1
|
Kim HK, Chang I, Lee SH. Serum Biomarkers and Their Clinical Correlates in Traumatic Trigeminal Neuropathy: A Pilot Study. Oral Dis 2025. [PMID: 40163641 DOI: 10.1111/odi.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES This study aims to investigate the serum biomarker levels in patients with painful post-traumatic trigeminal neuropathy (PPTTN) and explore the associations between these biomarkers and the clinical and psychological characteristics of the patients. MATERIALS AND METHODS A total of 32 patients with PPTTN were included. Serum levels of various cytokines and neurotrophic factors were measured. Patients were assessed for clinical and psychological characteristics, including pain severity, pain interference, numbness severity, and symptom duration as well as psychological factors using validated questionnaires. RESULTS No significant differences in serum biomarker levels were found based on age, sex, pain severity, pain interference, or type of injured nerve after adjusting multiple comparisons. Significant differences were observed in interleukin-8 (IL-8) and brain-derived neurotrophic factor (BDNF) levels based on symptom duration, with higher levels in patients whose symptoms lasted for more than 6 months. Spearman correlation analysis revealed strong relationships between clinical and psychological variables. Pain outcomes were more strongly associated with psychological factors than with serum biomarkers. CONCLUSION IL-8 and BDNF may be biomarkers for disease progression in PPTTN based on symptom duration, with pain outcomes more related to psychological factors rather than serum biomarker levels, highlighting the need for psychological support in management.
Collapse
Affiliation(s)
- Hye-Kyoung Kim
- Department of Orofacial Pain and Oral Medicine, College of Dentistry, Dankook University, Cheonan-si, Korea
| | - Insoon Chang
- Section of Endodontics, Division of Regenerative and Reconstructive Science, UCLA School of Dentistry, California, Los Angeles, USA
| | - Sung-Hoon Lee
- Department of Oral Microbiology, College of Dentistry, Dankook University, Cheonan-si, Korea
| |
Collapse
|
2
|
Xu K, Wu K, Chen L, Zhao Y, Li H, Lin N, Ye Z, Xu J, Huang D, Huang X. Selective promotion of sensory innervation-mediated immunoregulation for tissue repair. SCIENCE ADVANCES 2025; 11:eads9581. [PMID: 40117376 PMCID: PMC11927663 DOI: 10.1126/sciadv.ads9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve-homing peptide and a β-subunit of nerve growth factor (β-NGF)-binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaile Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yubin Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Setiawan E, Ginting CN, Jonny J, Hernowo BA, Putranto TA. Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Curr Issues Mol Biol 2024; 46:14366-14380. [PMID: 39727989 DOI: 10.3390/cimb46120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global health concern, with diabetic neuropathy (DN) being a prevalent complication. Current DN treatments focus on blood glucose control and pain management, which show limited efficacy. This study explored the effects of autologous dendritic cell (DC) administration on improving DN symptoms. A quasi-experimental clinical trial was conducted on 28 DN patients at Gatot Soebroto Army Hospital. Patients received autologous DC administration, with their Toronto Clinical Neuropathy Score (TCNS), Transforming Growth Factor-β (TGF-β), and Vascular Cell Adhesion Molecule-1 (VCAM-1) levels measured before and at four weeks after treatment. The results show an average TCNS reduction from 8.93 to 7.5 (p < 0.001). TGF-β levels increased slightly from 41.16 ng/mL to 44.18 ng/mL (p > 0.05). VCAM-1 levels increased from 1389.75 ng/mL to 1403.85 ng/mL. Correlation analysis showed that TGF-β levels had a significant negative correlation with the TCNS (r = -0.353; p = 0.033) and VCAM-1 levels (r = -0.521; p = 0.002). Autologous DC administration significantly improves DN. While the changes in TGF-β and VCAM-1 levels were not statistically significant, their trends suggest that there was an anti-inflammatory effect. These findings highlight the potential of autologous DC therapy as a complementary approach to manage DN through inflammation reduction and nerve repair.
Collapse
Affiliation(s)
- Erwin Setiawan
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Department of Neurology, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | | | - Jonny Jonny
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defence University, Bogor 16810, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Bhimo Aji Hernowo
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Terawan Agus Putranto
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
- Department of Radiology, Gatot Soebroto Army Central Hospital, Jakarta 10410, Indonesia
| |
Collapse
|
4
|
Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS Therapy on the Expression of Genes Related to Peripheral Nerve Regeneration in Schwann Cells. Int J Mol Sci 2024; 25:12791. [PMID: 39684499 DOI: 10.3390/ijms252312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration. This study analyzes the effects of PEMF and LIPUS on gene expression in human primary Schwann cells, which are crucial for nerve myelination and repair. Key genes involved in neurotrophin signaling (NGF, BDNF), inflammation (IL-1β, IL-6, IL-10, TNF-α, TGF-β), and regeneration (CRYAB, CSPG, Ki67) were assessed. The results of this study reveal that combined PEMF and LIPUS therapies promote Schwann cell proliferation, reduce inflammation, and improve the regenerative environment, offering potential for optimizing these therapies for clinical use in regenerative medicine.
