1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Kou W, Li S, Yan R, Zhang J, Wan Z, Feng T. Cerebrospinal fluid and blood neurofilament light chain in Parkinson's disease and atypical parkinsonian syndromes: a systematic review and Bayesian network meta-analysis. J Neurol 2025; 272:311. [PMID: 40180649 DOI: 10.1007/s00415-025-13051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND OBJECTIVE The value of neurofilament light chain (NfL) levels as a biomarker for the diagnosis and differential diagnosis in patients with Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) remains controversial. Furthermore, few studies have directly compared NfL levels among specific APS categories. This study aimed to compare cerebrospinal fluid (CSF) and blood NfL levels among PD, APS, other PD-related disorders, and controls, as well as rank NfL levels across these groups. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were searched from the inception up to November 1st, 2024, to identify eligible studies reporting CSF or blood NfL concentrations in PD, PD dementia (PDD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), corticobasal syndrome (CBS), vascular parkinsonism (VP), essential tremor (ET), idiopathic rapid eye movement sleep behavior disorder (iRBD), and controls. The Bayesian approach was utilized to estimate the standardized mean difference (SMD) and the associated 95% credible intervals (CrIs) of NfL levels. The surface under the cumulative ranking curve (SUCRA) was employed to evaluate the ranking probabilities of NfL levels. Subgroup analysis and meta-regression were conducted to explore the sources of heterogeneity. RESULTS The present network meta-analysis (NMA) included 78 studies with 13,120 participants (4050 controls, 5021 PD, 191 PDD, 1173 MSA, 887 PSP, 1254 DLB, 319 CBS, 160 ET, 65 iRBD, and 0 VP). Of these, the NMA of CSF NfL included 34 studies with 6,013 participants, while the NMA of blood NfL included 49 studies with 7,787 participants. Both CSF and blood NfL levels were significantly elevated in patients with PD and APS compared to controls. Compared to PD patients, CSF NfL levels were significantly elevated in MSA (SMD 1.85; 95% CrI 1.55-2.15), CBS (1.42; 1.08-1.75), PSP (1.35; 1.06-1.64), and DLB 0.52; 0.20-0.85) patients. Similarly, blood NfL levels were significantly higher in patients with MSA (1.36; 1.02-1.71), PDD (1.19; 0.65-1.72), PSP (1.15; 0.77-1.54), CBS (0.92; 0.11-1.72), and DLB (0.63; 0.14-1.12) compared to PD. Among APS, CSF NfL levels in MSA patients were significantly higher than those in PSP, DLB, and CBS patients, while blood NfL levels in MSA patients were significantly higher only compared to DLB. In both CSF and blood NfL, MSA patients exhibited the highest probability of ranking first for NfL level elevations (CSF: SUCRA = 0.998; blood: SUCRA = 0.925). Age significantly influenced the SMD of the comparison between MSA and PD in CSF NfL (β = -0.15; p = 0.016). CONCLUSIONS CSF and blood NfL levels in PD and APS are higher than those in controls, and all APS categories show higher levels than PD, suggesting that NfL levels may serve as a potential biomarker for the differential diagnosis between PD and APS. However, caution is warranted when using NfL as a diagnostic biomarker for PD. Significant differences in NfL levels are also observed between certain APS categories. Patients with MSA exhibit the highest NfL levels among PD and related disorders.
Collapse
Affiliation(s)
- Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Yan
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, 100049, People's Republic of China.
