1
|
Karnik A, Joshi A. SARM1: The Checkpoint of Axonal Degeneration in the Nervous System Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04835-3. [PMID: 40097763 DOI: 10.1007/s12035-025-04835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Axons are metabolically active neuronal segments with well-controlled axonal degeneration and regeneration. External stress or injury displaces this equilibrium toward degeneration leading to axonal dysfunction observed in the pathology of several diseases. The demand and supply matrix of energy at the synapses are maintained by the axonal transport. Nicotinamide adenine dinucleotide (NAD+) is a major energy-driving coenzyme of cells that controls mitochondrial, cytoplasmic, and other organellar energy cycles generating high amounts of adenosine triphosphate (ATP). NAD+ participates in various cellular cycles and is consumed by several enzymes. One of the key enzymes targeting NAD+ is Sterile alpha and TIR motif-containing protein 1 (SARM1) which gets activated in response to external noxious stimuli. SARM1 is an octamer consisting of multiple domains of which the TIR domain governs NAD+ hydrolysis which eventually leads to axonal deficits. Besides its localization in neurons, SARM1 is also present in astrocytes, microglia, and macrophages in which it regulates inflammatory responses associated with disease pathology. SARM1 localization in the outer mitochondrial membrane is responsible for its association with mitochondrial dynamics. SARM1-mediated mitochondrial dysfunction further drives the axonal degeneration associated with peripheral and central nervous system disorders. Several genetic and pharmacological studies highlight the role of SARM1 in axonal degeneration. SARM1 is thus becoming a popular target for preventing axonal degeneration. Several small molecules consisting of isoquinoline, isothiazole, pyridine, and tryptoline acrylamide moieties have been tested for their activity against SARM1 with a promising foundation for drug discovery in targeting SARM1. In our review, we highlight the role of SARM1 in axonal degeneration associated with several disease pathologies focusing on genetic and pharmacological evaluation.
Collapse
Affiliation(s)
- Aaditi Karnik
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani, Telangana State, Hyderabad Campus, Hyderabad City, India.
| |
Collapse
|
2
|
Gibbons L, Doyle S. A Role for SARM1 in Photoreceptor Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:183-187. [PMID: 39930193 DOI: 10.1007/978-3-031-76550-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Photoreceptor cell death is a common feature of many retinal degenerative diseases, leading to incurable vision loss. While there is evidence to support the involvement of cell death pathways such as apoptosis and necroptosis in the degeneration of photoreceptors, the inhibition of these pathways has not been sufficient to rescue photoreceptors and preserve vision in a number of models of disease. Therefore, there is a need to identify other pathways involved in photoreceptor cell death. SARM1 is a TLR adaptor protein with a novel role in the induction of axonal degeneration and neuronal cell death. Our lab and others have demonstrated a role for SARM1 in the induction of photoreceptor cell death in models of retinal degenerative disease. Here, we summarize the current knowledge on SARM1 function and its role in photoreceptor cell death.
Collapse
Affiliation(s)
- Luke Gibbons
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sarah Doyle
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
4
|
Brazill JM, Shen IR, Craft CS, Magee KL, Park JS, Lorenz M, Strickland A, Wee NK, Zhang X, Beeve AT, Meyer GA, Milbrandt J, DiAntonio A, Scheller EL. Sarm1 knockout prevents type 1 diabetic bone disease in females independent of neuropathy. JCI Insight 2024; 9:e175159. [PMID: 38175722 PMCID: PMC11143934 DOI: 10.1172/jci.insight.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.
Collapse
Affiliation(s)
| | - Ivana R. Shen
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | | | | | - Jay S. Park
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Madelyn Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Natalie K. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, and
| | - Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | - Alec T. Beeve
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, and
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Multiomic Mass Spectrometry Imaging to Advance Future Pathological Understanding of Ocular Disease. Metabolites 2022; 12:metabo12121239. [PMID: 36557277 PMCID: PMC9786289 DOI: 10.3390/metabo12121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the locations of proteins within the eye thought to be involved in ocular pathogenesis is important to determine how best to target them for therapeutic benefits. However, immunohistochemistry is limited by the availability and specificity of antibodies. Additionally, the perceived role of both essential and non-essential metals within ocular tissue has been at the forefront of age-related macular degeneration (AMD) pathology for decades, yet even key metals such as copper and zinc have yet to have their roles deconvoluted. Here, mass spectrometry imaging (MSI) is employed to identify and spatially characterize both proteomic and metallomic species within ocular tissue to advance the application of a multiomic imaging methodology for the investigation of ocular diseases.
Collapse
|