1
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Sanaye PM, Alsharif KF, Daglia M, Larsen DS, Khan H. The role of interleukin (IL)-2 cytokine family in Parkinson's disease. Cytokine 2025; 191:156954. [PMID: 40318236 DOI: 10.1016/j.cyto.2025.156954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, which primarily impacts the nervous system, marked by its immune and inflammatory characteristics. The interleukin-2 (IL-2) cytokine family has a crucial role in regulating both neuroinflammation and immune activity, positioning it as one of the critical immune pathways in PD. Balancing pro-inflammatory and anti-inflammatory signals in PD heavily depends on the IL-2 cytokine family, that includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. This balance is vital for neuron survival and resistance to degeneration. Disruptions in IL-2 signaling can upset the equilibrium among regulatory T cells (Tregs) and pro-inflammatory T cells, such as Th1 and Th17, further aggravating the chronic neuroinflammation typical of PD. In PD, a decline in IL-2 or receptor dysfunction can hinder Treg activity, leading to increased inflammation and neurodegeneration. Similarly, IL-15 and IL-21 supports cytotoxic immune cell function, including natural killer (NK) cells and CD8+ T cells, which may exacerbate neuronal damage by sustaining pro-inflammatory processes. Moreover, IL-4 and IL-7 have anti-inflammatory roles in maintaining T cell homeostasis, and their dysregulation can contribute to interruption of the blood-brain barrier and increased infiltration of immune cells into the central nervous system. Targeting the IL-2 cytokine family in Parkinson's disease has shown therapeutic potential by expanding Tregs, which reduce neuroinflammation and promote dopaminergic neuron survival. Recombinant IL-2 and IL-2/anti-IL-2 complexes have demonstrated efficacy in animal models, enhancing Treg function and leading to improved neuroprotection. Additionally, IL-4-based therapies have been explored for their ability to shift microglia toward a neuroprotective phenotype, further enhancing neuronal survival by modulating inflammatory responses and cellular metabolism. Current research is exploring how to optimize cytokine delivery while minimizing immune side effects, with the goal of developing more targeted therapies for PD.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari 4816118761, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Ben-Azu B, Toloyai PEY, Adebesin A, Ojiokor VO, Adebayo OG, Fokoua AR, Moke GE, Ejukolemu EJ, Akpojevughe IOO, Abdulkadir AM, Okwuchi E. Alcohol exacerbates post-traumatic stress psychiatric behavior and its neuropathological sequalae in experimental mice: preventive effects of morin. Alcohol 2025; 122:15-29. [PMID: 39094850 DOI: 10.1016/j.alcohol.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are very prevalent and co-occurring. It is unclear how alcohol exacerbates PTSD predicaments owing to less characterized pathophysiological mechanisms. Also, studies on pharmacological agents that can effectively reverse PTSD-AUD comorbidity have, to date, been scarce. Hence, we designed a methodological approach to investigate the pathophysiological mechanisms and pharmacological outcomes of morin, a neuroprotective flavonoid in mice. After 7 days of PTSD following single-prolonged stress (SPS) induction in mice, the PTSD mice were exposed to intermittent binge ethanol administration using ethanol (2 g/kg, oral gavage) every other day, alongside daily morin (50 and 100 mg/kg) or fluoxetine (10 mg/kg) from days 8-21. The consequences of PTSD-AUD behavior, hypothalamic-pituitary-adrenal-axis (HPA-axis) dysfunction, neurochemistry, oxidative/nitrergic stress, and inflammation were evaluated in the prefrontal cortex (PFC), striatum, and hippocampus of mice. The exacerbated anxiety-like behavior, and spatial/non-spatial memory deficits, with general depressive phenotypes and social stress susceptibility by SPS-ethanol interaction, were alleviated by morin and fluoxetine, evidenced by reduced corticosterone release and adrenal hypertrophy. SPS-ethanol exacerbates dopamine, serotonin, and glutamic acid decarboxylase alterations, and monoamine oxidase-B and acetylcholinesterase hyperactivities in the striatum, PFC, and hippocampus, respectively, which were prevented by morin. Compared to SPS-ethanol aggravation, morin reduced TNF-α and IL-6 release, malondialdehyde and nitrite levels, with improved antioxidant (glutathione, superoxide-dismutase, catalase) levels in the hippocampus, PFC, and striatum. Overall, these findings suggest that AUD-exacerbated PTSD might be primarily connected, among other mechanisms, with aggravated HPA-axis dysfunction, upregulated neurochemical degradative enzymes, enhancement of oxidative/nitrergic stress and neuroinflammation, and stereo-selectively in the mice brains, which morin abated via the preventive mechanisms.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Pere-Ebi Y Toloyai
