1
|
Azarfar K, Decourt B, Sanchez Camacho B, Lawrence JJ, Omondi TR, Sabbagh MN. Cholesterol-modifying strategies for Alzheimer disease: promise or fallacy? Expert Rev Neurother 2025:1-15. [PMID: 40140971 DOI: 10.1080/14737175.2025.2483928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION As the world population ages, Alzheimer disease (AD) prevalence increases. However, understanding of AD etiology continues to evolve, and the pathophysiological processes involved are only partially elucidated. One compound suspected to play a role in the development and progression of AD is cholesterol. Several lines of evidence support this connection, yet it remains unclear whether cholesterol-modifying strategies have potential applications in the clinical management of AD. AREAS COVERED A deep literature search using PubMed was performed to prepare this narrative review. The literature search, performed in early 2024, was inclusive of literature from 1990 to 2024. After providing an overview of cholesterol metabolism, this study summarizes key preclinical studies that have investigated cholesterol-modifying therapies in laboratory models of AD. It also summarizes past and current clinical trials testing specific targets modulated by anti-cholesterol therapies in AD patients. EXPERT OPINION Based on current epidemiological and mechanistic studies, cholesterol likely plays a role in AD etiology. The use of cholesterol-modifying therapies could be a promising treatment approach if administered at presymptomatic to early AD phases, but it is unlikely to be efficient in mild, moderate, and late AD stages. Several recommendations are provided for hypercholesterolemia management in AD patients.
Collapse
Affiliation(s)
- Katia Azarfar
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Boris Decourt
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brandon Sanchez Camacho
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - John Joshua Lawrence
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tania R Omondi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
2
|
Wang T, Ju M, Zhang X, Feng W, Wang L, Hao L, Yu H, Xiao R. Dietary mixed-oxysterols and 27-Hydroxycholesterol induce cognitive impairment by regulating gut microbiota and miR-144-3p in vivo. GeroScience 2025:10.1007/s11357-025-01628-3. [PMID: 40138128 DOI: 10.1007/s11357-025-01628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Gut microbiota and microRNAs (miRNAs) have been proved to be intimately involved in dementia. Our previous studies have showed that oxysterols and the subsequent neurotoxic effects contributed to the pathogenesis of cognitive decline. However, the exact mechanism linking dietary oxysterol-induced cognitive changes, gut microbiota, and miRNAs remains elusive. Here, two sets of experiments were conducted on male C57BL/6J mice treated with mixed-oxysterol diet or 27-hydroxycholesterol (27-OHC) combined with antibiotic cocktails and miRNA antagonists. Neurobehavioral tests were conducted to assess learning and memory of mice. 16S ribosomal DNA gene sequencing was performed to evaluate microbial diversity and community composition. Oxysterol levels were detected using HPLC-MS. Western blotting and RT-qPCR were used to detect the expression of the intestinal barrier-related factors. We found that a 0.05% mixed-oxysterol diet altered the gut microbiota, damaged the intestinal barrier, upregulated the expression of miR-144-3p, and resulted in learning and memory impairment, while depleting the gut microbiota with antibiotic cocktails partly alleviated these injuries. Moreover, there were enhanced Aβ deposition, as well as higher 27-OHC and its metabolite in the brain of oxysterols-treated mice, which could be reduced by sterol 27-hydroxylase inhibitor-anastrozole, indicating that 27-OHC might be the key regulator of oxysterol-induced brain pathological changes. Additionally, by antagonizing miR-144-3p, microbiota dysbiosis-related Aβ deposition, oxysterol load, and cognitive decline were significantly ameliorated. Taken together, our study demonstrates that dietary oxysterols impair cognitive function through 27-OHC causing microbiota dysbiosis and intestinal barrier dysfunction, targeting miR-144-3p might be a promising strategy against cognitive impairment.
