1
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. The gut-brain-metabolic axis: exploring the role of microbiota in insulin resistance and cognitive function. Front Microbiol 2024; 15:1463958. [PMID: 39659426 PMCID: PMC11628546 DOI: 10.3389/fmicb.2024.1463958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The gut-brain-metabolic axis has emerged as a critical area of research, highlighting the intricate connections between the gut microbiome, metabolic processes, and cognitive function. This review article delves into the complex interplay between these interconnected systems, exploring their role in the development of insulin resistance and cognitive decline. The article emphasizes the pivotal influence of the gut microbiota on central nervous system (CNS) function, demonstrating how microbial colonization can program the hypothalamic-pituitary-adrenal (HPA) axis for stress response in mice. It further elucidates the mechanisms by which gut microbial carbohydrate metabolism contributes to insulin resistance, a key factor in the pathogenesis of metabolic disorders and cognitive impairment. Notably, the review highlights the therapeutic potential of targeting the gut-brain-metabolic axis through various interventions, such as dietary modifications, probiotics, prebiotics, and fecal microbiota transplantation (FMT). These approaches have shown promising results in improving insulin sensitivity and cognitive function in both animal models and human studies. The article also emphasizes the need for further research to elucidate the specific microbial species and metabolites involved in modulating the gut-brain axis, as well as the long-term effects and safety of these therapeutic interventions. Advances in metagenomics, metabolomics, and bioinformatics are expected to provide deeper insights into the complex interactions within the gut microbiota and their impact on host health. Overall, this comprehensive review underscores the significance of the gut-brain-metabolic axis in the pathogenesis and treatment of metabolic and cognitive disorders, offering a promising avenue for the development of novel therapeutic strategies targeting this intricate system.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Alireza Afshar
- Gerontology Center, Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Fund “Institute for Innovational and Profilaxy Medicine”, Astana, Kazakhstan
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
2
|
Quelch D, Lingford-Hughes A, John B, Nutt D, Bradberry S, Roderique-Davies G. Promising strategies for the prevention of alcohol-related brain damage through optimised management of acute alcohol withdrawal: A focussed literature review. J Psychopharmacol 2024:2698811241294005. [PMID: 39529219 DOI: 10.1177/02698811241294005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There is an increasing awareness of the link between chronic alcohol consumption and the development of cognitive, behavioural and functional deficits. Currently, preventative strategies are limited and require engagement in dedicated long-term rehabilitation and sobriety services, the availability of which is low. The acute alcohol withdrawal syndrome is an episode of neurochemical imbalance leading to autonomic dysregulation, increased seizure risk and cognitive disorientation. In addition to harm from symptoms of alcohol withdrawal (e.g. seizures), the underpinning neurochemical changes may also lead to cytotoxicity through various cellular mechanisms, which long-term, may translate to some of the cognitive impairments observed in Alcohol-Related Brain Damage (ARBD). Here we review some of the pharmacological and neurochemical mechanisms underpinning alcohol withdrawal. We discuss the cellular and pharmacological basis of various potential neuroprotective strategies that warrant further exploration in clinical populations with a view to preventing the development of ARBD. Such strategies, when integrated into the clinical management of acute alcohol withdrawal, may impact large populations of individuals, who currently face limited dedicated service delivery and healthcare resource.