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Abafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Vivian O Ojiokor
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance Romain Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Research Unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Goodes E Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Elo J Ejukolemu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ife-Oluwa O Akpojevughe
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Abdulkareem M Abdulkadir
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ephraim Okwuchi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
4
|
Wu N, Zhang X, Li Y, Zhang J, Cui M. Fluorinated Coumarin Derivatives as Selective PET Tracer for MAO-B Imaging. J Med Chem 2025; 68:324-337. [PMID: 39699074 DOI: 10.1021/acs.jmedchem.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Monoamine oxidase-B (MAO-B), predominantly exists on the outer mitochondrial membrane of astrocytes, serves as a crucial biomarker for reactive astrocytes during neuroinflammatory responses and various neurodegenerative diseases. In this study, we synthesized a series of fluorinated coumarin derivatives and evaluated their structure-activity relationship and subtype selectivity for MAO-B. Following this, the preclinical bioevaluation containing in vivo positron emission tomography (PET) imaging and ex vivo autoradiography studies led to the identification of the novel PET tracer, [18F]8, which demonstrated high affinity for MAO-B (IC50 = 0.59 nM) and appreciable brain pharmacokinetics (SUVmax = 2.15 at 2 min, brain2min/60min = 7.67) in rats. Furthermore, the radioactivates from [18F]8 in regions of MAO-B expression could be effectively inhibited by Selegiline. All these positive findings supported that [18F]8 is a promising candidate for MAO-B PET imaging, which merits further evaluation.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
5
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
6
|
Hong SW, Page R, Truman P. Smoking, coffee intake, and Parkinson's disease: Potential protective mechanisms and components. Neurotoxicology 2025; 106:48-63. [PMID: 39701424 DOI: 10.1016/j.neuro.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Environmental and lifestyle factors, such as smoking and coffee drinking, have been associated with a decreased risk for PD. However, the biological mechanisms underlying protective effects on PD are still not fully understood. It has been suggested that non-nicotine components in cigarette smoke and non-caffeine components in coffee may contribute to this protective effect. The aim of this review was to explore candidate molecules and mechanisms behind the effects of smoking and coffee drinking on PD by integrating findings from previous studies. By cross-referencing an index of tobacco constituents and a list of coffee constituents with existing literature on natural compounds and their structural analogs that show inhibitory activities against monoamine oxidase B, catechol O-methyltransferase, and α-synuclein fibrillation, we have identified tobacco and coffee components that inhibit these targets. Furthermore, tobacco and coffee components potentially play roles in suppressing neuroinflammation, activating the Nrf2 pathway as natural activators, and altering the gut microbiome. This review suggests that the phenolic compounds from tobacco and coffee investigated may contribute to the low incidence of PD in smokers and coffee drinkers, showing moderate to strong potential as therapeutic interventions. The current review suggests that multifunctional molecules found in coffee and cigarette smoke may have potential neuroprotective effects, but none of the data indicates that multifunctionality is required for these effects. This review will deepen our understanding of how smoking and coffee drinking are linked to a reduced risk of PD and will also be important in elucidating the mechanisms underlying the protective effects of smoking and coffee drinking on PD.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
7
|
Ben-Azu B, Oritsemuelebi B, Oghorodi AM, Adebesin A, Isibor H, Eduviere AT, Otuacha OS, Akudo M, Ekereya S, Maidoh IF, Iyayi JO, Uzochukwu-Godfrey FC. Psychopharmacological interaction of alcohol and posttraumatic stress disorder: Effective action of naringin. Eur J Pharmacol 2024; 978:176791. [PMID: 38944175 DOI: 10.1016/j.ejphar.2024.176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalently co-occurring, important risk factors for a broad array of neuropsychiatric diseases. To date, how these two contrastive concomitant pairs increase the risk of neuropsychiatric states, notably exacerbating PTSD-related symptoms, remains unknown. Moreover, pharmacological interventions with agents that could reverse PTSD-AUD comorbidity, however, remained limited. Hence, we investigated the neuroprotective actions of naringin in mice comorbidly exposed