Collapse
Affiliation(s)
- Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Wenjing Feng
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, China.
| |
Collapse
|
3
|
Huang Y, Zhai Y, Zhao D, Wu M, Shen Q, Zhao W, Wang Q, Yao L, Li W. UHPLC-Q Exactive-Orbitrap-MS and network pharmacology analyses to investigate the mechanism by which Danggui-Shaoyao-San affects 27-OHC-induced cell damage in SH-SY5Y/C6 coculture. BMC Complement Med Ther 2025; 25:75. [PMID: 39994624 PMCID: PMC11849221 DOI: 10.1186/s12906-025-04751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Danggui-Shaoyao-San (DSS) is a classic Chinese medicine formula that has been extensively studied for its efficacy in treating Alzheimer's disease (AD). However, its mechanism of action is still unclear. METHODS In this study, UHPLC-Q Exactive-Orbitrap-MS was used to analyze and identify the compounds in DSS. Network pharmacology was used to analyze the common targets of drug-containing serum chemistries and AD, as well as the AD pathways in which drug-containing serum chemistries may be involved. The 27-OHC-induced SH-SY5Y/C6 coculture cell injury model was used to explore the mechanism of action of DSS in the treatment of AD. RESULTS UHPLC-Q Exactive-Orbitrap-MS analysis identified 73 chemical constituents in DSS aqueous extract and 39 compounds in drug-containing serum. According to network pharmacology analysis, DSS and AD share 181 common targets, with interleukin-6 (IL-6) and tumor necrosis factor (TNF) being the main effective targets. Furthermore, DSS may treat AD through the modulation of lipid metabolism-related pathways and the interleukin-17 (IL-17) signaling pathway. 27-hydroxycholesterol acid (27-OHC) significantly reduced the viability of SH-SY5Y cells and C6 cells in vitro, while DSS administration upregulated the expression of cytochrome P450 46A1 (CYP46A1) and cytochrome P450 7B1 (CYP7B1) enzymes and reduced cholesterol levels in SH-SY5Y cells. Additionally, DSS decreased reactive oxygen species (ROS) levels and increased glutathione (GSH) levels in coculture systems. DSS downregulated the expression of IL-17 in 27-OHC-injured SH-SY5Y cells and downregulated the expression of TNF-α, IL-6 and transforming growth factor-β1 (TGF-β1) in 27-OHC-injured C6 cells. CONCLUSION This study revealed the effective components, targets and mechanisms of DSS in the treatment of AD, highlighting the significant potential of DSS in treating this disease.
Collapse
Affiliation(s)
- Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- School of Pharmacy, Xinyang Agriculture and Forestry University, Henan, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Limei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, Tianhe District, 321 Longdong North Road, Guangzhou, 510520, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
5
|
Sakarwal A, Sen K, Ram H, Chowdhury S, Kashyap P, Shukla SD, Panwar A. Neuroprotective Efficacy of Phytoconstituents of Methanolic Shoots Extract of Calligonum polygonoides L. in Hypercholesterolemia-associated Neurodegenerations. Endocr Metab Immune Disord Drug Targets 2025; 25:152-172. [PMID: 38571361 DOI: 10.2174/0118715303283666240319062925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Small molecule phytocompounds can potentially ameliorate degenerative changes in cerebral tissues. Thus, the current study aimed to evaluate the neuroprotective efficacy of phytocompounds of methanolic shoots extract of Calligonum polygonoides L. (MSECP) in hypercholesterolemia-associated neurodegenerations. METHODS Phytochemical screening of the extract was made by LCMS/MS and validated by a repository of the chemical library. The hypercholesterolemia was induced through the intraperitoneal administration of poloxamer-407 with a high-fat diet. The in silico assessments were accomplished by following the molecular docking, ADME and molecular dynamics. MMPBSA and PCA (Principal Component Analysis) analyzed the molecular dynamics simulations. Consequently, in-vivo studies were examined by lipid metabolism, free radical scavenging capabilities and histopathology of brain tissues (cortex and hippocampus). RESULTS 22 leading phytocompounds were exhibited in the test extract, as revealed by LCMS/ MS scrutiny. Molecular docking evaluated significant interactions of apigenin triacetate with target proteins (HMGCR (HMG-CoA reductase), (AChE-Acetylcholinesterase) and (BuChE- Butyrylcholinesterase). Molecular dynamics examined the interactions through assessments of the radius of gyration, RSMD, RSMF and SASA at 100 ns, which were further analyzed by MMPBSA (Molecular Mechanics Poisson-Boltzmann) and PCA (Principal Component Analysis). Accordingly, the treatment of test extract caused significant alterations in lipid profile, dyslipidemia indices, antioxidant levels and histopathology of brain tissues. CONCLUSION It can be concluded that apigenin triacetate is a potent phytoconstituent of MSEPC and can interact with HMGCR, AChE, and BuChE, which resulted in improved hypercholesterolemia along with neuroprotective ameliorations in the cortex and hippocampus.
