1
|
Swiercz AP, Tsuda MC, Cameron HA. The curious interpretation of novel object recognition tests. Trends Neurosci 2025; 48:250-256. [PMID: 40087109 DOI: 10.1016/j.tins.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/21/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Novel object recognition tasks are commonly used to assess memory in rodents. These tests rely on an innate preference for exploring objects that are new or have been moved or changed. However, this preference, while normally seen in control conditions, is not immutable. Stressful experiences as well as lesions and genetic mutations can lead mice and rats to show clear preferences for exploring familiar objects and familiar locations. This opinion article discusses the evidence for changes in novelty preference, implications of this lability for assessing memory, and the significance of shifts in novelty preference as a readout of changes in curiosity with implications in approach-avoidance behavior and explore-exploit decision-making. Finally, we provide some recommendations for reporting and interpreting novelty preference task findings moving forward.
Collapse
Affiliation(s)
- Adam P Swiercz
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mumeko C Tsuda
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Memudu AE, Olukade BA, Nwanama KE, Alex GS. Models developed to explain the effects of stress on brain and behavior. PROGRESS IN BRAIN RESEARCH 2025; 291:339-361. [PMID: 40222786 DOI: 10.1016/bs.pbr.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
There is an integral relationship between stress, brain function and behavior. Over the year's extensive research has led to the development of various models to explain the intricate intersection between brain and stress. This chapter delves into some of the theoretical frameworks that explains the neurobiological and behavioral responses to stress using key models of stress such as the allostatic load model, which is the most common model that describes how chronic stress affect brain structure and function resulting in long-term changes in regions such as the hippocampus, amygdala, and prefrontal cortex which phenotypically express as cognitive impairments, emotional dysfunction seen in various forms of neurological disorder. The neuro-endocrine model, follows the glucocorticoid cascade hypothesis, that associates prolonged stress exposure to hippocampal damage and cognitive decline via alteration in the hypothalamic-pituitary-adrenal (HPA) axis and the overproduction of stress hormones like cortisol which can induce hippocampal atrophy, impair learning and memory, and promote depressive-like behaviors. The neurobiological stress model addresses the role of the hypothalamic-pituitary-adrenal (HPA) axis and stress-related neurotransmitters in shaping behavioral responses, emphasizing alterations in neuroplasticity and synaptic function. These models demonstrate how chronic stress can alter neural plasticity, neurotransmitter systems, and synaptic connectivity, affecting behavior and cognitive function. Hence by integrating molecular, neurobiological, and behavioral perspectives, these models offer a comprehensive understanding of how stress alters brain activity and behavior. The chapter further showcase how these models direct the development of medical interventions, shedding light on potential therapies that target the underlying molecular mechanisms of stress-induced brain changes.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Iyamho-Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Gideon S Alex
- University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
3
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kapri D, Pradhan A, Vuruputuri RM, Vaidya VA. Sex differences in the influence of adult-onset hypothyroidism on hippocampal progenitor survival and neuronal differentiation in mice. J Neuroendocrinol 2024; 36:e13453. [PMID: 39360641 DOI: 10.1111/jne.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
The ongoing production of newborn neurons in the adult hippocampus is reported to be sensitive to perturbations of thyroid hormone signaling, in male rats and mice. Here, we examined whether the neurogenic changes evoked by adult-onset hypothyroidism exhibit sex differences, using male and female C57BL/6N mice. We assessed the impact of goitrogen-induced, adult-onset hypothyroidism on the postmitotic survival and differentiation of hippocampal progenitors in male and female mice. Adult-onset hypothyroidism evoked a significant decline in the postmitotic survival and neuronal differentiation of adult-born progenitors within the dentate gyrus hippocampal subfield of male, but not female, mice. We observed a significant decrease in the number of immature neurons within the hippocampi of adult-onset hypothyroid male mice, whereas adult-onset hypothyroidism evoked by goitrogens using the same treatment paradigms did not evoke any change in immature neuron number in female mice. Gene expression analysis within the hippocampi of euthyroid male and female mice revealed sex-dependent, differential expression of thyroid hormone receptor genes, as well as genes linked to thyroid hormone metabolism and transport. Collectively, our findings highlight sex differences in the influence of goitrogen-induced, adult-onset hypothyroidism on hippocampal neurogenesis, with male, but not female, mice exhibiting a decline in postmitotic hippocampal progenitor survival and neuronal differentiation. These findings underscore the importance of sex as a vital variable when considering the impact of thyroid hormone signaling on the adult hippocampal neurogenic niche.