Collapse
Affiliation(s)
- Mateusz Siwak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Nakamura Y, Tada K, Akahane M, Hattori T, Matsuta M, Murai A, Honda S, Hori O, Demura S. Efficacy of adipose-derived stem cells in preventing peripheral nerve adhesion and promoting nerve regeneration: A laboratory investigation in a rat model. J Orthop Sci 2024:S0949-2658(24)00187-8. [PMID: 39379214 DOI: 10.1016/j.jos.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Neurolysis alone or administration of anti-adhesion products after neurolysis is performed to treat peripheral nerve adhesion; however, the recovery of nerve function is poor. This study aimed to investigate the efficacy of adipose-derived stem cells (ADSCs) for peripheral nerve adhesion in a rat model. METHODS As a nerve adhesion procedure, the neural bed was coagulated, and the epineurium of the sciatic nerve was sutured to the coagulated neural bed using nylon. Neurolysis was performed 6 weeks after the nerve adhesion procedure, and saline (control group) or ADSCs (ADSC group) were administered around the nerve where neurolysis was performed. Evaluations were performed 6 weeks after the administration. RESULTS The wet weight ratio of the tibialis anterior muscle and nerve conduction velocity, which are indicators of nerve regeneration, were significantly better, while tensile strength, which is an indicator of the severity of nerve adhesion, was significantly lower in the ADSC group than in the control group. In the nerve, the expression of interleukin-10 and transforming growth factor-β in the nerve was significantly higher and that of tumor necrosis factor-α was significantly lower in the ADSC group than in the control group. Furthermore, significantly fewer M1 macrophages and significantly more M2 macrophages were observed in the ADSC group than in the control group. In the perineural scar, significantly fewer perineural collagen fibers and significantly more vascularization were observed in the ADSC group than in the control group. CONCLUSIONS ADSCs prevented peripheral nerve adhesion by reducing perineural scarring and enhancing vascularization. Additionally, ADSCs promoted nerve regeneration by decreasing inflammatory cytokine levels and increasing anti-inflammatory cytokine levels, as ADSCs regulated macrophage polarization from M1 to M2 macrophages. These findings hold promise for using ADSCs to treat nerve adhesion.
Collapse
Affiliation(s)
- Yuta Nakamura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kaoru Tada
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Mika Akahane
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Masashi Matsuta
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Atsuro Murai
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Soichiro Honda
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
6
|
McBenedict B, Hauwanga WN, Escudeiro G, Petrus D, Onabanjo BB, Johnny C, Omer M, Amaravadhi AR, Felix A, Dang NB, Adolphsson L, Lima Pessôa B. A Review and Bibliometric Analysis of Studies on Advances in Peripheral Nerve Regeneration. Cureus 2024; 16:e69515. [PMID: 39416551 PMCID: PMC11481412 DOI: 10.7759/cureus.69515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Peripheral nerve injuries (PNIs) pose significant clinical challenges due to their complex healing processes and the often incomplete functional recovery. This review and bibliometric analysis aimed to provide a comprehensive overview of advancements in peripheral nerve regeneration research, focusing on trends, influential studies, and emerging areas. By analyzing 2921 publications from the Web of Science Core Collection, key themes such as nerve regeneration, repair, and the critical role of Schwann cells were identified. The study highlights a notable increase in research output since the early 2000s, with China and the United States leading in publication volume and citations. The analysis also underscores the importance of collaborative networks, which are driving innovation in this field. Despite significant progress, the challenge of achieving complete functional recovery from PNIs persists, emphasizing the need for continued research into novel therapeutic strategies. This review synthesizes current knowledge on the mechanisms of nerve regeneration, including the roles of cellular and molecular processes, neurotrophic factors, and emerging therapeutic approaches such as gene therapy and stem cell applications. Additionally, the study revealed the use of nanotechnology, biomaterials, and advanced imaging techniques, which hold promise for improving the outcomes of nerve repair. This bibliometric analysis not only maps the landscape of peripheral nerve regeneration research but also identifies opportunities for future investigation. This study has some limitations, including reliance on the Web of Science Core Collection, which may exclude relevant research from other databases. The analysis is predominantly English-based, potentially overlooking significant non-English studies. Citation trends might be influenced by shifting research priorities and accessibility issues, affecting the visibility of older work. Additionally, geographical disparities and limited collaboration networks may restrict the global applicability and knowledge exchange in this field.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Cardiology, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Dulci Petrus
- Family Medicine, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | - Barakat B Onabanjo
- Research and Development, Montefiore Medical Center, Wakefield Campus, New York City, USA
| | | | - Mohamed Omer
- Internal Medicine, Sulaiman Al Rajhi University, Ar Rass, SAU
| | | | - Asaju Felix
- General Practice, Dorset County Hospital, Dorchester, GBR
| | - Ngoc B Dang
- Nursing, College of Health Sciences, VinUniversity, Hanoi, VNM
| | | | | |
Collapse
|
7
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Acevedo Cintrón JA, Hunter DA, Schellhardt L, Pan D, Mackinnon SE, Wood MD. Limited Nerve Regeneration across Acellular Nerve Allografts (ANAs) Coincides with Changes in Blood Vessel Morphology and the Development of a Pro-Inflammatory Microenvironment. Int J Mol Sci 2024; 25:6413. [PMID: 38928119 PMCID: PMC11204013 DOI: 10.3390/ijms25126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.A.C.); (D.A.H.); (L.S.); (D.P.); (S.E.M.)