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
3
|
Demiri S, Veltsista D, Siokas V, Spiliopoulos KC, Tsika A, Stamati P, Chroni E, Dardiotis E, Liampas I. Neurofilament Light Chain in Cerebrospinal Fluid and Blood in Multiple System Atrophy: A Systematic Review and Meta-Analysis. Brain Sci 2025; 15:241. [PMID: 40149766 PMCID: PMC11940017 DOI: 10.3390/brainsci15030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Multiple system atrophy (MSA) presents a challenging diagnosis due to its clinical overlap with other neurodegenerative disorders, especially other α-synucleinopathies. The main purpose of this systematic review and meta-analysis was to assess neurofilament light chain (NfL) differences in the CSF and blood of patients with MSA versus the healthy control group (HC), patients with Parkinson's disease (PD) and patients with Lewy body dementia (LBD). Secondarily, the diagnostic metrics of CSF and circulating NfL in MSA versus HC, PD, LBD, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) were discussed. Methods: MEDLINE and EMBASE were thoroughly searched for relevant case-control studies. Standardized mean differences (SMDs) were calculated separately for CSF and blood NfL per comparison. Statistical heterogeneity was assessed based on the Q and I^2 statistics. Results: Twenty-five relevant studies were retrieved. Quantitative syntheses revealed elevated CSF and circulating NfL levels in individuals with MSA versus HC [SMD = 1.80 (95%CI = 1.66, 1.94) and SMD = 2.00 (95%CI = 1.36, 2.63), respectively] versus PD [SMD = 1.65 (95%CI = 1.26, 2.03) and SMD = 1.63 (95%CI = 0.84, 2.43), respectively] as well as versus LBD [SMD = 1.17, (95%CI = 0.71, 1.63) and SMD = 0.65 (95%CI = 0.30, 1.00), respectively]. Diagnostic accuracy was outstanding for CSF and blood NfL in MSA versus HC and PD, and it was moderate in MSA versus LBD. On the other hand, it was suboptimal in MSA vs. PSP and CBD. Conclusions: Both CSF and circulating NfL levels are elevated in MSA compared to HC, PD and LBD. To achieve optimal diagnostic properties, further work is required in the standardization of processes and the establishment of reference NfL intervals and/or thresholds.
Collapse
Affiliation(s)
- Silvia Demiri
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Dimitra Veltsista
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Kanellos C. Spiliopoulos
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Antonia Tsika
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Patras, Greece; (S.D.); (D.V.); (K.C.S.); (E.C.)
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (A.T.); (P.S.); (E.D.)
| |
Collapse
|
4
|
Jellinger KA. The Spectrum of Cognitive Impairment in Atypical Parkinsonism Syndromes: A Comprehensive Review of Current Understanding and Research. Diseases 2025; 13:39. [PMID: 39997046 PMCID: PMC11854393 DOI: 10.3390/diseases13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are the most common atypical parkinsonism (AP) syndromes. They are clinically characterized by varying combinations of levodopa-poorly responsive parkinsonism, motor, cerebellar, and other signs. They are associated with a wide spectrum of non-motor symptoms, including prominent cognitive impairment such as global cognitive deficits, memory, executive, attentional, visuospatial, language, and non-verbal reasoning dysfunctions. Within the APs, their cognitive functioning is distributed along a continuum from MSA with the least impaired cognitive profile (similar to Parkinson's disease) to PSP and CBD with the greatest decline in global cognitive and executive domains. Although their pathological hallmarks are different-MSA α-synucleinopathy, CBD, and PSP 4-repeat tauopathies-cognitive dysfunctions in APs show both overlaps and dissimilarities. They are often preceding and anticipate motor dysfunctions, finally contributing to reduced quality of life of patients and caregivers. The present paper will review the current evidence of the prevalence and type of cognitive impairment in these AP syndromes, their neuroimaging, pathogenic backgrounds, and current management options based on extensive literature research. Cognitive dysfunctions in APs are due to disruption of prefronto-subcortical and striato-thalamo-cortical circuitries and multiple essential brain networks. This supports the concept that they are brain network disorders due to complex pathogenic mechanisms related to the basic proteinopathies that are still poorly understood. Therefore, the pathophysiology and pathogenesis of cognitive impairment in APs deserve further elucidation as a basis for early diagnosis and adequate treatment of these debilitating comorbidities.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
5
|