Collapse
Affiliation(s)
- Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amartya Pradhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Ratna Mahathi Vuruputuri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
6
|
Zhong Z, Liu J, Luo Y, Wu M, Qiu F, Zhao H, Liu Y, Wang Y, Long H, Zhao L, Wang Y, Han Y, Meng P. Jujuboside A Regulates Calcium Homeostasis and Structural Plasticity to Alleviate Depression-Like Behavior via Shh Signaling in Immature Neurons. Drug Des Devel Ther 2024; 18:4565-4584. [PMID: 39416424 PMCID: PMC11482263 DOI: 10.2147/dddt.s479055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Depression, a leading cause of disability worldwide, is characterized by dysfunction of immature neurons, resulting in dysregulated calcium homeostasis and impaired structural plasticity. Jujuboside A (JuA), a biologically active compound derived from Semen Ziziphi Spinosae, has demonstrated anti-anxiety and anti-insomnia properties. Recent studies suggest that JuA may be a promising antidepressant, but its underlying mechanisms remain unclear. Methods Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) to induce a depression model. JuA (12.5 mg/kg, 25 mg/kg, 50 mg/kg) was administered orally for 4 weeks. Emotional and cognitive function were assessed. Monoamine neurotransmitter levels were measured using enzyme-linked immunosorbent assay (ELISA). The number of immature neurons and calcium homeostasis were evaluated by immunofluorescence. Western blotting and immunofluorescence were employed to detect the expression of Sonic hedgehog (Shh) signaling proteins. Additionally, lentiviral vector expressing Shh shRNA (LV-Shh-RNAi) were infused intracerebrally to investigate the role of Shh in JuA's antidepressant effects. Results JuA significantly ameliorated depressive-like behavior and cognitive dysfunction in CUMS rats, increased monoamine neurotransmitter levels in serum and hippocampal tissue, reduced the number of BrdU/DCX (bromodeoxyuridine/doublecortin)-positive immature neurons, and attenuated calcium ion (Ca2+) concentration and Ca2+/calmodulin-dependent protein kinase II (CaMKII) levels in immature neurons. JuA also markedly elevated synaptic density and prominence complexity, upregulated Shh, Gli family zinc finger 1 and 2 (Gli1/2), synaptophysin (Syn) and postsynaptic density protein-95 (PSD-95) expression in the ventral dentate gyrus (vDG). However, knockdown of Shh in the vDG counteracted JuA's therapeutic effects. Conclusion These findings collectively suggest that JuA improves depressive-like behavior in CUMS rats by modulating calcium homeostasis and synaptic structural plasticity in immature neurons through the Shh signaling pathway.
Collapse
Affiliation(s)
- Ziyan Zhong
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yan Luo
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Mei Wu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Feng Qiu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yajing Wang
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongping Long
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Lei Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Pan Meng
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
7
|
Pakaprot N, Khamphaya T, Kwankaew P, Ninsuwan S, Laisunthad S, Thonoi K, Kuraeiad S. Neuroprotective effects of Paederia foetida Linn. on scopolamine-induced cognitive impairment in rats. Vet World 2024; 17:1972-1982. [PMID: 39507784 PMCID: PMC11536741 DOI: 10.14202/vetworld.2024.1972-1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Alzheimer's disease (AD) poses a significant health-care challenge, often linked to cognitive decline caused by oxidative stress. This study investigated the potential neuroprotective effects of the Paederia foetida leaf extract (PFE) in rats that exhibited scopolamine-induced dementia mimicking AD. Materials and Methods Forty-two male rats were treated with either donepezil (0.5 mg/kg) or PFE at doses of 250, 500, and 1000 mg/kg for 14 days before and 14 days after the beginning of Alzheimer's-like symptoms after 14 consecutive days of scopolamine administration. Behavioral tests, including the open-field test for locomotor activity and the Morris water maze task for learning and memory assessment, were conducted. Neuronal cell counts and biochemical assays were performed to further analyze outcomes. Results All groups exhibited normal locomotor activity. The scopolamine group displayed longer escape latency times, reduced time in the target quadrant, decreased number of surviving neurons, and increased malondialdehyde and decreased glutathione levels compared with the control group. However, pre-treatment with 1000 mg/kg PFE notably mitigated the neurotoxic effects of scopolamine. Conclusion The neuroprotective properties of PFE are highlighted, suggesting its potential as a promising treatment strategy for AD.