| |
Collapse
|
9
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Li X, Tao M, Quan L, Zhang H, Xin Y, Wu X, Fang X, Fan J, Tian X, Wang X, Wen L, Yu T, Ao Q. Preparation and evaluation of decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Regen Biomater 2024; 11:rbae054. [PMID: 38845852 PMCID: PMC11153341 DOI: 10.1093/rb/rbae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of the immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rats. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.
Collapse
Affiliation(s)
- Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Meihan Tao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xinyu Fang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Lili Wen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Chaker SC, Saad M, Mayes T, Lineaweaver WC. Burn Injury-related Growth Factor Expressions and Their Potential Roles in Burn-related Neuropathies. J Burn Care Res 2024; 45:25-31. [PMID: 37978864 DOI: 10.1093/jbcr/irad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 11/19/2023]
Abstract
In the context of burn injury, growth factors (GFs) play a significant role in mediating the complex local and systematic processes that occur. Among the many systemic complications that arise following a burn injury, peripheral neuropathy remains one of the most common. Despite the broad understanding of the effects GFs have on multiple tissues, their potential implications in both wound healing and neuropathy remain largely unexplored. Therefore, this review aims to investigate the expression patterns of GFs prominent during the burn wound healing process and explore the potential contributions these GFs have on the development of burn-related peripheral neuropathy.
Collapse
Affiliation(s)
- Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Mariam Saad
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| | - Taylor Mayes
- Middle Tennessee State University, Murfreesboro, TN, 37132USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232USA
| |
Collapse
|
12
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
13
|
Lückemeyer DD, Xie W, Prudente AS, Qualls KA, Tonello R, Strong JA, Berta T, Zhang JM. The Antinociceptive Effect of Sympathetic Block is Mediated by Transforming Growth Factor β in a Mouse Model of Radiculopathy. Neurosci Bull 2023; 39:1363-1374. [PMID: 37165177 PMCID: PMC10465463 DOI: 10.1007/s12264-023-01062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/06/2023] [Indexed: 05/12/2023] Open
Abstract
Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-β (TGF-β) and its receptor TGF-βR1. Here, we examined the role of TGF-β in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-β1 and TGF-βR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-β1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-βR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-β signaling is a general underlying mechanism of local sympathetic blockade.
Collapse
Affiliation(s)
- Debora Denardin Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Katherine A Qualls
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, 10010, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
14
|
Chiot A, Roemer SF, Ryner L, Bogachuk A, Emberley K, Brownell D, Jimenez GA, Leviten M, Woltjer R, Dickson DW, Steinman L, Ajami B. Elevated α5 integrin expression on myeloid cells in motor areas in amyotrophic lateral sclerosis is a therapeutic target. Proc Natl Acad Sci U S A 2023; 120:e2306731120. [PMID: 37523555 PMCID: PMC10410747 DOI: 10.1073/pnas.2306731120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 08/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease affecting upper and lower motor neurons. Microglia directly interact with motor neurons and participate in the progression of ALS. Single-cell mass cytometry (CyTOF) analysis revealed prominent expression of α5 integrin in microglia and macrophages in a superoxide dismutase-1 G93A mouse model of ALS (SOD1G93A). In postmortem tissues from ALS patients with various clinical ALS phenotypes and disease duration, α5 integrin is prominent in motor pathways of the central and peripheral nervous system and in perivascular zones associated with the blood-brain barrier. In SOD1G93A mice, administration of a monoclonal antibody against α5 integrin increased survival compared to an isotype control and improved motor function on behavioral testing. Together, these findings in mice and in humans suggest that α5 integrin is a potential therapeutic target in ALS.