Cristiani CM, Scaramuzzino L, Parrotta EI, Cuda G, Quattrone A, Quattrone A. Serum Tau Species in Progressive Supranuclear Palsy: A Pilot Study. Diagnostics (Basel) 2024; 14:2746. [PMID: 39682654 DOI: 10.3390/diagnostics14232746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Progressive Supranuclear Palsy (PSP) is a tauopathy showing a marked symptoms overlap with Parkinson's Disease (PD). PSP pathology suggests that tau protein might represent a valuable biomarker to distinguish between the two diseases. Here, we investigated the presence and diagnostic value of six different tau species (total tau, 4R-tau isoform, tau aggregates, p-tau202, p-tau231 and p-tau396) in serum from 13 PSP and 13 PD patients and 12 healthy controls (HCs). METHODS ELISA commercial kits were employed to assess all the tau species except for t-tau, which was assessed by a single molecule array (SIMOA)-based commercial kit. Possible correlations between tau species and biological and clinical features of our cohorts were also evaluated. RESULTS Among the six tau species tested, only p-tau396 was detectable in serum. Concentration of p-tau396 was significantly higher in both PSP and PD groups compared to HC, but PSP and PD patients showed largely overlapping values. Moreover, serum concentration of p-tau396 strongly correlated with disease severity in PSP and not in PD. CONCLUSIONS Overall, we identified serum p-tau396 as the most expressed phosphorylated tau species in serum and as a potential tool for assessing PSP clinical staging. Moreover, we demonstrated that other p-tau species may be present at too low concentrations in serum to be detected by ELISA, suggesting that future work should focus on other biological matrices.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Cristiani CM, Scaramuzzino L, Parrotta EI, Cuda G, Quattrone A, Quattrone A. Erythrocytic α-Synuclein in Parkinson's Disease and Progressive Supranuclear Palsy-A Pilot Study. Biomedicines 2024; 12:2510. [PMID: 39595076 PMCID: PMC11592387 DOI: 10.3390/biomedicines12112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The current research examines the accuracy of α-synuclein in RBCs as a diagnostic biomarker for PD and PSP, despite their distinct molecular etiologies. Methods: We used ELISA to measure total, oligomeric, and p129-α-synuclein levels in erythrocytes from 8 PSP patients, 19 PD patients, and 18 healthy controls (HCs). The classification performances of RBC α-synuclein levels were investigated by receiver operator characteristic (ROC) curve. We also evaluated a possible correlation between RBC α-synuclein level and the biological and clinical features of our cohorts. Results: RBC total α-synuclein was higher in PSP patients compared to both PD patients and HCs, achieving good classification performance (AUC: 0.853) in distinguishing PSP patients from PD patients, with a sensitivity of 100% and a specificity of 70.6%; moreover, the levels of this biomarker positively correlated with disease severity in PSP group. Regarding oligomeric α-synuclein and p129-α-synuclein, the latter was slightly increased in RBCs from PSP patients compared to HCs, but no correlations were detected. Conclusions: Although these findings need to be confirmed in larger studies, our pilot work suggests that RBC total α-synuclein may represent a potential molecular biomarker for the differential diagnosis and clinical staging of PSP.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Pedersen CC, Ushakova A, Alves G, Tysnes OB, Blennow K, Zetterberg H, Maple-Grødem J, Lange J. Serum neurofilament light at diagnosis: a prognostic indicator for accelerated disease progression in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:162. [PMID: 39164268 PMCID: PMC11336184 DOI: 10.1038/s41531-024-00768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Neurofilament light chain (NFL) is elevated in neurodegenerative diseases, including Parkinson's disease (PD). This study aimed to investigate serum NFL in newly diagnosed PD and its association with cognitive and motor decline over 10 years. Serum NFL levels were measured in PD patients and controls from the ParkWest study at diagnosis (baseline) and after 3 and 5 years. Mixed-effects regression analyzed changes in NFL and the association with annual changes in MMSE and UPDRS-III scores over 10 years. PD patients had elevated serum NFL at all visits and a faster annual increase over 5 years compared to controls (0.09 pg/mL per year; p = 0.029). Higher baseline NFL predicted faster cognitive decline β -0.77 transformed MMSE; p = 0.010), and a 40% NFL increase predicted future motor decline (β 0.28 UPDRS-III; p = 0.004). Elevated serum NFL in early PD is linked to faster cognitive and motor impairment, suggesting its prognostic value in PD biomarker panels.