Collapse
Affiliation(s)
- Anita Sakarwal
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Karishma Sen
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | | | - Anil Panwar
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
6
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
7
|
Guo Z, Yu H, Yang K, Feng W, Liu M, Wang T, Xiao R. Quantitative Determination of a Series of Oxysterols by an Optimized LC-MS/MS Analysis in Different Tissue Types. Int J Mol Sci 2024; 26:77. [PMID: 39795936 PMCID: PMC11720652 DOI: 10.3390/ijms26010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately. However, there are a lot of unsolved problems with the existing methods, such as the hindrance of applying a single method to different biological specimens or the challenge of simultaneous quantification due to differential groups on the ends of the oxysterol side chains. Herein, according to the physicochemical properties and structure of oxysterols, an optimized liquid chromatography-tandem mass spectrometry method for the quantification of oxysterols was established by optimizing the sample preparation process, chromatographic conditions, mobile phase pH, and solvent selection. Seven oxysterols were detected by this method, including 27-hydroxycholesterol, 7α-hydroxycholesterol, 7α,27-dihydroxycholesterol, 7-dehydrocholesterol, 7α-hydroxy-3-oxo-4-cholestenoic acid, 3-hydroxy-5-cholestenoic acid, and 24(S)-hydroxycholesterol. Non-derivatization extraction with methyl tert-butyl ether was used for different biospecimens, followed by simultaneous chromatographic separation of oxysterols on a phenyl hexyl column. By repeated validation, this method exhibited satisfactory linearity, precision, recovery, sensitivity, repeatability, and stability, and it was successfully applied to the detection of oxysterols in the plasma, cerebral cortex, and liver of mouse. In summary, our optimized method enables concurrent analysis and quantification of oxysterols and their metabolites in various biospecimens, presenting a broad range of applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing 100069, China; (Z.G.); (H.Y.); (K.Y.); (W.F.); (M.L.); (T.W.)
| |
Collapse
|
8
|
He K, Zhao Z, Zhang J, Li D, Wang S, Liu Q. Cholesterol Metabolism in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1051-1072. [PMID: 38842175 DOI: 10.1089/ars.2024.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms. Antioxid. Redox Signal. 41, 1051-1072.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qiang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Ou CM, Xue WW, Liu D, Ma L, Xie HT, Ning K. Stem cell therapy in Alzheimer's disease: current status and perspectives. Front Neurosci 2024; 18:1440334. [PMID: 39640295 PMCID: PMC11618239 DOI: 10.3389/fnins.2024.1440334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
An incurable neurogenerative illness, Alzheimer's disease, is the cause of most global health, medical, and social disasters. The two main symptoms are cognitive impairment and neuronal loss. Current medications that target tau protein tangles and Aβ plaques are not very effective because they only slow the symptoms of AD and do not repair damaged cells. Stem cell-based treatments, however, present an alternative strategy in the treatment of AD. They have the capacity to divide into specialized adult cells, have self-renewal abilities, and multiplication. Stem cells can now be employed as a donor source for cell therapy due to developments in stem cell technology. This review covers preclinical and clinical updates on studies based on targeting the tau protein tangles and Aβ plaque, as well as four types of stem cells employed in AD treatment. The review also outlines the two basic pathologic aspects, tau protein tangles and Aβ plaques, of AD.
Collapse
Affiliation(s)
- Chu-Min Ou
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
11
|
Ge S, Kitamura T, Zha L, Komatsu M, Komukai S, Murata F, Maeda M, Gon Y, Kimura Y, Kiyohara K, Sobue T, Fukuda H. Association of Statin Use with Dementia Risk Among Older Adults in Japan: A Nested Case-Control Study Using the LIFE Study. J Alzheimers Dis 2024; 100:987-998. [PMID: 38968046 DOI: 10.3233/jad-240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Background Previous studies have shown a possible association between statin use and a decreased risk of dementia, but the association has not been sufficiently established, especially in the super-aging society of Japan. Objective This study aimed to determine the association between statin use and the risk of dementia among Japanese participants aged> =65 years old. Methods Data from the Longevity Improvement and Fair Evidence (LIFE) Study were utilized, including medical and long-term care (LTC) claim data from 17 municipalities between April 2014 and December 2020. A nested case-control study was conducted with one case matched to five controls based on age, sex, municipality, and year of cohort entry. We used a conditional logistic regression model to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs). Results This study included 57,302 cases and 283,525 controls, with 59.7% of the participants being woman. After adjusting for potential confounders, statin use was associated with a lower risk of dementia (OR, 0.70; 95% CI: 0.68-0.73) and Alzheimer's disease (OR: 0.66; 95% CI: 0.63-0.69). Compared with non-users, the ORs of dementia were as follows: 1.42 (1.34-1.50) for 1-30 total standardized daily dose (TSDD), 0.91 (0.85-0.98) for 31-90 TSDD, 0.63 (0.58-0.69) for 91-180 TSDD, and 0.33 (0.31-0.36) for >180 TSDD in dose-analysis. Conclusions Statin use is associated with a reduced risk of dementia and Alzheimer's disease among older Japanese adults. A low cumulative statin dose is associated with an increased risk of dementia, whereas a high cumulative statin dose is a protective factor against dementia.