to PTSD followed by repeated ethanol (EtOH)-induced AUD. Following a 7-day single-prolong-stress (SPS)-induced PTSD in mice, binge/heavy drinking, notably related to AUD, was induced in the PTSD mice with every-other-day ethanol (2 g/kg, p.o.) administration, followed by daily treatments with naringin (25 and 50 mg/kg) or fluoxetine (10 mg/kg), from days 8-21. PTSD-AUD-related behavioral changes, alcohol preference, hypothalamic-pituitary-adrenal (HPA)-axis dysfunction-induced neurochemical alterations, oxidative/nitrergic stress, and inflammation were examined in the prefrontal-cortex, striatum, and hippocampus. PTSD-AUD mice showed aggravated anxiety, spatial-cognitive, social impairments and EtOH intake, which were abated by naringin, similar to fluoxetine. Our assays on the HPA-axis showed exacerbated increased corticosterone release and adrenal hypertrophy, accompanied by marked dopamine and serotonin increase, with depleted glutamic acid decarboxylase enzyme in the three brain regions, which naringin, however, reversed, respectively. PTSD-AUD mice also showed increased TNF-α, IL-6, malondialdehyde and nitrite levels, with decreased antioxidant elements in the prefrontal-cortex, striatum, and hippocampus compared to SPS-EtOH-mice, mainly exacerbating catalase and glutathione decrease in the hippocampus relative SPS-mice. These findings suggest that AUD exacerbates PTSD pathologies in different brain regions, notably comprising neurochemical dysregulations, oxidative/nitrergic and cytokine-mediated inflammation, with HPA dysfunction, which were, however, revocable by naringin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Akpobo M Oghorodi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Biomedical Engineering, Faculty of Technology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Happy Isibor
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Oghenemine S Otuacha
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Moses Akudo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Surhirime Ekereya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Isioma F Maidoh
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Joy O Iyayi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Faith C Uzochukwu-Godfrey
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
8
|
D'Acunzo P, Argyrousi EK, Ungania JM, Kim Y, DeRosa S, Pawlik M, Goulbourne CN, Arancio O, Levy E. Mitovesicles secreted into the extracellular space of brains with mitochondrial dysfunction impair synaptic plasticity. Mol Neurodegener 2024; 19:34. [PMID: 38616258 PMCID: PMC11017499 DOI: 10.1186/s13024-024-00721-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Hypometabolism tied to mitochondrial dysfunction occurs in the aging brain and in neurodegenerative disorders, including in Alzheimer's disease, in Down syndrome, and in mouse models of these conditions. We have previously shown that mitovesicles, small extracellular vesicles (EVs) of mitochondrial origin, are altered in content and abundance in multiple brain conditions characterized by mitochondrial dysfunction. However, given their recent discovery, it is yet to be explored what mitovesicles regulate and modify, both under physiological conditions and in the diseased brain. In this study, we investigated the effects of mitovesicles on synaptic function, and the molecular players involved. METHODS Hippocampal slices from wild-type mice were perfused with the three known types of EVs, mitovesicles, microvesicles, or exosomes, isolated from the brain of a mouse model of Down syndrome or of a diploid control and long-term potentiation (LTP) recorded. The role of the monoamine oxidases type B (MAO-B) and type A (MAO-A) in mitovesicle-driven LTP impairments was addressed by treatment of mitovesicles with the irreversible MAO inhibitors pargyline and clorgiline prior to perfusion of the hippocampal slices. RESULTS Mitovesicles from the brain of the Down syndrome model reduced LTP within minutes of mitovesicle addition. Mitovesicles isolated from control brains did not trigger electrophysiological effects, nor did other types of brain EVs (microvesicles and exosomes) from any genotype tested. Depleting mitovesicles of their MAO-B, but not MAO-A, activity eliminated their ability to alter LTP. CONCLUSIONS Mitovesicle impairment of LTP is a previously undescribed paracrine-like mechanism by which EVs modulate synaptic activity, demonstrating that mitovesicles are active participants in the propagation of cellular and functional homeostatic changes in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 10027, New York, NY, USA
- Department of Medicine, Columbia University, 10027, New York, NY, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 10027, New York, NY, USA
- Department of Medicine, Columbia University, 10027, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 10962, Orangeburg, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, 10016, New York, NY, USA.