Collapse
Grants
- 287842 Norges Forskningsråd (Research Council of Norway)
- 177966 Norges Forskningsråd (Research Council of Norway)
- 287842 Norges Forskningsråd (Research Council of Norway)
- 287842 Norges Forskningsråd (Research Council of Norway)
- 29604 Western Norway Regional Health Authority | Stavanger Universitetssjukehus (Stavanger University Hospital (SUS))
- 911218 Western Norway Regional Health Authority | Stavanger Universitetssjukehus (Stavanger University Hospital (SUS))
- 29604 Helse Vest (Western Norway Regional Health Authority)
- #2017-00915 Vetenskapsrådet (Swedish Research Council)
- #2022-00732 Vetenskapsrådet (Swedish Research Council)
- #2023-00356 Vetenskapsrådet (Swedish Research Council)
- #2022-01018 Vetenskapsrådet (Swedish Research Council)
- #2019-02397 Vetenskapsrådet (Swedish Research Council)
- No 860197 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- Norwegian Health Association (14846 and 16152) Rebergs legacy (no grant number)
- KB is also supported by the Swedish Alzheimer Foundation (#AF-930351, #AF-939721, #AF-968270, and #AF-994551), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 QC), La Fondation Recherche Alzheimer (FRA), Paris, France, and the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark.
- Cure Alzheimer's Fund (Alzheimer's Disease Research Foundation)
- Familjen Erling-Perssons Stiftelse (Erling-Persson Family Foundation)
- HZ is a Wallenberg Scholar and is also supported by grants from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003).
- Norwegian Health Association (16152)
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Anastasia Ushakova
- Section of Biostatistics, Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Guido Alves
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jodi Maple-Grødem
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Johannes Lange
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
8
|
Cristiani CM, Scaramuzzino L, Quattrone A, Parrotta EI, Cuda G, Quattrone A. Serum Oligomeric α-Synuclein and p-tau181 in Progressive Supranuclear Palsy and Parkinson's Disease. Int J Mol Sci 2024; 25:6882. [PMID: 38999992 PMCID: PMC11241320 DOI: 10.3390/ijms25136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and the late onset of specific atypical signs. Therefore, easily assessable diagnostic biomarkers are highly needed. Since PD is a synucleopathy while PSP is a tauopathy, here, we investigated the clinical usefulness of serum oligomeric-α-synuclein (o-α-synuclein) and 181Thr-phosphorylated tau (p-tau181), which are considered as the most important pathological protein forms in distinguishing between these two parkinsonisms. We assessed serum o-α-synuclein and p-tau181 by ELISA and SIMOA, respectively, in 27 PSP patients, 43 PD patients, and 39 healthy controls (HC). Moreover, we evaluated the correlation between serum biomarkers and biological and clinical features of these subjects. We did not find any difference in serum concentrations of p-tau181 and o-α-synuclein nor in the o-α-synuclein/p-tau181 ratio between groups. However, we observed that serum p-tau181 positively correlated with age in HC and PD, while serum o-α-synuclein correlated positively with disease severity in PD and negatively with age in PSP. Finally, the o-α-synuclein/p-tau181 ratio showed a negative correlation with age in PD.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (C.M.C.)
| |
Collapse
|
9
|
Shu H, Zhang P, Gu L. Alpha-synuclein in peripheral body fluid as a biomarker for Parkinson's disease. Acta Neurol Belg 2024; 124:831-842. [PMID: 38170418 DOI: 10.1007/s13760-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Whether alpha-synuclein in peripheral body fluids can be used for the diagnosis of Parkinson's disease (PD) remains in controversy. This study evaluates diagnostic potential of alpha-synuclein for PD in various peripheral body fluids using a meta-analysis approach. METHODS Studies published before October 2022 were searched in Web of Science and PubMed databases. The results were computed using the STATA 12.0 statistical software. RESULTS In plasma, PD patients exhibited elevated alpha-synuclein levels relative to healthy controls (HCs) [standard mean difference (SMD) = 0.78, 95% confidence interval (CI) = 0.42 to 1.15] with a sensitivity of 0.79 (95% CI: 0.64-0.89) and a specificity of 0.95 (95% CI: 0.90-0.98). Higher plasma alpha-synuclein levels were correlated with longer disease durations, higher Unified Parkinson's Disease Rating Scale motor scores, and higher Hoehn and Yahr stages in PD patients. Plasma neural-derived exosomal alpha-synuclein levels (SMD = 1.82, 95% CI = 0.30 to 3.35), ratio of plasma neural-derived exosomal alpha-synuclein to total alpha-synuclein (SMD = 1.26, 95% CI = 0.19 to 2.33), and erythrocytic alpha-synuclein levels were also increased in PD patients (SMD = 6.57, 95% CI = 3.55 to 9.58). In serum, there was no significant difference in alpha-synuclein levels between PD patients and HCs (SMD = 0.54, 95% CI = - 0.27 to 1.34). In saliva, reduced alpha-synuclein levels were observed in PD patients (SMD = - 0.85, 95% CI = - 1.67 to - 0.04). CONCLUSIONS Alpha-synuclein levels in plasma, plasma neural-derived exosome, erythrocyte, and saliva may serve as potential biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Pengcheng Zhang