Collapse
Affiliation(s)
- Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Srisavarindhira Bldg., 13 Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Tanaporn Khamphaya
- Department of Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sarawut Ninsuwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sutida Laisunthad
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kotchaporn Thonoi
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Saruda Kuraeiad
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
8
|
Wan YC, Yang Y, Pang S, Kong ZL. A novel derivative of evodiamine improves cognitive impairment and synaptic integrity in AD mice. Biomed Pharmacother 2024; 177:117103. [PMID: 39018870 DOI: 10.1016/j.biopha.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, is a multifactoral progressive neurodegenerative disorder that currently affects over 43 million people worldwide. The interaction betweengenetic and environmental factors decides pathogenesis and pathological development. The chemical drugs designed for clinical applications on AD have not reached the expected preventive effect so far.Here, we obtained a new evodiamine (Evo) derivative, LE-42, which exhibited lower cytotoxicity in SH-SY5Y cells and HepaG2 cells than that of Evo. The LD50 of LE-42 in SH-SY5Y cells and HepaG2 cells was increased by 9 folds and 14 folds than Evo, respectively. The LE-42 also exhibited much more potent effects on anti-oxidation and anti-cytotoxicity of AβOs than Evo. The LE-42 significantly improved the working memory, spatial learning, and memory of the 3×Tg AD mice, and the pharmacodynamic dose of LE-42 on AD mice was increased by 500 folds than that of Evo. LE-42 significantly improved the Tau hyperphosphorylation, a typical pathological feature in 3×Tg AD mice. The LE-42 restored the JAK2/STAT3 pathway's dysfunction and upregulated the expression of GluN1, GluA2, SYN, and PSD95, subsequentially improving the synaptic integrity in 3×Tg mice. The activation of the JAK2/STAT3 axis by LE-42 was a possible mechanism for a therapeutic effect on the AD mice.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences,Beijing, China.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
9
|
Gómez-Pascual A, Glikman DM, Ng HX, Tomkins JE, Lu L, Xu Y, Ashbrook DG, Kaczorowski C, Kempermann G, Killmar J, Mozhui K, Ohlenschläger O, Aebersold R, Ingram DK, Williams EG, Williams RW, Overall RW, Jucker M, de Bakker DEM. The Pgb1 locus controls glycogen aggregation in astrocytes of the aged hippocampus without impacting cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.567373. [PMID: 38045339 PMCID: PMC10690248 DOI: 10.1101/2023.11.22.567373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In aged humans and mice, aggregates of hypobranched glycogen molecules called polyglucosan bodies (PGBs) accumulate in hippocampal astrocytes. PGBs are known to drive cognitive decline in neurological diseases but remain largely unstudied in the context of typical brain aging. Here, we show that PGBs arise in autophagy-dysregulated astrocytes of the aged C57BL/6J mouse hippocampus. To map the genetic cause of age-related PGB accumulation, we quantified PGB burden in 32 fully sequenced BXD-recombinant inbred mouse strains, which display a 400-fold variation in hippocampal PGB burden at 16-18 months of age. A major modifier locus was mapped to chromosome 1 at 72-75 Mb, which we defined as the Pgb1 locus. To evaluate candidate genes and downstream mechanisms by which Pgb1 controls the aggregation of glycogen, extensive hippocampal transcriptomic and proteomic datasets were produced for aged mice of the BXD family. We utilized these datasets to identify Smarcal1 and Usp37 as potential regulators of PGB accumulation. To assess the effect of PGB burden on age-related cognitive decline, we performed phenome-wide association scans, transcriptomic analyses as well as conditioned fear memory and Y-maze testing. Importantly, we did not find any evidence suggesting a negative impact of PGBs on cognition. Taken together, our study demonstrates that the Pgb1 locus controls glycogen aggregation in astrocytes of the aged hippocampus without affecting age-related cognitive decline.