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, 10027, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, 10016, New York, NY, USA.
| |
Collapse
|
9
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
10
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Morito T, Harada R, Iwata R, Ishikawa Y, Okamura N, Kudo Y, Furumoto S, Yanai K, Tashiro M. Evaluation of 18F labeled glial fibrillary acidic protein binding nanobody and its brain shuttle peptide fusion proteins using a neuroinflammation rat model. PLoS One 2023; 18:e0287047. [PMID: 37315033 DOI: 10.1371/journal.pone.0287047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Astrogliosis is a crucial feature of neuroinflammation and is characterized by the significant upregulation of glial fibrillary acidic protein (GFAP) expression. Hence, visualizing GFAP in the living brain of patients with damaged central nervous system using positron emission tomography (PET) is of great importance, and it is expected to depict neuroinflammation more directly than existing neuroinflammation imaging markers. However, no PET radiotracers for GFAP are currently available. Therefore, neuroimaging with antibody-like affinity proteins could be a viable strategy for visualizing imaging targets that small molecules rarely recognize, such as GFAP, while we need to overcome the challenges of slow clearance and low brain permeability. The E9 nanobody, a small-affinity protein with high affinity and selectivity for GFAP, was utilized in this study. E9 was engineered by fusing a brain shuttle peptide that facilitates blood-brain barrier permeation via two different types of linker domains: E9-GS-ApoE (EGA) and E9-EAK-ApoE (EEA). E9, EGA and EEA were radiolabeled with fluorine-18 using cell-free protein radiosynthesis. In vitro autoradiography showed that all radiolabeled proteins exhibited a significant difference in neuroinflammation in the brain sections created from a rat model constructed by injecting lipopolysaccharide (LPS) into the unilateral striatum of wildtype rats, and an excess competitor displaced their binding. However, exploratory in vivo PET imaging and ex vivo biodistribution studies in the rat model failed to distinguish neuroinflammatory lesions within 3 h of 18F-EEA intravenous injection. This study contributes to a better understanding of the characteristics of small-affinity proteins fused with a brain shuttle peptide for further research into the use of protein molecules as PET tracers for imaging neuropathology.
Collapse
Affiliation(s)
- Takahiro Morito
- Division of Cyclotron Nuclear Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Ren Iwata
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi, Japan
| | - Yoichi Ishikawa
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yukitsuka Kudo
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Shozo Furumoto
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuhiko Yanai
- Division of Cyclotron Nuclear Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Manabu Tashiro
- Division of Cyclotron Nuclear Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Astrocyte strategies in the energy-efficient brain. Essays Biochem 2023; 67:3-16. [PMID: 36350053 DOI: 10.1042/ebc20220077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes generate ATP through glycolysis and mitochondrion respiration, using glucose, lactate, fatty acids, amino acids, and ketone bodies as metabolic fuels. Astrocytic mitochondria also participate in neuronal redox homeostasis and neurotransmitter recycling. In this essay, we aim to integrate the multifaceted evidence about astrocyte bioenergetics at the cellular and systems levels, with a focus on mitochondrial oxidation. At the cellular level, the use of fatty acid β-oxidation and the existence of molecular switches for the selection of metabolic mode and fuels are examined. At the systems level, we discuss energy audits of astrocytes and how astrocytic Ca2+ signaling might contribute to the higher performance and lower energy consumption of the brain as compared to engineered circuits. We finish by examining the neural-circuit dysregulation and behavior impairment associated with alterations of astrocytic mitochondria. We conclude that astrocytes may contribute to brain energy efficiency by coupling energy, redox, and computational homeostasis in neural circuits.