- Institute of Environment and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300041, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
10
|
Sanchez E, Wilkinson T, Coughlan G, Mirza S, Baril A, Ramirez J, Binns MA, Black SE, Borrie M, Dilliott AA, Dixon RA, Dowlatshahi D, Farhan S, Finger E, Fischer CE, Frank A, Freedman M, Goncalves RA, Grimes DA, Hassan A, Hegele RA, Kumar S, Lang AE, Marras C, McLaughlin PM, Orange JB, Pasternak SH, Pollock BG, Rajji TK, Roberts AC, Robinson JF, Rogaeva E, Sahlas DJ, Saposnik G, Strong MJ, Swartz RH, Tang‐Wai DF, Tartaglia MC, Troyer AK, Kvartsberg H, Zetterberg H, Munoz DP, Masellis M. Association of plasma biomarkers with cognition, cognitive decline, and daily function across and within neurodegenerative diseases: Results from the Ontario Neurodegenerative Disease Research Initiative. Alzheimers Dement 2024; 20:1753-1770. [PMID: 38105605 PMCID: PMC10984487 DOI: 10.1002/alz.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION We investigated whether novel plasma biomarkers are associated with cognition, cognitive decline, and functional independence in activities of daily living across and within neurodegenerative diseases. METHODS Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), phosphorylated tau (p-tau)181 and amyloid beta (Aβ)42/40 were measured using ultra-sensitive Simoa immunoassays in 44 healthy controls and 480 participants diagnosed with Alzheimer's disease/mild cognitive impairment (AD/MCI), Parkinson's disease (PD), frontotemporal dementia (FTD) spectrum disorders, or cerebrovascular disease (CVD). RESULTS GFAP, NfL, and/or p-tau181 were elevated among all diseases compared to controls, and were broadly associated with worse baseline cognitive performance, greater cognitive decline, and/or lower functional independence. While GFAP, NfL, and p-tau181 were highly predictive across diseases, p-tau181 was more specific to the AD/MCI cohort. Sparse associations were found in the FTD and CVD cohorts and for Aβ42/40 . DISCUSSION GFAP, NfL, and p-tau181 are valuable predictors of cognition and function across common neurodegenerative diseases, and may be useful in specialized clinics and clinical trials.
Collapse
|
11
|
Gątarek P, Kałużna-Czaplińska J. Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson's disease. Expert Rev Proteomics 2024; 21:13-25. [PMID: 38346207 DOI: 10.1080/14789450.2024.2315193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Metabolomics and proteomics are two growing fields of science which may shed light on the molecular mechanisms that contribute to neurodegenerative diseases. Studies focusing on these aspects can reveal specific metabolites and proteins that can halt or reverse the progressive neurodegenerative process leading to dopaminergic cell death in the brain. AREAS COVERED In this article, an overview of the current status of metabolomic and proteomic profiling in the neurodegenerative disease such as Parkinson's disease (PD) is presented. We discuss the importance of state-of-the-art metabolomics and proteomics using advanced analytical methodologies and their potential for discovering new biomarkers in PD. We critically review the research to date, highlighting how metabolomics and proteomics can have an important impact on early disease diagnosis, future therapy development and the identification of new biomarkers. Finally, we will discuss interactions between lipids and α-synuclein (SNCA) and also consider the role of SNCA in lipid metabolism. EXPERT OPINION Metabolomic and proteomic studies contribute to understanding the biological basis of PD pathogenesis, identifying potential biomarkers and introducing new therapeutic strategies. The complexity and multifactorial nature of this disease requires a comprehensive approach, which can be achieved by integrating just these two omic studies.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
12
|