Collapse
Affiliation(s)
- Sanyu Ge
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuhisa Kitamura
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ling Zha
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayo Komatsu
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Komukai
- Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Fumiko Murata
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Megumi Maeda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kosuke Kiyohara
- Department of Food Science, Faculty of Home Economics, Otsuma Women's University, Tokyo, Japan
| | - Tomotaka Sobue
- Department of Social Medicine, Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhisa Fukuda
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
12
|
Tripodi D, Vitarelli F, Spiti S, Leoni V. The Diagnostic Use of the Plasma Quantification of 24S-Hydroxycholesterol and Other Oxysterols in Neurodegenerative Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:337-351. [PMID: 38036888 DOI: 10.1007/978-3-031-43883-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol regulates fluidity and structure of cellular membranes. The brain is involved in signal transduction, synaptogenesis, and membrane trafficking. An impairment of its metabolism was observed in different neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer, and Huntington diseases. Because of the blood-brain barrier, cholesterol cannot be uptaken from the circulation and all the cholesterol is locally synthetized. The excess cholesterol in neurons is converted into 24S-hydroxycholesterol (24OHC) by the cholesterol 24-hydroxylase (CYP46A1). The plasmatic concentration of 24OHC results in the balance between cerebral production and liver elimination. It is related to the number of metabolically active neurons in the brain. Several factors that affect the brain cholesterol turnover and the liver elimination of oxysterols, the genetic background, nutrition, and lifestyle habits were found to significantly affect plasma levels of 24OHC. Reduced levels of 24OHC were found related to the loss of metabolically active cells and the degree of brain atrophy. The dysfunction of the blood-brain barrier, inflammation, and increased cholesterol turnover might overlap with this progressive reduction giving temporary increased levels of 24OHC.The study of plasma 24OHC is likely to offer an insight into brain cholesterol turnover with a limited diagnostic power.
Collapse
Affiliation(s)
- Domenico Tripodi
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Federica Vitarelli
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Simona Spiti
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Valerio Leoni
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy.
| |
Collapse
|
13
|
Wen J, Hao X, Jia Y, Wang B, Pang J, Liang F. Sex Differences in the Association Between LDL/HDL with Cognitive Decline in Older Adults: National Health and Nutrition Examination Survey. J Alzheimers Dis 2024; 98:1493-1502. [PMID: 38578891 DOI: 10.3233/jad-231195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Lipids have a significant impact on the development and functioning of the nervous system, but the sex differences between the association of LDL/HDL, which reflects lipid metabolic status, and cognitive impairment remains unclear. Objective We aimed to determine if there were sex differences between the association of LDL/HDL and cognitive function in US older adults. Methods This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2012 and 2013-2014 cycles. The main outcome was poor cognitive performance defined by the Digit Symbol Substitution Test (DSST) < 34 based on published literature. Results A total of 1,225 participants were included in the study, with a cognitive impairment incidence of 25.6% (314/1,225). Multivariate regression models demonstrated a significant association between cognitive decline and each 1-unit increase in LDL/HDL, after adjusting for all covariates (adjusted odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.11-1.67). Furthermore, subgroup analysis revealed an interaction between LDL/HDL and cognitive impairment in sex subgroups. Conclusions LDL/HDL was associated with cognitive impairment in the US older adult population in adjusted models, although the significance of this association was not observed in females.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Yanhong Jia
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Furu Liang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| |
Collapse
|
14
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
15
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
16
|