Collapse
Affiliation(s)
- A Gómez-Pascual
- Department of Information and Communications Engineering, University of Murcia, Murcia, Spain
| | | | - H X Ng
- Department of Cognitive Science University of California, San Diego, USA
| | - J E Tomkins
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - L Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Center, Memphis, TN, USA
| | - Y Xu
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - D G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Center, Memphis, TN, USA
| | | | - G Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - J Killmar
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Center, Memphis, TN, USA
| | - K Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Center, Memphis, TN, USA
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Center, Memphis, TN, USA
| | - O Ohlenschläger
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - R Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich. Zurich, Switzerland
| | - D K Ingram
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - E G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Center, Memphis, TN, USA
| | - R W Overall
- Humboldt University of Berlin, Berlin, Germany
| | - M Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - D E M de Bakker
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
10
|
Chiani F, Mastrorilli V, Marchetti N, Macioce A, Nappi C, Strimpakos G, Pasquini M, Gambadoro A, Battistini JI, Cutuli D, Petrosini L, Marinelli S, Scardigli R, Farioli Vecchioli S. Essential role of p21 Waf1/Cip1 in the modulation of post-traumatic hippocampal Neural Stem Cells response. Stem Cell Res Ther 2024; 15:197. [PMID: 38971774 PMCID: PMC11227726 DOI: 10.1186/s13287-024-03787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage. The cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays a pivotal role in modulating the quiescence/activation balance of adult Neural Stem Cells (aNSCs) and in restraining the proliferation progression of progenitor cells. Based on these considerations, the aim of this work is to evaluate how the conditional ablation of p21Waf1/Cip1 in the aNSCS can alter the adult hippocampal neurogenesis in physiological and post-traumatic conditions. METHODS We designed a novel conditional p21Waf1/Cip1 knock-out mouse model, in which the deletion of p21Waf1/Cip1 (referred as p21) is temporally controlled and occurs in Nestin-positive aNSCs, following administration of Tamoxifen. This mouse model (referred as p21 cKO mice) was subjected to Controlled Cortical Impact to analyze how the deletion of p21 could influence the post-traumatic neurogenic response within the hippocampal niche. RESULTS The data demonstrates that the conditional deletion of p21 in the aNSCs induces a strong increase in activation of aNSCs as well as proliferation and differentiation of neural progenitors in the adult dentate gyrus of the hippocampus, resulting in an enhancement of neurogenesis and the hippocampal-dependent working memory. However, following traumatic brain injury, the increased neurogenic response of aNSCs in p21 cKO mice leads to a fast depletion of the aNSCs pool, followed by declined neurogenesis and impaired hippocampal functionality. CONCLUSIONS These data demonstrate for the first time a fundamental role of p21 in modulating the post-traumatic hippocampal neurogenic response, by the regulation of the proliferative and differentiative steps of aNSCs/progenitor populations after brain damage.
Collapse
Affiliation(s)
- Francesco Chiani
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
- PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Roma, 00100, Rome, Italy
| | - Andrea Macioce
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Chiara Nappi
- Instituto de Neurosciencias, Universidad Miguel-Hernandez, Alicante, Spain
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Debora Cutuli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Raffaella Scardigli
- European Brain Research Institute (EBRI), Viale Regine Elena, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | |
Collapse
|
11
|
Vafaeva O, Namchaiw P, Murray K, Diaz E, Cheng HJ. Neurosphere culture derived from aged hippocampal dentate gyrus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585365. [PMID: 38559117 PMCID: PMC10980067 DOI: 10.1101/2024.03.16.585365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The neurosphere assay is the gold standard for determining proliferative and differentiation potential of neural progenitor cells (NPCs) in neurogenesis studies 1-3 . While several in vitro assays have been developed to model the process of neurogenesis, they have predominantly used embryonic and early postnatal NPCs derived from the dentate gyrus (DG). A limitation of these approaches is that they do not provide insight into adult-born NPCs, which are modeled to affect hippocampal function and diseases later in life. Here, we show a novel free-floating neurosphere culture system using NPCs isolated from the DG of mature adult and aged mice. The protocol outlines detailed steps on the isolation, propagation, and maintenance of neurospheres from adult and aged (>12 months old) mouse brain and how to differentiate cultured neurospheres into neurons and astrocytes. Culturing adult and aged NPCs provides an important in vitro model to (1) investigate cellular and molecular properties of this unique cell population and (2) expand the understanding of plasticity in the adult and aging brain. This protocol requires ∼2 hours to complete dissection, dissociation and culture plating, while differentiation to neuronal and astrocytic lineages takes 9 days. By focusing on neurospheres obtained from animals at later ages this model facilitates investigation of important biological questions related to development and differentiation of hippocampal neurons generated throughout adult life.