Wang H, Wang L, Liu Y, Men W, Hao W, Fang C, Li C, Zhang L. Plasma levels of CD36 and glutathione as biomarkers for ruptured intracranial aneurysm. Open Life Sci 2023; 18:20220757. [PMID: 38196515 PMCID: PMC10775171 DOI: 10.1515/biol-2022-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 01/11/2024] Open
Abstract
Evidence has proved that intracranial aneurysm (IA) formation and rupture might be closely related to inflammatory response and oxidative stress. Our objective was to evaluate the potential of CD36 and glutathione (GSH) as biomarkers for IA. In this study, the enzyme-linked immunosorbent assay was used to measure the plasma levels of CD36 and GSH in 30 IA patients and 30 healthy controls. Then, correlation analysis, receiver operating characteristic (ROC) curve, and logistic regression analysis were performed. The results showed that the plasma level of CD36 in IA patients was significantly higher than that in the control group (P < 0.0001), and plasma GSH was significantly lower compared with that in the control group (P < 0.0001). ROC analysis showed that CD36 and GSH had high sensitivity (90.0 and 96.6%) and specificity (96.6 and 86.6%) for IA diagnosis. The combined sensitivity and specificity achieved were 100 and 100%, respectively. The plasma levels of CD36 and GSH did not show a significant correlation with age, the Glasgow Coma Scale, Hunter-Hess score, aneurysm size, aneurysm height, aneurysm neck, and aspect ratio. The AUC of the logistic regression model based on CD36 and GSH was 0.505. Our results suggested that the combination of plasma CD36 and GSH could serve as potential biomarkers for IA rupture.
Collapse
Affiliation(s)
- Hanbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Yunmei Liu
- Department of Reproductive Medicine, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Weidong Men
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Wanjiao Hao
- Department of Reproductive Medicine, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| |
Collapse
|
13
|
Mizutani Y, Ohdake R, Tatebe H, Higashi A, Shima S, Ueda A, Ito M, Tokuda T, Watanabe H. Associations of Alzheimer's-related plasma biomarkers with cognitive decline in Parkinson's disease. J Neurol 2023; 270:5461-5474. [PMID: 37480401 PMCID: PMC10576723 DOI: 10.1007/s00415-023-11875-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with cognitive decline through multiple mechanisms, including Alzheimer's disease (AD) pathology and cortical Lewy body involvement. However, its underlying mechanisms remain unclear. Recently, AD-related plasma biomarkers have emerged as potential tools for predicting abnormal pathological protein accumulation. We aimed to investigate the association between AD-related plasma biomarkers and cognitive decline in PD patients. METHODS Plasma biomarkers were measured in 70 PD patients (49 with nondemented Parkinson's disease (PDND) and 21 with Parkinson's disease dementia (PDD)) and 38 healthy controls (HCs) using a single-molecule array. The study evaluated (1) the correlation between plasma biomarkers and clinical parameters, (2) receiver operating characteristic curves and areas under the curve to evaluate the discrimination capacity of plasma biomarkers among groups, and (3) a generalized linear model to analyze associations with Addenbrooke's Cognitive Examination-Revised and Montreal Cognitive Assessment-Japanese version scores. RESULTS Plasma glial fibrillary acidic protein significantly correlated with cognitive function tests, including all subdomains, with a notable increase in the PDD group compared with the HC and PDND groups, while plasma neurofilament light chain captured both cognitive decline and disease severity in the PDND and PDD groups. Plasma beta-amyloid 42/40 and pholphorylated-tau181 indicated AD pathology in the PDD group, but plasma beta-amyloid 42/40 was increased in the PDND group compared with HCs and decreased in the PDD group compared with the PDND group. CONCLUSIONS AD-related plasma biomarkers may predict cognitive decline in PD and uncover underlying mechanisms suggesting astrocytic pathologies related to cognitive decline in PD.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
14
|
Koníčková D, Menšíková K, Klíčová K, Chudáčková M, Kaiserová M, Přikrylová H, Otruba P, Nevrlý M, Hluštík P, Hényková E, Kaleta M, Friedecký D, Matěj R, Strnad M, Novák O, Plíhalová L, Rosales R, Colosimo C, Kaňovský P. Cerebrospinal fluid and blood serum biomarkers in neurodegenerative proteinopathies: A prospective, open, cross-correlation study. J Neurochem 2023; 167:168-182. [PMID: 37680022 DOI: 10.1111/jnc.15944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], β-amyloid [Aβ], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aβ]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.