Collapse
|
13
|
Volchegorskii IA, Rassokhina LM, Miroshnichenko IU. [Dopaminergic potential of domestic 3-hydroxypyridine and succinic acid derivatives and prospects for their therapeutic «retargeting»]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:21-29. [PMID: 37655406 DOI: 10.17116/jnevro202312308121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The review is devoted to the assessment of the pharmacological effects of 3-hydroxypyridine and succinic acid derivatives (emoxipin, reamberin and mexidol) from the standpoint of their dopaminergic activity. A systematic analysis of the data has been performed, allowing us to consider emoxipin, reamberin and mexidol as «normalizers of dopaminergic neurotransmission», the dopaminergic action of which in its phenotype corresponds to the effects of partial dopamine receptor agonists. The position that the dopaminergic effect, antioxidant and antidepressant potential of drugs containing 2-ethyl-6-methyl-3-oxypyridine (emoxipine and mexidol) are associated with their inhibitory effect on monoamine oxidase-A (MAO-A) has been substantiated. A direct relationship between the stimulating effect of succinate-containing drugs (reamberin and mexidol) on MAO-B, their prooxidant activity, insulin-potentiating and antidepressant effects was analyzed. A hypothesis has been put forward on the general pathological significance of dopaminergic regulation disorders, the correction of which with the 3-hydroxypyridine and succinic acid derivatives can be considered as a promising strategy for improving the complex therapy of socially significant and common human diseases.
Collapse
Affiliation(s)
| | - L M Rassokhina
- South Ural State Medical University, Chelyabinsk, Russia
| | | |
Collapse
|
14
|
Chassé M, Sen R, Goeppert A, Prakash GS, Vasdev N. Polyamine based solid CO2 adsorbents for [11C]CO2 purification and radiosynthesis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Wang K, Tan F, Zhu Z, Kong L. Exploring changes in depression and radiology-related publications research focus: A bibliometrics and content analysis based on natural language processing. Front Psychiatry 2022; 13:978763. [PMID: 36532194 PMCID: PMC9748702 DOI: 10.3389/fpsyt.2022.978763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE This study aims to construct and use natural language processing and other methods to analyze major depressive disorder (MDD) and radiology studies' publications in the PubMed database to understand the historical growth, current state, and potential expansion trend. METHODS All MDD radiology studies publications from January 2002 to January 2022 were downloaded from PubMed using R, a statistical computing language. R and the interpretive general-purpose programming language Python were used to extract publication dates, geographic information, and abstracts from each publication's metadata for bibliometric analysis. The generative statistical algorithm "Latent Dirichlet allocation" (LDA) was applied to identify specific research focus and trends. The unsupervised Leuven algorithm was used to build a network to identify relationships between research focus. RESULTS A total of 5,566 publications on MDD and radiology research were identified, and there is a rapid upward trend. The top-cited publications were 11,042, and the highly-cited publications focused on improving diagnostic performance and establishing imaging standards. Publications came from 76 countries, with the most from research institutions in the United States and China. Hospitals and radiology departments take the lead in research and have an advantage. The extensive field of study contains 12,058 Medical Subject Heading (MeSH) terms. Based on the LDA algorithm, three areas were identified that have become the focus of research in recent years, "Symptoms and treatment," "Brain structure and imaging," and "Comorbidities research." CONCLUSION Latent Dirichlet allocation analysis methods can be well used to analyze many texts and discover recent research trends and focus. In the past 20 years, the research on MDD and radiology has focused on exploring MDD mechanisms, establishing standards, and constructing imaging methods. Recent research focuses are "Symptoms and sleep," "Brain structure study," and "functional connectivity." New progress may be made in studies on MDD complications and the combination of brain structure and metabolism.
Collapse
Affiliation(s)
- Kangtao Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiming Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|