Collapse
|
12
|
Dan L, Hao Y, Li J, Wang T, Zhao W, Wang H, Qiao L, Xie P. Neuroprotective effects and possible mechanisms of berberine in animal models of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1287750. [PMID: 38259291 PMCID: PMC10800531 DOI: 10.3389/fphar.2023.1287750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Recently, multiple preclinical studies have reported the beneficial effect of berberine in the treatment of Alzheimer's disease (AD). Nevertheless, the neuroprotective effects and possible mechanisms of berberine against AD are not universally recognized. This study aimed to conduct a systematic review and meta-analysis by integrating relevant animal studies to assess the neuroprotective effects and potential mechanisms of berberine on AD. Methods: We systematically searched PubMed, Embase, Scopus and Web of Science databases that reported the effects of berberine on AD models up to 1 February 2023. The escape latency, times of crossing platform, time spent in the target quadrant and pro-oligomerized amyloid beta 42 (Aβ1-42) were included as primary outcomes. The secondary outcomes were the Tau-ps 204, Tau-ps 404, β-site of APP cleaving enzyme (BACE1), amyloid precursor protein (APP), acetylcholine esterase (AChE), tumor necrosis factor ⍺ (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO), glial fibrillary acidic protein (GFAP), malonaldehyde (MDA), glutathione S-transferase (GST), glutathione (GSH), glutathione peroxidase (GPx), Beclin-1 and neuronal apoptosis cells. This meta-analysis was conducted using RevMan 5.4 and STATA 15.1. The SYRCLE's risk of bias tool was used to assess the methodological quality. Results: Twenty-two studies and 453 animals were included in the analysis. The overall results showed that berberine significantly shortened the escape latency (p < 0.00001), increased times of crossing platform (p < 0.00001) and time spent in the target quadrant (p < 0.00001), decreased Aβ1-42 deposition (p < 0.00001), Tau-ps 202 (p < 0.00001) and Tau-ps 404 (p = 0.002), and improved BACE1, APP, AChE, Beclin-1, neuronal apoptosis cells, oxidative stress and inflammation levels. Conclusion: Berberine may be a promising drug for the treatment of AD based on preclinical evidence (especially when the dose was 5-260 mg/kg). The potential mechanisms for these protective effects may be closely related to anti-neuroinflammation, anti-oxidative stress, modulation of autophagy, inhibition of neuronal apoptosis and protection of cholinergic system. However, these results may be limited by the quality of existing research. Larger and methodologically more rigorous preclinical research are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese medicine department, 363 Hospital of Chengdu, Chengdu, China
| | - Weiwei Zhao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hui Wang
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Liyan Qiao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Peijun Xie
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
13
|
Zhang W, Yin J, Gao BY, Lu X, Duan YJ, Liu XY, Li MZ, Jiang S. Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:23. [PMID: 38110991 PMCID: PMC10726613 DOI: 10.1186/s12993-023-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.
Collapse
Affiliation(s)
- Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University, Xi'an, 710032, China
| | - Jue Yin
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ya-Jing Duan
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xu-Yan Liu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ming-Zhen Li
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Shan Jiang
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China.
