapy and protect against neural and organ damage. CBD shows promise as part of an integrative approach to the management of cancer. Abstract The plant Cannabis sativa has been in use medicinally for several thousand years. It has over 540 metabolites thought to be responsible for its therapeutic effects. Two of the key phytocannabinoids are cannabidiol (CBD) and tetrahydrocannabinol (THC). Unlike THC, CBD does not have potentially intoxicating effects. Preclinical and clinical research indicates that CBD has a wide range of therapeutic effects, and many of them are relevant to the management of cancer. In this article, we explore some of the potential mechanisms of action of CBD in cancer, and evidence of its efficacy in the integrative management of cancer including the side effects associated with its treatment, demonstrating its potential for integration with orthodox cancer care.
Collapse
Affiliation(s)
- Kylie O’Brien
- Adelaide Campus, Torrens University, Adelaide, SA 5000, Australia;
- NICM Health Research Centre, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
- Releaf Group Ltd., St Kilda, VIC 3182, Australia
- International College of Cannabinoid Medicine, iccm.co, London N1 7GU, UK
| |
Collapse
|
22
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|