Gong F, Shi Q, Mou X, Wang K, Wang Q, Wang H. Atorvastatin mitigates memory deficits and brain monocyte infiltration in chronic hypercholesterolemia. Aging (Albany NY) 2023; 15:13669-13679. [PMID: 38048213 PMCID: PMC10756112 DOI: 10.18632/aging.205217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/08/2023] [Indexed: 12/06/2023]
Abstract
Mild cognitive impairment (MCI) is a common symptom observed in people over 60 years old and is found to be aggravated by hypercholesterolemia. Severe neuroinflammation induced by BBB dysfunction and monocyte infiltration might be responsible for neuron damage and cognitive impairment. Atorvastatin is a lipid-lowering drug that is widely applied for the treatment of cardiovascular diseases. However, the potential function of Atorvastatin in hypercholesterolemia-induced MCI remains uncertain. Our research will explore the potential therapeutic function of Atorvastatin in memory deficits induced by chronic hypercholesterolemia. ApoE-/- mice were utilized to mimic the state of chronic hypercholesterolemia and were divided into four groups. Animals in the WT and ApoE-/-groups were orally administered with normal saline, while WT mice in the Atorvastatin group and ApoE-/- mice in the ApoE-/-+ Atorvastatin group were orally administered with 10 mg/kg/day Atorvastatin. Markedly increased plasma cholesterol levels reduced RI in the long-term memory test and the spatial short-term memory test, declined mobility in the open field test, and downregulated PSD-95 and BDNF were observed in ApoE-/- mice, all of which were signally reversed by Atorvastatin. Moreover, the percentages of brain Ly6Chi CD45+ cells and CD3+ CD45+ cells, as well as the blood Ly6Chi CD45+ cells, plasma IL-12/IL-23 levels and IL-17 level were found notably increased in ApoE-/- mice, all of which were largely repressed by Atorvastatin. Lastly, the increased BBB permeability, decreased ZO-1 and occludin levels, and reduced KLF2 level were markedly abolished by Atorvastatin. Collectively, Atorvastatin mitigated memory deficits and brain monocyte infiltration in ApoE-/- mice.
Collapse
Affiliation(s)
- Fengchao Gong
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qian Shi
- Department of Ultrasound, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaojie Mou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Kang Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qianqian Wang
- Department of Ultrasound, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Haitao Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| |
Collapse
|
17
|
Czuba-Pakuła E, Pelikant-Małecka I, Lietzau G, Wójcik S, Smoleński RT, Kowiański P. Accelerated Extracellular Nucleotide Metabolism in Brain Microvascular Endothelial Cells in Experimental Hypercholesterolemia. Cell Mol Neurobiol 2023; 43:4245-4259. [PMID: 37801200 PMCID: PMC10661815 DOI: 10.1007/s10571-023-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Iwona Pelikant-Małecka
- Division of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200, Słupsk, Poland.
| |
Collapse
|
18
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Wang L, Yu H, Hao L, Ju M, Feng W, Xiao R. The Interaction Effect of 27-Hydroxycholesterol Metabolism Disorder and CYP27A1 Single Nucleotide Polymorphisms in Mild Cognitive Impairment: Evidence from a Case-Control Study. Mol Nutr Food Res 2023; 67:e2200576. [PMID: 36811281 DOI: 10.1002/mnfr.202200576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Indexed: 02/24/2023]
Abstract
SCOPE The aim of the study is to investigate the relationship between 27-hydroxycholesterol (27-OHC), 27-hydroxylase (CYP27A1) polymorphisms, and Alzheimer's disease (AD). METHODS AND RESULTS A case-control study based on EMCOA study includes 220 healthy cognition and mild cognitive impairment (MCI) subjects respectively, matched by sex, age, and education. The level of 27-OHC and its related metabolites are examined by high performance liquid chromatography-mass spectrometry (HPLC-MS). The results show that 27-OHC level is positively associated with risk of MCI (p < 0.001), negatively associated with specific domain of cognitive function. Serum 27-OHC is positively associated with 7a-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) in cognitive healthy subjects, while positively associated with 3β-hydroxy-5-cholestenoic acid (27-CA) in MCI subjects (p < 0.001). CYP27A1 and Apolipoprotein E (ApoE) single nucleotide polymorphisms (SNPs) genotyping are determined. The global cognitive function is significant higher in Del-carrier of rs10713583, compared with AA genotype (p = 0.007). Stroop Color-Word Test Interference Trial (SCWT-IT) is significant higher in G-carrier genotype (p = 0.042), compared with TT genotype in rs12614206. CONCLUSIONS The results show that 27-OHC metabolic disorder is associated with MCI and multi-domain cognitive function. CYP27A1 SNPs is correlated to cognitive function, while the interaction between 27-OHC and CYP27A1 SNPs need further study.