| |
Collapse
|
14
|
Huang H, Li Y, Wang X, Zhang Q, Zhao J, Wang Q. Electroacupuncture pretreatment protects against anesthesia/surgery-induced cognitive decline by activating CREB via the ERK/MAPK pathway in the hippocampal CA1 region in aged rats. Aging (Albany NY) 2023; 15:11227-11243. [PMID: 37857016 PMCID: PMC10637818 DOI: 10.18632/aging.205124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Hongjie Huang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Hebei 050031, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050011, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| |
Collapse
|
15
|
Amelchenko EM, Bezriadnov DV, Chekhov OA, Anokhin KV, Lazutkin AA, Enikolopov G. Age-related decline in cognitive flexibility is associated with the levels of hippocampal neurogenesis. Front Neurosci 2023; 17:1232670. [PMID: 37645372 PMCID: PMC10461065 DOI: 10.3389/fnins.2023.1232670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Aging is associated with impairments in learning, memory, and cognitive flexibility, as well as a gradual decline in hippocampal neurogenesis. We investigated the performance of 6-and 14-month-old mice (considered mature adult and late middle age, respectively) in learning and memory tasks based on the Morris water maze (MWM) and determined their levels of preceding and current neurogenesis. While both age groups successfully performed in the spatial version of MWM (sMWM), the older mice were less efficient compared to the younger mice when presented with modified versions of the MWM that required a reassessment of the previously acquired experience. This was detected in the reversal version of MWM (rMWM) and was particularly evident in the context discrimination MWM (cdMWM), a novel task that required integrating various distal cues, local cues, and altered contexts and adjusting previously used search strategies. Older mice were impaired in several metrics that characterize rMWM and cdMWM, however, they showed improvement and narrowed the performance gap with the younger mice after additional training. Furthermore, we analyzed the adult-born mature and immature neurons in the hippocampal dentate gyrus and found a significant correlation between neurogenesis levels in individual mice and their performance in the tasks demanding cognitive flexibility. These results provide a detailed description of the age-related changes in learning and memory and underscore the importance of hippocampal neurogenesis in supporting cognitive flexibility.
Collapse
Affiliation(s)
- Evgeny M. Amelchenko
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | | | - Olga A. Chekhov
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Konstantin V. Anokhin
- P.K. Anokhin Research Institute of Normal Physiology RAS, Moscow, Russia
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A. Lazutkin
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook, NY, United States
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
16
|
Behavioral flexibility impacts on coping and emotional responses in male mice submitted to social defeat stress. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110696. [PMID: 36521585 DOI: 10.1016/j.pnpbp.2022.110696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Behavioral flexibility permits the appropriate behavioral adjustments in response to changing environmental demands. The present study aimed to evaluate if variability in baseline flexibility can enable differences in coping strategies, changes in neuroplasticity, and behavioral outcomes in responses to chronic social defeat stress (CSDS). Male C57BL6 mice were submitted to the Morris Water Maze (MWM) using an extended protocol for reversal learning to assess. The animals were divided into low and high behavioral flexibility groups based on their performance on the last day of acquisition versus the four days of reversal learning. The CSDS was applied for ten consecutive days, and coping strategies were evaluated during the physical interaction on the first and last day of stress. A battery of behavioral tests to assess social and emotional behavior was conducted 24 h after the CSDS protocol. The complexity of prefrontal cortex (PFC) neuronal morphology was evaluated by the Golgi-Cox method. Animals with High Flexibility exhibited changes in their CSDS coping strategies, from active to passive coping, during the CSDS protocol. Low Flexibility mice had no alterations in the coping strategies during CSDS. After social stress, High Flexibility was associated with reduced social interaction with an aggressive Swiss mouse, higher latency to immobility in the tail suspension test, and reduced latency to self-care in the sucrose splash test. High Flexibility mice also displayed higher dendritic complexity on pyramidal neurons from the prelimbic and infralimbic prefrontal cortex compared to Low Flexibility mice. These results suggest That High Flexibility is associated with increased neuroplasticity in cortical areas and better emotional responses related to behavioral despair and motivation. However, exposure to CSDS reversed the beneficial effects of High Flexibility in male mice. Thus, this study suggests that baseline variability in behavioral flexibility, even in inbred strains, might be associated with differences in coping strategies, PFC morphology, and behavioral responses to social stress.
Collapse
|
17
|
Timalsina B, Haque MN, Choi HJ, Dash R, Moon IS. Thymol in Trachyspermum ammi seed extract exhibits neuroprotection, learning, and memory enhancement in scopolamine-induced Alzheimer's disease mouse model. Phytother Res 2023. [PMID: 36808768 DOI: 10.1002/ptr.7777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 01/29/2023] [Indexed: 02/22/2023]
Abstract
Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aβ 1-42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could potentially act as natural therapeutic agents for the treatment of neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea.,Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Korea
| |
Collapse
|
18
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
19
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Pre-Exposure to Environmental Enrichment Protects against Learning and Memory Deficits Caused by Infrasound Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6208872. [PMID: 35620581 PMCID: PMC9129996 DOI: 10.1155/2022/6208872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
With the development of industrialization in recent years, infrasound has become an important component of public noise. To date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16 Hz, 130 dB infrasound for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53 level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-inflammatory, and antiapoptosis capacities.
Collapse
|