Collapse
Affiliation(s)
- Darren Quelch
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Bev John
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - David Nutt
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Sally Bradberry
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Gareth Roderique-Davies
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
3
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
4
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. Global trends and collaborative networks in gut microbiota-insulin resistance research: a comprehensive bibliometric analysis (2000-2024). Front Med (Lausanne) 2024; 11:1452227. [PMID: 39211341 PMCID: PMC11358073 DOI: 10.3389/fmed.2024.1452227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background The human gut microbiota plays a crucial role in maintaining metabolic health, with substantial evidence linking its composition to insulin resistance. This study aims to analyze the global scholarly contributions on the relationship between intestinal microbiota and insulin resistance from 2000 to 2024. Methods A bibliometric analysis was conducted using data from Scopus and Web of Science Core Collection. The search strategy included terms related to "Gastrointestinal Microbiome" and "Insulin Resistance" in the title or abstract. Results The analysis of 1,884 relevant studies from 510 sources was conducted, revealing a mean citation of 51.36 per manuscript and a remarkable annual growth rate of 22.08%. The findings highlight the significant role of gut microbiota in insulin resistance, corroborating prior studies that emphasize its influence on metabolic disorders. The literature review of the current study showed key mechanisms include the regulation of short-chain fatty acids (SCFAs) and gut hormones, which are critical for glucose metabolism and inflammation regulation. The analysis also identifies "Food and Function" as the most productive journal and Nieuwdorp M. as a leading author, underscoring the collaborative nature of this research area. Conclusion The consistent increase in publications in the field of gut microbiota and insulin resistance indicates growing recognition of the gut microbiota's therapeutic potential in treating insulin resistance and related metabolic disorders. Future research should focus on standardizing methodologies and conducting large-scale clinical trials to fully realize these therapeutic possibilities.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Foundation, Institute of Innovative and Preventive Medicine, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- PerciaVista R&D Co., Shiraz, Iran
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
7
|
Liu J, Chen Q, Su R. Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson's disease. Medicine (Baltimore) 2024; 103:e37960. [PMID: 38669388 PMCID: PMC11049718 DOI: 10.1097/md.0000000000037960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are, the metabolic byproducts of intestinal microbiota that, are generated through anaerobic fermentation of undigested dietary fibers. SCFAs play a pivotal role in numerous physiological functions within the human body, including maintaining intestinal mucosal health, modulating immune functions, and regulating energy metabolism. In recent years, extensive research evidence has indicated that SCFAs are significantly involved in the onset and progression of Parkinson disease (PD). However, the precise mechanisms remain elusive. This review comprehensively summarizes the progress in understanding how SCFAs impact PD pathogenesis and the underlying mechanisms. Primarily, we delve into the synthesis, metabolism, and signal transduction of SCFAs within the human body. Subsequently, an analysis of SCFA levels in patients with PD is presented. Furthermore, we expound upon the mechanisms through which SCFAs induce inflammatory responses, oxidative stress, abnormal aggregation of alpha-synuclein, and the intricacies of the gut-brain axis. Finally, we provide a critical analysis and explore the potential therapeutic role of SCFAs as promising targets for treating PD.
Collapse
Affiliation(s)
- Jiaji Liu
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qi Chen
- The Third Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Ruijun Su
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Shen CL, Deshmukh H, Santos JM, Elmassry MM, Presto P, Driver Z, Bhakta V, Yakhnitsa V, Kiritoshi T, Ji G, Lovett J, Hamood A, Neugebauer V. Fecal Microbiota Transplantation Modulates Gut Microbiome Composition and Glial Signaling in Brain and Colon of Rats with Neuropathic Pain: Evidence for Microbiota-Gut-Brain Axis. J Frailty Aging 2024; 13:319-330. [PMID: 39574251 DOI: 10.14283/jfa.2024.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Despite evidence linking the gut microbiome to neuropathic pain (NP), it is not known if altering gut microbiota can alleviate NP via the microbiome-gut-brain axis. This study examined if healthy gut microbiota of sham male rats (Sham+V) and dysbiotic gut microbiota of NP rats (spinal nerve ligation: NP, SNL+V) can be disrupted and restored, respectively, via fecal microbiota transplant (FMT) from the opposite group [Sham+(SNL-FMT) and SNL+(Sham-FMT), respectively]. All groups received FMT daily for two weeks, followed by three weeks without FMT. SNL rats showed higher mechanical hypersensitivity [SNL+V vs. Sham+V] throughout the study. After two weeks, the FMT of healthy gut microbiota decreased mechanical hypersensitivity in SNL rats [SNL+(Sham-FMT) vs. SNL+V]. A temporal shift in microbiome profiles after 2-week FMT treatment was observed in Sham+(SNL-FMT) and SNL+(Sham-FMT) groups, while the microbiome profile shifted back a certain extent after FMT ceased. At the end of study, the Sham+(SNL-FMT) group acquired low abundance of UCG-001, Odoribacter, and Peptococcaceae, and high abundance of UBA1819 and Victivallis. The SNL+(Sham-FMT) group maintained high abundance of Butyricimonas and Escherichia-Shigella. The SNL+(Sham-FMT) group had altered glial and macrophage activation/inflammation markers in the brain/colon than the SNL+V group. Relative to the SNL+V group, the SNL+(Sham-FMT) group had significantly lower gene expressions of GFAP (hypothalamus), IBA-1 (colon), and NF-κB (amygdala/colon), but higher gene expressions of complex I (amygdala/hypothalamus) and claudin-3 (amygdala/hypothalamus/colon). In conclusion, FMT containing healthy microbiota given to SNL rats attenuates mechanical hypersensitivity, modulates microbiota composition, and mitigates downstream glial activation/inflammation markers in a NP model.