Collapse
Affiliation(s)
- Dorota Koníčková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Chudáčková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Přikrylová
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Neurology Outpatient Clinic "St. Moritz", Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Hényková
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Michal Kaleta
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University, University Hospital Olomouc, Olomouc, Czech Republic
| | - Radoslav Matěj
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Miroslav Strnad
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Raymond Rosales
- Department of Neurology and Psychiatry, Neuroscience Institute, University of Santo Tomas Hospital, Manila, Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
15
|
Mizutani Y, Nawashiro K, Ohdake R, Tatebe H, Shima S, Ueda A, Yoshimoto J, Ito M, Tokuda T, Mutoh T, Watanabe H. Enzymatic properties and clinical associations of serum alpha-galactosidase A in Parkinson's disease. Ann Clin Transl Neurol 2023; 10:1662-1672. [PMID: 37496179 PMCID: PMC10502655 DOI: 10.1002/acn3.51856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE Recent studies have revealed an association between Parkinson's disease (PD) and Fabry disease, a lysosomal storage disorder; however, the underlying mechanisms remain to be elucidated. This study aimed to investigate the enzymatic properties of serum alpha-galactosidase A (GLA) and compared them with the clinical parameters of PD. METHODS The study participants consisted of 66 sporadic PD patients and 52 controls. We measured serum GLA activity and calculated the apparent Michaelis constant (Km ) and maximal velocity (Vmax ) by Lineweaver-Burk plot analysis. Serum GLA protein concentration was measured by enzyme-linked immunosorbent assay. We examined the potential correlations between serum GLA activity and GLA protein concentration and clinical features and the plasma neurofilament light chain (NfL) level. RESULTS Compared to controls, PD patients showed significantly lower serum GLA activity (P < 0.0001) and apparent Vmax (P = 0.0131), but no change in the apparent Km value. Serum GLA protein concentration was lower in the PD group (P = 0.0168) and was positively associated with GLA activity. Serum GLA activity and GLA protein concentration in the PD group showed a negative correlation with age. Additionally, serum GLA activity was negatively correlated with the motor severity score and the level of plasma NfL, and was positively correlated with the score of frontal assessment battery. INTERPRETATION This study highlights that the lower serum GLA activity in PD is the result of a quantitative decrement of GLA protein in the serum and that it may serve as a biomarker of disease severity.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | | | - Reiko Ohdake
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Harutsugu Tatebe
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Sayuri Shima
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Akihiro Ueda
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Junichiro Yoshimoto
- Department of Biomedical Data ScienceFujita Health University School of MedicineToyoakeAichiJapan
| | - Mizuki Ito
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Takahiko Tokuda
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Tatsuro Mutoh
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
- Fujita Health University Central Japan International Airport ClinicTokonameAichiJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
16
|
Ubaida-Mohien C, Tanaka T, Tian Q, Moore Z, Moaddel R, Basisty N, Simonsick EM, Ferrucci L. Blood Biomarkers for Healthy Aging. Gerontology 2023; 69:1167-1174. [PMID: 37166337 PMCID: PMC11137618 DOI: 10.1159/000530795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 05/12/2023] Open
Abstract
Measuring the abundance of biological molecules and their chemical modifications in blood and tissues has been the cornerstone of research and medical diagnoses for decades. Although the number and variety of molecules that can be measured have expanded exponentially, the blood biomarkers routinely assessed in medical practice remain limited to a few dozen, which have not substantially changed over the last 30-40 years. The discovery of novel biomarkers would allow, for example, risk stratification or monitoring of disease progression or the effectiveness of treatments and interventions, improving clinical practice in myriad ways. In this review, we combine the biomarker discovery concept with geroscience. Geroscience bridges aging research and translation to clinical applications by combining the framework of medical gerontology with high-technology medical research. With the development of geroscience and the rise of blood biomarkers, there has been a paradigm shift from disease prevention and cure to promoting health and healthy aging. New -omic technologies have played a role in the development of blood biomarkers, including epigenetic, proteomic, metabolomic, and lipidomic markers, which have emerged as correlates or predictors of health status, from disease to exceptional health.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Qu Tian