Collapse
Affiliation(s)
- Aude Chiot
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
| | - Shanu F. Roemer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
| | - Lisa Ryner
- Pasithea Therapeutics, Molecular Research Laboratories, South San Francisco, CA94080
| | - Alina Bogachuk
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
| | - Katie Emberley
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, OR97239
| | - Dillon Brownell
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
| | - Gisselle A. Jimenez
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
| | - Michael Leviten
- Pasithea Therapeutics, Molecular Research Laboratories, South San Francisco, CA94080
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR97239
| | | | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Bahareh Ajami
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR97239
- Department of Behavioral and Systems Neuroscience, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
15
|
Ma P, Zhang G, Chen S, Miao C, Cao Y, Wang M, Liu W, Shen J, Tang PMK, Men Y, Ye L, Li C. Promotion effect of TGF-β-Zfp423-ApoD pathway on lip sensory recovery after nerve sacrifice caused by nerve collateral compensation. Int J Oral Sci 2023; 15:23. [PMID: 37286538 DOI: 10.1038/s41368-023-00230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Resection of oral and maxillofacial tumors is often accompanied by the inferior alveolar nerve neurectomy, resulting in abnormal sensation in lower lip. It is generally believed that spontaneous sensory recovery in this nerve injury is difficult. However, during our follow-up, patients with inferior alveolar nerve sacrifice showed different degrees of lower lip sensory recovery. In this study, a prospective cohort study was conducted to demonstrate this phenomenon and analyze the factors influencing sensory recovery. A mental nerve transection model of Thy1-YFP mice and tissue clearing technique were used to explore possible mechanisms in this process. Gene silencing and overexpression experiments were then conducted to detect the changes in cell morphology and molecular markers. In our follow-up, 75% of patients with unilateral inferior alveolar nerve neurectomy had complete sensory recovery of the lower lip 12 months postoperatively. Patients with younger age, malignant tumors, and preservation of ipsilateral buccal and lingual nerves had a shorter recovery time. The buccal nerve collateral sprouting compensation was observed in the lower lip tissue of Thy1-YFP mice. ApoD was demonstrated to be involved in axon growth and peripheral nerve sensory recovery in the animal model. TGF-β inhibited the expression of STAT3 and the transcription of ApoD in Schwann cells through Zfp423. Overall, after sacrificing the inferior alveolar nerve, the collateral compensation of the ipsilateral buccal nerve could innervate the sensation. And this process was regulated by TGF-β-Zfp423-ApoD pathway.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gaowei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng Wang
- Department of Medical Record, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine & Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Zhan C, Huang M, Zeng J, Chen T, Lu Y, Chen J, Li X, Yin L, Yang X, Hou J. Irritation of Dental Sensory Nerves Promotes the Occurrence of Pulp Calcification. J Endod 2023; 49:402-409. [PMID: 36758674 DOI: 10.1016/j.joen.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Pulp calcification (PC) often appears in strong association with nerve fiber bundles, which indicates the important role of dental nerves in the formation of PC. Additionally, given that sensory nerves and calcitonin gene-related peptide (CGRP) secreted from sensory nerve fibers are involved in physiological and pathological bone formation, we aimed to determine whether chronic irritation of sensory nerves can promote the occurrence of PC. METHODS A sensory nerve irritation rat model was established via ligation of the inferior alveolar nerve (IAN), and face grooming behavior was analyzed as a measure of pain sensation. Two months post-surgery, PC was determined by imaging and histologic analyses. RESULTS Rats in the IAN-chronic constriction injury (IAN-CCI) group showed spontaneous pain-associated behavior after the operations and pain tolerance on the 60th postoperative day. The imaging and histological analysis showed more calcified particles in the IAN-innervated first and second molars after day 60 of the dental sensory nerve irritation. These calcified masses had a dentin-like structure that contained sparse, irregularly oriented tubules. Compared to the control and sham groups, the odontoblasts located in the periphery of radicular pulp aligned along a thicker layer of predentin; which expressed more nestin with longer and stouter processes in the IAN-CCI group. Additionally, more CGRP-positive nerves were observed in the IAN-CCI group. CONCLUSIONS Irritation of sensory nerves promotes PC formation, and the increased density of CGRP-immunolabeled fibers probably contributes to this process. This highlights the significance of dental sensory nerves in the formation of PC.
Collapse
Affiliation(s)
- Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanli Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyang Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linying Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|