Collapse
Affiliation(s)
- C-L Shen
- Chwan-Li Shen, 1A096B, 3601 4th Street, Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-8115, USA. Telephone: +1 (806) 743-2815, Fax: +1 (806) 743-2117, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Enayati A, Soghi A, Butler AE, Rizzo M, Sahebkar A. The Effect of Curcumin on the Gut-Brain Axis: Therapeutic Implications. J Neurogastroenterol Motil 2023; 29:409-418. [PMID: 37814431 PMCID: PMC10577457 DOI: 10.5056/jnm23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
The gut-brain axis describes the bidirectional communication between the gut, the enteric nervous system, and the central nervous system. The gut-brain axis has attracted increasing attention owing to its regulatory effect on dysbiosis and a wide range of related diseases. Several types of nutrients, such as curcumin, have been proposed as regulators of the dysbiotic state, and preclinical experiments have suggested that curcumin is not only beneficial but also safe. This review focuses on the interplay between curcumin and the gut microbiota. Moreover, it provides a comprehensive review of the crosstalk between the gut-brain axis and disease, whilst also discussing curcumin-mediated gut-brain axis-dependent and -independent signaling about modulation of gut microbiota dysbiosis. This will help to define the utility of curcumin as a novel therapeutic agent to regulate intestinal microflora dysbiosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Aida Soghi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Babacan Yildiz G, Kayacan ZC, Karacan I, Sumbul B, Elibol B, Gelisin O, Akgul O. Altered gut microbiota in patients with idiopathic Parkinson's disease: an age-sex matched case-control study. Acta Neurol Belg 2023; 123:999-1009. [PMID: 36719617 DOI: 10.1007/s13760-023-02195-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The investigations related to how gut microbiota changes the brain-gut axis in idiopathic Parkinson's disease (PD) attract growing interest. We aimed to determine whether gut microbiota is altered in PD patients and whether non-motor symptoms of PD and disease duration had any relation with alterations of microbiota profiles among patients. METHODS Microbial taxa in stool samples obtained from 84 subjects (42-PD patients and 42-healthy spouses) were analyzed using 16S rRNA amplicon-sequencing. RESULTS We observed a significant decrease of Firmicutes and a significant increase of Verrucomicrobiota at the phylum level. At the family level, Lactobacillaceae and Akkermansiaceae were significantly increased and Coriobacteriales Incertae Sedis were significantly decreased in the PD patients compared to their healthy spouses. Genus level comparison inferred significant increase in abundance only in Lactobacillus while the abundance of Lachnospiraceae ND3007 group, Tyzzerella, Fusicatenibacter, Eubacterium hallii group and Ruminococcus gauvreauii group were all decreased. We determined that the abundance of Prevotella genus decreased, but not significantly in PD patients. In addition, we found differences in microbiota composition between patients with and without non-motor symptoms. CONCLUSION We observed differences in gut microbiota composition between PD patients and their healthy spouses. Our findings suggest that disease duration influenced microbiota composition, which in turn influenced development of non-motor symptoms in PD. This study is the first in terms of both gut microbiota research in Turkish PD patients and the probable effect of microbiota on non-motor symptoms of PD.
Collapse
Affiliation(s)
- Gulsen Babacan Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
| | - Zeynep Cigdem Kayacan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Ilker Karacan
- Science and Advanced Technologies Research Center, Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Bilge Sumbul
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Gelisin
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozer Akgul
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
11
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|