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Guo Y, Shen XN, Huang SY, Chen SF, Wang HF, Zhang W, Zhang YR, Cheng W, Cui M, Dong Q, Yu JT. Head-to-head comparison of 6 plasma biomarkers in early multiple system atrophy. NPJ Parkinsons Dis 2023; 9:40. [PMID: 36922526 PMCID: PMC10017699 DOI: 10.1038/s41531-023-00481-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
There is a dire need for reliable biomarkers to solidify an early and accurate diagnosis of multiple system atrophy (MSA). We sought to compare the ability of emerging plasma markers in distinguishing MSA from its mimics and healthy controls in early disease stages, and to evaluate their performance in detecting disease severity and brain atrophy. Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), phosphorylated tau181, amyloid-β (Aβ)42, and Aβ40 were measured using ultrasensitive Simoa in early-stage patients with MSA (n = 73), spinocerebellar ataxia (SCA, n = 29), Parkinson's disease (PD, n = 28), and healthy controls (n = 100). We observed that elevated NfL outperformed other biomarkers in distinguishing MSA and its subtypes (AUC = 0.9) versus controls. Intriguingly, when separating MSA from its mimics, increased GFAP (AUC = 0.717) in MSA-C and decreased Aβ40 (AUC = 0.807) in MSA-P best discriminated from SCA and PD respectively. Plasma levels were comparable between MSA-C and MSA-P and the differentiation by plasma index alone was poor. Combining plasma markers noticeably improved the discriminatory efficacy. Of note, among MSA patients, higher GFAP and NfL were correlated with the atrophy of brain regions vulnerable to MSA (e.g., cerebellum, pons, or putamen). They could also aggravate the severity of MSA, and this association was partially mediated by cerebral volumes. In contrast, no obvious associations of phosphorylated tau and Aβ with disease severity were observed. Collectively, plasma biomarkers, especially in combination, are useful to facilitate the discriminatory work-up of MSA at early stages. Moreover, NfL and GFAP may be promising biomarkers to monitor the disease severity of MSA.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hui-Fu Wang
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Zhang
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.,The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.,Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
18
|
Huang SY, Chen SF, Cui M, Zhao M, Shen XN, Guo Y, Zhang YR, Zhang W, Wang HF, Huang YY, Cheng W, Zuo CT, Dong Q, Yu JT. Plasma Biomarkers and Positron Emission Tomography Tau Pathology in Progressive Supranuclear Palsy. Mov Disord 2023; 38:676-682. [PMID: 36781585 DOI: 10.1002/mds.29339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Development of disease-modifying therapeutic trials of progressive supranuclear palsy (PSP) urges the need for sensitive fluid biomarkers. OBJECTIVES The objectives of this study were to explore the utility of plasma biomarkers in the diagnosis, differential diagnosis, and assessment of disease severity, brain atrophy, and tau deposition in PSP. METHODS Plasma biomarkers were measured using a single-molecule array in a cohort composed of patients with PSP, Parkinson's disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P), and healthy controls (HCs). RESULTS Plasma neurofilament light chain (NfL) outperformed other plasma makers (ie, glial fibrillary acidic protein [GFAP], phosphorylated-tau 181 [p-tau181], amyloid-β 1-40, amyloid-β 1-42) in identifying PSP from HC (area under the curve [AUC] = 0.904) and from MSA-P (AUC = 0.711). Plasma GFAP aided in distinguishing PSP from HC (AUC = 0.774) and from MSA-P (AUC = 0.832). It correlated with brainstem atrophy and higher regional tau accumulation. However, plasma p-tau181 neither helped in diagnosis nor was it associated with clinical or neuroimaging measures. CONCLUSIONS Plasma NfL and GFAP showed different values in differentiating PSP from HC or controls with other forms of neurodegenerative parkinsonism and detecting disease severity, brain atrophy, or tau deposition in PSP. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Mei Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Meng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xue-Ning Shen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yu-Yuan Huang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wei Cheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|