1
|
Haddad NM, De Jesus LP, Serpa M, Van De Bilt M, Talib L, Costa A, Gattaz W, Loch AA. Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci 2025; 275:545-553. [PMID: 38502208 DOI: 10.1007/s00406-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.
Collapse
Affiliation(s)
- Natalia Mansur Haddad
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil.
| | - Leonardo Peroni De Jesus
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Mauricio Serpa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Martinus Van De Bilt
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alana Costa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alexandre Andrade Loch
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| |
Collapse
|
2
|
Li S, He Y, Turner D, Wei N, Ma L, Taylor DH, Taylor DT, Ji X, Wu J. Electrophysiological Phenotypes of Hippocampal Synaptic and Network Functions in Cannabinoid Receptor 2 Knockout Mice. Cannabis Cannabinoid Res 2024; 9:1267-1276. [PMID: 38502778 DOI: 10.1089/can.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.
Collapse
Affiliation(s)
- Shuangtao Li
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongchang He
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dharshaun Turner
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Naili Wei
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Luyao Ma
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Devin H Taylor
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | | | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Qi A, Han X, Quitalig M, Wu J, Christov PP, Jeon K, Jana S, Kim K, Engers DW, Lindsley CW, Rodriguez AL, Niswender CM. The cannabinoid CB 2 receptor positive allosteric modulator EC21a exhibits complicated pharmacology in vitro. J Recept Signal Transduct Res 2024; 44:151-159. [PMID: 39575892 PMCID: PMC11636628 DOI: 10.1080/10799893.2024.2431986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M4 muscarinic receptor and metabotropic glutamate receptor 1 (mGlu1) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB2) receptor, indicating that CB2 activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB2 PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia. These studies revealed that EC21a acts as an allosteric inverse agonist at CB2 in both assays and exhibits a mixed allosteric agonist/negative allosteric modulator profile at CB1 depending upon the assay used for profiling. A series of compounds related to EC21a also functioned as CB2 inverse agonists. Overall, these results suggest that EC21a exhibits complicated and potentially assay-dependent pharmacology, which may impact interpretation of in vivo studies.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Humans
- Schizophrenia/drug therapy
- Schizophrenia/pathology
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Animals
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- CHO Cells
- Antipsychotic Agents/pharmacology
- Cricetulus
Collapse
Affiliation(s)
- Aidong Qi
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xueqing Han
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Marc Quitalig
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Jessica Wu
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - KyuOk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Darren W Engers
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Nunes EJ, Addy NA, Conn PJ, Foster DJ. Targeting the Actions of Muscarinic Receptors on Dopamine Systems: New Strategies for Treating Neuropsychiatric Disorders. Annu Rev Pharmacol Toxicol 2024; 64:277-289. [PMID: 37552895 PMCID: PMC10841102 DOI: 10.1146/annurev-pharmtox-051921-023858] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cholinergic regulation of dopamine (DA) signaling has significant implications for numerous disorders, including schizophrenia, substance use disorders, and mood-related disorders. The activity of midbrain DA neurons and DA release patterns in terminal regions are tightly regulated by cholinergic neurons found in both the striatum and the hindbrain. These cholinergic neurons can modulate DA circuitry by activating numerous receptors, including muscarinic acetylcholine receptor (mAChR) subtypes. This review specifically focuses on the complex role of M2, M4, and M5 mAChR subtypes in regulating DA neuron activity and DA release and the potential clinical implications of targeting these mAChR subtypes.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, and Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel J Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA;
| |
Collapse
|
5
|
Bhattacharjee P, Iyer MR. Rational Design, Synthesis, and Evaluation of Fluorescent CB 2 Receptor Ligands for Live-Cell Imaging: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1235. [PMID: 37765043 PMCID: PMC10534640 DOI: 10.3390/ph16091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies.
Collapse
Affiliation(s)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|