Collapse
Affiliation(s)
- Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wenjing Feng
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
20
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
21
|
Li J, Wang S, Li J, Fang Y, Wang Y, Zhang Y. Nomogram to Predict Cognitive Impairment in Patients with Asymptomatic Middle Cerebral Artery Stenosis. Int J Gen Med 2023; 16:1333-1343. [PMID: 37089137 PMCID: PMC10115204 DOI: 10.2147/ijgm.s407728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose This study aims to investigate the characteristics and influencing factors of cognitive impairment in patients with asymptomatic middle cerebral artery stenosis (aMCAS) and to construct a nomogram to predict the risk of cognitive impairment in patients with aMCAS. Patients and Methods We collected 54 patients with aMCAS and 35 healthy controls to investigate the impaired cognitive domains and pathogenesis in patients with aMCAS. All patients underwent a cranial MRI, CT perfusion, transcranial Doppler ultrasound, blood tests, and a comprehensive neuropsychological evaluation. According to the MoCA score, patients were divided into cognitively normal and cognitively impaired groups. To construct the nomogram, we conducted univariate and multivariate logistic regression analyses to identify factors that affect cognitive function. And the performance of nomogram was evaluated by ROC curves, calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC). Results In 54 patients with aMCAS, 24 patients presented with cognitive normal, and 30 patients presented with cognitive impairment. The results of multivariate logistic regression suggested that perfusion decompensation, middle cerebral artery mean flow velocity, and LDL-cholesterol levels were independent influencing factors of cognitive impairment. In the following step, a nomogram was constructed. The AUC of the nomogram is 0.862. Calibrating curves show good agreement between nomogram predictions and actual observations, while DCA and CIC show great clinical usefulness. Conclusion Patients with aMCAS have cognitive impairment in multiple cognitive domains, and impaired executive function was observed during the perfusion compensation period. Furthermore, a nomogram was constructed and validated to predict the risk of cognitive impairment in patients with aMCAS, which can help clinicians to identify at an early stage and improve the management of patients.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shaoshuai Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jun Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yalan Fang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ying Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuanyuan Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yuanyuan Zhang, Shanxi Medical University, No. 56 South Xinjian Road, Yingze District, Taiyuan, Shanxi Province, 03000, People’s Republic of China, Tel +8619834516348, Fax +863414867027, Email
| |
Collapse
|
22
|
Gomaa AA, Farghaly HSM, Makboul RM, Hussien AM, Nicola MA. Polyphenols from Conyza dioscoridis (L.) ameliorate Alzheimer’s disease- like alterations through multi-targeting activities in two animal models. BMC Complement Med Ther 2022; 22:288. [PMID: 36348329 PMCID: PMC9644610 DOI: 10.1186/s12906-022-03765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Recent investigations suggested that anticancer agents may inhibit the progression of Alzheimer's disease (AD) pathology. Conyza dioscoridis (L.) was demonstrated to have anticancer, antioxidant, anti-inflammatory and antidiabetic effects. This study was carried out to investigate the efficacy of polyphenols from Conyza dioscoridis (L.) extract (PCDE) on AD. Methods Impacts of 3 doses of PCDE and donepezil, a reference drug, on the features of Alzheimer's disease in two animal models were investigated. Results PCDE ameliorated the memory and learning impairment shown in rats following a single dose of scopolamine (scopolamine model) or 17 weeks of high-fat/high-fructose(HF/Hfr) diet coupled with a single dose of streptozotocin, (25 mg/kg) (T2D model). They reduced significantly the high hippocampal cholinesterase activity in the two models of rats. Administration of PCDE for 8 weeks in the T2D model showed a significant reduction in hippocampal GSK-3β, caspase-3 activity and increase in the inhibited glutamate receptor expression (AMPA GluR1 subunit and NMDA receptor subunits NR1, NR2A, NR2B). A significant reduction of HOMA-insulin resistance and serum hypercholesterolemia was observed. The Tau hyperphosphorylation and Aβ 1–42 generation in the hippocampal of T2D rats were significantly decreased by PCDE. Modulation of the oxidative stress markers, (rise in GH and SOD; decrease in MDA levels) and a significant reduction of TNF-α and IL-1β in the hippocampus of T2D rats treated by PCDE extract were important findings in this study. The highest dose tested was 4% of the highest safe dose. Conclusion Our study suggests that PCDE is multi-targeting agent with multiple beneficial activities in combating features of AD. This study may provide a novel therapeutic strategy for AD treatment that warrants clinical studies.
Collapse
|
23
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|